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Abstract. Lesion volume delineation of Positron Emission Tomography images 
is challenging because of the low spatial resolution and high noise level. Aim of 
this work is the development of an operator independent segmentation method 
of metabolic images. For this purpose, an algorithm for the biological tumor vo-
lume delineation based on random walks on graphs has been used. Twenty-four 
cerebral tumors are segmented to evaluate the functional follow-up after  
Gamma Knife radiotherapy treatment. Experimental results show that the seg-
mentation algorithm is accurate and has real-time performance. In addition, it 
can reflect metabolic changes useful to evaluate radiotherapy response in 
treated patients. 
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1 Introduction 

Gamma Knife (LGK; Elekta) radiosurgery is a mini-invasive technique defined as the 
delivery of a single, high dose of radiation to obtain a complete destruction of brain 
lesions. It provides a safe and effective way of treating inaccessible cerebral tumors. 
An examination to differentiate malign and benign tissue in brain tumors with great 
preciseness is the Positron Emission Tomography (PET) with the amino acid tracer 
11c-methionin (MET). PET is a non-invasive functional imaging technique that 
shows complementary information with respect to Computed Tomography (CT) and 
Magnetic Resonance Imaging (MRI). In addition, metabolic changes are often faster 
and more indicative of the effects of the therapy with respect to anatomical imaging 
[1]. Numerous studies have shown that the specificity of the MET PET for marking 
tumor delineation and for the differentiation relapse versus radiation necrosis is higher 
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compared with MRI. In the paper reported in [2], metabolic imaging was used for 
biological target delineation in 36 patients that showed a significantly longer median 
survival compared with the group of patients, in which target volume was merely 
defined by MRI. Nevertheless, due to the nature of PET images (low spatial resolu-
tion, high noise and weak boundary), the Metabolic Tumor Volume (MTV) varies 
substantially depending on the algorithm used to delineate functional lesions: the 
choice of a standard method for PET volume contouring is a very challenging yet 
unresolved step.  

Visual delineation is widely used because it is easily applicable, but it is potentially 
inaccurate being susceptible to the window level settings and subject to both intra and 
inter-operator variability. In this paper an algorithm based on random walks (RW) on 
graphs [3] has been adapted for PET imaging. To create an automatic and operator 
independent method starting from previous work [4], we propose an automated seed 
localization method to identify RW seeds. Our framework is used in 12 patients with 
cervical metastases to evaluate therapeutic response in sequential scans for a total of 
24 PET scans. Patients undergo MET PET examinations before and 2 months after 
the Gamma Knife treatment. 

The paper is organized as follows: in the next section the current state of the art in 
PET image segmentation techniques is reviewed. In the “Materials and Methods” 
section, the RW algorithm adapted for PET imaging and for a clinical environment is 
described. In the “Results” section, our delineation method is evaluated to assess the 
accuracy and the Gamma Knife treatment response. We conclude with a discussion of 
results in the last section. 

2 Related Works 

Image thresholding and region growing methods are the most widely used due to their 
simplicity to implement but they are too sensitive to PET image noise and heterogene-
ity [5, 6]. Variational approaches based on gradient differences between target and 
background regions are mathematically efficient but sensitive to noise and subject to 
numerical fluctuation [7, 8]. Learning methods as artificial neural network (ANN), 
support vector machine (SVM), k-means algorithm, fuzzy C-means algorithm are 
efficient but require high computational steps and are sensitive to variability of PET 
radiotracer depending on study protocol, as for example scanner characteristics, radio-
tracer injected dose and interval between radiotