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Centre for Biomedical Image Analysis, Masaryk University,
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Abstract. In biomedical image processing, correct tracking of individ-
ual cells is important task for the study of dynamic cellular processes.
It is, however, often difficult to decide whether obtained tracking results
are correct or not. This is mainly due to complexity of the data that can
show hundreds of cells, due to improper data sampling either in time
or in space, or when the time-lapse sequence consists of blurred noisy
images. This prohibits manual extraction of reliable ground truth (GT)
data as well. Nonetheless, if reliable testing data with GT were available,
one could compare the results of the examined tracking algorithm with
the GT and assess its performance quantitatively.

In this paper, we introduce a novel versatile tool capable of generat-
ing 2D image sequences showing simulated living cell populations with
GT for evaluation of biomedical tracking. The simulated events include
namely cell motion, cell division, and cell clustering up to tissue-level
density. The method is primarily designed to operate at inter-cellular
scope.
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1 Introduction

The present biomedical research increasingly relies on automated processing and
analysis of large amount of image data, which are nowadays commonly produced
by the vast majority of acquisition devices. Two fundamental tasks in this area
are image segmentation and motion tracking. The task of segmentation is to
split the image into several disjoint regions. Depending on the application, the
regions can be whole cells, various intra-cellular objects (e.g., mitochondria or
some proteins), cell nuclei themselves, or intra-nuclei objects (e.g., chromatin
territories or individual genes). The task of motion tracking is to provide links
between these regions between consecutive images in the acquired time-lapse
sequence. This allows for description of events and changes in the characteristics
of studied objects over a period of time. Of course, such analyses should be
performed over significantly large datasets, thus in an unsupervised manner.
This, however, calls for proper validation, in terms of precision and accuracy, of
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the image analysis methods prior to their use in practice. In particular, we will
focus on quality examination of cell and cell nuclei tracking algorithms.

For proper evaluation one needs to possess reliable and complete ground
truth data (GT), which is a sequence of labelled mask images and corresponding
cell lineage trees in the case of cell and nuclei tracking. When seeking for GT
for one’s particular application, one may ask a human expert to annotate her
existing images in order to turn them into a GT dataset. But this is often
very tedious and unreliable [27], especially in the 3D case. It is also possible
to use some of the existing publicly available datasets. Unfortunately, none of
the popular ones [3,8,13,21] offers time-lapse data, except, to the best of our
knowledge, for the recent one [16]. Another, and recently becoming particularly
popular, solution is to make use of a simulator, which we understand as a tool
for generating pseudo-real synthetic testing images accompanied with the GT
data, e.g., labelled mask images.

1.1 Current Approaches to Analysis of Tracking Performance

Dufour et al. [4] can be considered to belong among the first research groups
that were creating synthetic time-lapse sequences of moving cells for evaluation of
tracking performance. In their work, only two spheres were positioned randomly
under constraint that they can’t overlap and that they touch at least once during
the sequence. The images of the spheres were then covered with noise. Later on,
the same authors [5] elaborated further their idea in order to yield yet more
realistic image sequences.

Other significant contributions [7,11,14] to the field as well as many other
researchers relied on expert manual annotation of small subsets of available
data. This is somewhat surprising provided that simulated data are often used
for evaluating segmentation algorithms. One conclusion we may draw from it
is that tracking developers lack reasonable aid for creating one’s own synthetic
time-lapse images.

Looking into the field of image registration, some authors [12,26] reported
recently to obtain synthetic images with elaborate non-rigid object shape changes
and realistic texture. Here, the image sequences were created by iteratively
preparing image transformations, that introduced various types of motion and
deformations, and by applying them on a given initial real image. These meth-
ods require, therefore, a sample real image and transformations either measured
from real data [26] or synthetic ones [12]. One of the first attempts to put syn-
thetic cells to motion according to fully synthetic transformations, was drafted
in [24]. The authors initially filled a mask with a procedural texture [17] to
mimic a chromatin structure. The structure was then iteratively transformed
with generated smooth vector fields in the course of time. Such approaches can,
however, display only limited number of cells, usually only a single one, in the
image sequence, which is usually short as well.

In this paper, we would like to fill the gap in the evaluation of tracking
algorithms and offer researchers a tool that creates for them image data with
populations of realistically living, thus moving and splitting, cells with GT.
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1.2 Background on Biomedical Image Simulation

As presented in [23], every simulator can be clearly split into three principal
phases: (I) digital phantom object generation, (II) simulation of signal trans-
mission through an optical system, and (III) simulation of signal detection and
image formation in an image sensor. In this paper, we introduce a tool capable
of generating the appropriate phantom data accompanied with the relevant GT.
In this sense, the topic covers the first phase. The remaining two phases are
beyond the scope of this text. For further reading, see [15,23]. We would like to
emphasize, that we use the term digital phantom instead of model. This comes
from our need to avoid association with a comprehensive and the most correct
description of an object of interest (that a model would be), quite often devised
to have a predictive potential to discover new biology-relevant findings. Our idea
is to focus only on the object properties that may influence our observation (the
visual experience) in optical microscopy. In fact, the observation is subject to
the last two phases. The second phase (II) typically comprises of convolution
with a point spread function, often modelled with Gaussian blur, while the third
phase (III) typically adds several types of noise to the image. See Ref. [23] for
detailed explanation and Ref. [24] for an extension of the three-phase model for
time-lapse datasets.

Unlike the majority of simulation toolboxes whose structure can be decom-
posed into the three consecutive phases, the learning-based approaches employ
generative modelling methods or machine learning approaches. These techniques
have been recently surveyed in [2].

The credibility of synthetically generated datasets comes from how closely the
simulation procedures in all three phases mimic the real data and the simulated
system. When creating the digital phantom of cells and cell populations, we need
to deal with the following three aspects:

– mutual positions of individual cells,
– cell shape,
– and cell internal texture.

In the rest of the paper, we would like to focus on the former two aspects.
These can be represented with cell masks in the synthetic time-lapse image
sequence, and they can provide the complete tracking GT. The initial shape of
cells, of course, depends on the simulated cell line. We were experimenting with
shapes based on the idea that the z-projection of human somatic cells is topo-
logically equivalent to a circle. Hence, the basic initial shape was generated as
a slightly deformed ellipse. The fundamental ideas how to prepare a computer
generated large cell population were presented by Lehmussola et al. [10]. They
were placing individual cells repeatedly until suitable position and allowed over-
lap were established. The ideas defined in their paper influenced many other
authors [15,18,22,28].

Regarding the time-lapse development of cell mask positions within the
images, we propose a concept adopted from the field of crowd motion simu-
lations (see the recent review [6]). In particular, it is extending the popular
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social force model [9] mainly in the three aspects. First, cells, which correspond
to pedestrians in terms of their model, can split or naturally die during the
simulation. Second, cells can take different shape and change its shape during
simulation, in contrast to modelling all pedestrians with fixed-radius circles.
Third, we have changed the semantics of the forces used in the model, some of
which in their paper were artificial, not physically motivated. On the other hand,
it is exactly the modelling based on forces that makes this model attractive for
cell simulations. In fact, the relation between forces and pedestrian positions
is in their model, perhaps not knowingly, formulated with the Langevin equa-
tion [20], which is used to model Brownian motion of particles and is also used
for modeling motion of cells [25].

1.3 Contribution of This Paper

In this paper we propose a simple to use yet versatile method1 to generate GT-
enabled image sequences with vast amounts of cells which show various tracking
events:

– cells move and change shape (as an inevitable property of live),
– they may have contact and can even overlap slightly (simulates dense pop-

ulations),
– they split due to cell divisions (simulates mitosis),
– they disappear due to cell death (simulates starvation due to excessive forces

acting on them) or as they leave the image (simulates leaving the observed
field of view),

– they appear after the mitosis or enter the image again.

The method works with 2D masks of all common biomedical shapes, including
those of nuclei and cells themselves. The method is primarily designed to operate
at inter-cellular scope, not at the intra-cellular scope.

We leave the simulated time-lapse development of cell internal structure, the
cell texture, in the first phase (I) as well as the simulation of second (II) and third
(III) phases to the user — a developer of tracking algorithm for her particular
application. It is precisely this application that dictates what texture should be
used and how images of the cells will be further altered to simulate the image
acquisition. We suggest that developers of the tracking algorithms substitute
their masks with the output of the proposed method in order to obtain yet more
intricate tracking tasks, for which complete tracking GT is available, see Fig. 1.

2 Method

2.1 Cell Motion

Each cell i is represented with its centre xi(t) and polarity vector pi(t), both with
respect to the fixed image coordinates, and with a list of polar coordinates of
1 The implementation is freely available at http://cbia.fi.muni.cz/projects/tragen.

html

http://cbia.fi.muni.cz/projects/tragen.html
http://cbia.fi.muni.cz/projects/tragen.html
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. . .mask img 2 mask img Nmask img 1

test img 2 test img Ntest img 1 . . .

texture mapper,
stage II and III

TRAgen

Fig. 1. Scheme of a complete image sequence generator. The output, a sequence of
labelled image masks, from the proposed method is submitted to a user supplied SW
that overlays the masks with proper texture, yielding a sequence of testing images.

Fig. 2. A) Illustration of a 2D cell representation with emphasized boundary points
and the polarity vector placed in the cell centre. Border lines between points are
straight. B) Illustration of an (exaggerated) contact of two cells (gray contour) with
recognized collision point pairs (solid lines) of the extended boundary. Their number
cpi,j(t, �f ) approximates the length of boundary in contact; the length of the longest
pair is −di,j(t).

points representing a cell boundary. The boundary points are treated relatively
to the cell centre, see Fig. 2A, and are sorted according to the angular element.
The parameter t represents simulated time measured in minutes. We consider
any spatial or distance parameters in units of micrometers.

The method utilizes a concept of several types of forces acting on every cell,
which conducts motion as a result of it. In fact, it is a purely mechanical model of
cell motion. We assume cells are rigid and forces act in their centres. The change
of position of a cell is, therefore, characterized with the differential equations:

dxi(t)
dt

= vi(t), mi
dvi(t)

dt
= F i(t), (1)

where vi(t) is an instantaneous velocity at time t, mi is a mass of the cell, and
F i(t) is a sum of individual forces (described below) acting on it at time t. We
solve this system with the standard Euler method with time step of 0.1 minutes.

In order to push cell i to move, we introduce two forces:

F desired
i (t) = mi v

d
i (t)/τp , (2)

F friction
i (t) = −mi vi(t)/τp . (3)



628 V. Ulman et al.

The force F desired
i (t) represents total force exerted by a cell when conducting

standard actin-induced adhesion-based motion [1]. This force is driven with a
desired velocity vd

i (t) and a persistence time τp, that is, how long on average the
cell keeps moving in the same direction and with the same speed until a change
occurs. Following this definition, we keep changing the desired velocity (direction
and speed) after normally-distributed random period of time; hence vd

i (t) is a
function of time. To counterbalance this motion-inducing force, as in standard
mechanics any object keeps accelerating as long as result of forces acting on it is
not zero, we consider a friction force F friction

i (t). This force can be understood
as a drag when cell is moving in a viscous environment; it also allows cell to
decelerate when required. Changing of the desired velocity corresponds to the
random terms that yield Brownian-like motion in the Langevin equation [20,25].

To accommodate for mutual inter-cellular interactions, let us first define
ni,j(t) = (xj(t) − xi(t))/|xj(t) − xi(t)|, the unit vector pointing from the cell
i centre toward the centre of the cell j at time t, and a signed distance di,j(t)
between boundaries of the two cells: it is minimal Euclidean distance between
boundary points when the cells do not overlap, otherwise it is maximum distance
of the boundary point pairs in the overlap times minus one (−1), see Fig. 2B.
Finally, the following forces, adapted from [9], are calculated:

F repulsive
i (t, j) = nj,i(t) max(di,j(t), 0) Ae−di,j(t)/B , (4)

F body
i (t, j) = nj,i(t) (max(−di,j(t) − �o, 0) k + max(−di,j(t), 0) A) , (5)

F sliding
i (t, j) = n⊥

i,j(t) max(−di,j(t), 0) κ n⊥
i,j(t) · (vj(t) − vi(t)) , (6)

F attractive
i (t, j) = ni,j(t) decayi,j(t, τa) C(1 + cpi,j(t,�f )) . (7)

The operator max() serves as a unit-less cut-off operator such that, for instance,
the force F repulsive

i (t, j) is effective only when there is no collision between the
two cells. Note that orientations of forces differ; the n⊥

i,j(t) is a unit vector
perpendicular to ni,j(t).

The repulsive force F repulsive
i (t, j) corresponds to an increasing effort of an

approaching cell to expel all material between the two cells so that they can
touch eventually. This force can be also understood as a force to slow down the
approaching cell before the contact. Once the contact occurs, the sliding force
F sliding

i (t, j), altered with the parameter κ, is in effect. Its task is to equal veloc-
ities of the cells in contact. The counter-deformation force F body

i (t, j) permits
a decent overlap of a distance �o micrometers. If, however, the overlap of cells
increases, this force increases proportionally as well. Since the overlap mimics
non-rigid deformation of the cell, by adjusting the rate k, one can control cell
stiffness and consequently the amount of deformation and thus overlap allowed.

The purpose of the attractive force F attractive
i (t, j) is to keep neighboring

cells together. The strength of the connection is proportional to the length of the
coinciding boundary extended by �f micrometers between the cells i and j. This
is expressed with cpi,j(t,�f ), see Fig. 2B, as the number of extended boundary
point pairs in the cell overlap. The extension �f of the boundary corresponds to
the length of cell filaments which many cells use to sense others within their close
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spatial vicinity. In order to allow a cell to escape from a cluster, we introduce the
term decayi,j(t, τa) ∈ {0, 1} that goes to 0 whenever there is no contact between
the two cells within the period of time τa, i.e., ∀t′ ∈ 〈t− τa, t〉 : cpi,j(t′,�f ) = 0.
During this period, decent force F attractive

i (t′, j) = C still applies, and then
vanishes completely.

Last but not least, we consider the force F boundary
i (t) = Ae−dbi(t)/B where

dbi(t) is the distance to the closest image boundary. The force acts perpendic-
ularly away from it. This (artificial) force is an optional aid to keep cells within
the simulated field of view.

If any of F repulsive
i (t, j), F body

i (t, j), or F sliding
i (t, j) keeps exceeding a thresh-

old value Fmax over a period of 5% of the cell cycle (the length of the mitosis),
the cell is assumed not to sustain the force and is, thus, removed from simulation.

2.2 Cell Shape Changes

In order to allow for realistic simulation of long-term observations, longer than
is the duration of one cell cycle of the simulated cells, we suggest to implement
cell division. The cell cycle is split into several phases [19]. From the shape
changes perspective, the significant ones are Telophase, Cytokinesis and G1-
phase, during which a mother cell elongates before the division, the division
happens, and daughter cells grow after the division, respectively. Given that the
boundary points are represented in polar coordinates with respect to the cell
centre, we just iteratively extend distance elements in all boundary points by
a constant or by Gaussian-shaped function centered along axis of elongation to
mimic cell growth or cell elongation, respectively. The elongation axis coincides
with the polarity vector pi(t). For the division, we first iteratively decrease the
distances by narrow Gaussian-shaped function centered along axis of division
which is perpendicular to the axis of elongation, and split the boundary point
list into new lists of two daughter cells in the end.

Furthermore, it is established that many cells (but not all, e.g., keratocytes)
tend to maintain polarity and move along this direction. To simulate this, we
smoothly rotate the cell around its centre such that the angle between the current
polarity pi(t) and desired velocity vd

i (t) vectors is minimized.
To summarize the simulation, we first adjust shape of every cell in the system,

then we calculate forces, and solve eq. (1) afterwards. Note that this enables
a user to inject one’s own cell mask instead of having the shape adjusted as
described above. In this way, one can fully control the mask shapes, e.g., employ
one’s own complex non-rigid shape changes [5,26], while have the masks moving
and interacting during the simulation.

3 Results

The parameters of the simulations are summarized in Table 1. Initial number
of cells was always 64 and were spread in a 8-by-8 grid with initial desired
speed of 0µm min−1. The diameter of cells along the polarity vector was 20µm.
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Table 1. Summary of values used in this paper. The notation 〈a, b〉 denotes uniformly
distributed random value between the numbers a and b.

mi = 1mg τp ∈ 〈10, 20〉min vd
i (t) ∈ 〈0.0, 0.8〉µm min−1

A = 0.1N B = 0.6µm Fmax = 0.3N
k = 0.2N κ = 0.3N min µm−1 δo = 0.5µm
C = 0.02N τa = 10min δf = 0.5µm

Fig. 3. Comparison of synthetic medium-dense (in the left) to dense (in the right)
populations of cells. There are 418 and 955 cells displayed. The cells in red are in
mitosis, those in blue are not. Note in the left image the two outlined cells that are in
the process of cell division. Images were dilated by 1px for displaying purposes.

The complete cell cycle duration was set to 300min, with 0.4%, 0.4% and 50%
of it allocated for the cell elongation, division, and growth, respectively. The
system was computing with temporal resolution of 0.1 simulated minutes. The
frequency of rendering cells into a sequence of images, the temporal sampling of
the sequence, is a user parameter. Spatial resolution is limited only by machine
floating-point precision as the coordinates were real-valued, presumably in units
of µm. Similarly, spatial image resolution, DPI, is a user parameter as well.

We show here four snapshots of simulations, and encourage interested reader
to download and try the method. The snapshots focus on the prominent prob-
lem in the tracking task: the linking of touching objects between consecutive
images. Note that segmentation of images is not addressed in this paper. In
Fig. 3, we compare medium-dense population of cells, where some had already
formed tight clusters, to dense, tissue-like cell configuration. In this case, the
force F boundary

i (t) was used. The death-inducing threshold Fmax was, however,
set very high so that it effectively prohibited cells to get removed, yielding tight
over-populated configuration of cells under increased stress (stress figures not
shown). In Fig. 4, boundary force was not used and Fmax was set as reported
in the table. Notice relaxed packing configuration in the right image.
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Fig. 4. Comparison of synthetic populations of 551 (in the left) and of 553 (in the
right) cells with disabled (in the left) and enabled (in the right) removing of cells due
to exceedingly strong forces acting on them. The black cells suffer from the excessive
force. Images were dilated by 1px for displaying purposes.

The time complexity of the method when generating next image in the
sequence is quadratic with respect to the number of simulated cells, because
it needs to calculate mutual distances between all the cells. The most demand-
ing operation is to compute cpi,j(t,�f ). The time complexity is independent of
the size of the generated images. Total time required to calculate positions of
300 cells in 100 frames on a standard desktop PC was less than 1 minute (single
threaded implementation).

3.1 Case Study: Comparison Against Real Annotated Data

In order to demonstrate that the method can be adapted to simulate a particular
and non-trivial real tracking data, we will compare generated sequences against
a real sequence of Pancreatic Stem Cells on a polystyrene substrate2. It is a
sequence of 2D images showing single-isolated motile cells to small clusters,
150–300 cells in an image, acquired in a sequence of 100 images sampled every
10 minute, and observed with the phase-contrast microscopy, see Fig. 5.

To mimic the sequence, we adjusted the initial number, initial positions and
the desired speed of all cells as well as the size of the output images to meet
spatial parameters, the total simulated time and sampling to meet temporal
parameters, and complete cell cycle duration to meet the population growth
rate, see Fig. 6. Finally, we have implemented provisional texture mapper, that
used the produced masks as described earlier in this paper (e.g., Fig. 1), to
obtain a visually similar sequence, see Fig. 5.

2 Data was obtained with permission from the Cell Tracking Challenge web site http://
www.codesolorzano.com/celltrackingchallenge/, courtesy of Dr. Tim Becker.

http://www.codesolorzano.com/celltrackingchallenge/
http://www.codesolorzano.com/celltrackingchallenge/
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Fig. 5. Sample image from the real (in the left) and synthetic (in the right) sequence.
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Fig. 6. In the left, comparison of the development of the number of cells over time. The
growth rate of the simulated population appears to mimic the one in the real data.
In the right, comparison of the cell tracks. The motility of synthetic cells (bottom)
appears rather similar to the real ones (top).

4 Conclusion

We have described a method, which is both simple to use and control yet ver-
satile in the variety of simulated aspects. It can simulate, for instance, motile
isolated cells, cells preferring to form clusters, or tissue-like cell cultures during
complete cell cycle including the cell division. One can control the rate of cell
divisions, average speed of cells, and temporal sampling of the simulation to
steer complexity of the tracking task. It is designed to provide a sequence of 2D
images with labelled masks together with lineage trees that serves as a complete
tracking GT data, all in the format adopted in the Cell Tracking Challenge [16].
We believe that prospective authors of next tracking algorithms may easily add
appropriate textures [10,15] to these masks and tailor appearance of the obtained
testing images specifically to the context of their needs, e.g., to phase-contrast
or fluorescence microscopy, or to images with different SNR. The testing images
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obtained in this way, can become yet more realistic and thus more relevant for
the evaluation.

The method is primarily designed to operate at inter-cellular scope, not at the
intra-cellular scope. It is, however, possible to extend it such that it can work even
with masks of particles, e.g., genes, or some smaller intra-cellular structures such
as protein territories or mitochondria, provided forces are adapted appropriately
or new ones are introduced, e.g., a force keeping genes within the same cell.

Given the results of this report, that the adopted force-based approach is
viable for 2D time-lapse cell simulations, we plan to extend the simulations
into a full 3D time-lapse including non-rigid deformations of the 3D cells. The
simultaneous movement and deformation of cells should be a result of mechanical
model of a viscoelastic cell after collecting various forces acting on it.
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16. Maška, M., Ulman, V., Svoboda, D., Matula, P., Matula, P., et al.: A benchmark
for comparison of cell tracking algorithms. Bioinformatics, pp. 1609–1617 (2014)

17. Perlin, K.: An image synthesizer. In: SIGGRAPH 1985: Proceedings of the
12th Annual Conference on Computer Graphics and Interactive Techniques,
pp. 287–296. ACM Press, New York (1985)

18. Rajaram, S., Pavie, B., Hac, N.E.F., Altschuler, S.J., Wu, L.F.: Simucell: a flexible
framework for creating synthetic microscopy images. Nat. Methods 9(7), 634–635
(2012)

19. Reece, J., Urry, L., Cain, M., Wasserman, S., Minorsky, P., Jackson, R.: Campbell
Biology, 9th edn. Pearson Benjamin Cummings (2011)

20. Romanczuk, P., Bär, M., Ebeling, W., Lindner, B., Schimansky-Geier, L.: Active
Brownian particles. The European Physical Journal - Special Topics 202(1), 1–162
(2012)

21. Ruusuvuori, P., Lehmussola, A., Selinummi, J., Rajala, T., Huttunen, H.,
Yli-Harja, O.: Benchmark set of synthetic images for validating cell image analysis
algorithms. In: Proceedings of the 16th European Signal Processing Conference,
EUSIPCO (2008)

22. Svoboda, D., Ulman, V.: Towards a realistic distribution of cells in synthetically
generated 3d cell populations. In: Petrosino, A. (ed.) ICIAP 2013, Part II. LNCS,
vol. 8157, pp. 429–438. Springer, Heidelberg (2013)

23. Svoboda, D., Kozubek, M., Stejskal, S.: Generation of digital phantoms of cell
nuclei and simulation of image formation in 3d image cytometry. Cytometry Part
A 75A(6), 494–509 (2009)

24. Svoboda, D., Ulman, V.: Generation of synthetic image datasets for time-lapse
fluorescence microscopy. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012, Part II.
LNCS, vol. 7325, pp. 473–482. Springer, Heidelberg (2012)

25. Szabo, A., Perryn, E., Czirok, A.: Network formation of tissue cells via preferential
attraction to elongated structures. Phys. Rev. Lett. 98, 038102 (2007)

26. Tektonidis, M., Kim, I.H., Chen, Y.C.M., Eils, R., Spector, D.L., Rohr, K.: Non-
rigid multi-frame registration of cell nuclei in live cell fluorescence microscopy image
data. Medical Image Analysis 19(1), 1–14 (2015)

27. Webb, D., Hamilton, M.A., Harkin, G.J., Lawrence, S., Camper, A.K.,
Lewandowski, Z.: Assessing technician effects when extracting quantities from
microscope images. Journal of Microbiological Methods 53(1), 97–106 (2003)

28. Xiong, W., Wang, Y., Ong, S.H., Lim, J.H., Jiang, L.: Learning cell geometry
models for cell image simulation: An unbiased approach. In: ICIP, pp. 1897–1900
(2010)


	TRAgen: A Tool for Generation of Synthetic Time-Lapse Image Sequences of Living Cells
	1 Introduction
	1.1 Current Approaches to Analysis of Tracking Performance
	1.2 Background on Biomedical Image Simulation
	1.3 Contribution of This Paper

	2 Method
	2.1 Cell Motion
	2.2 Cell Shape Changes

	3 Results
	3.1 Case Study: Comparison Against Real Annotated Data

	4 Conclusion
	References


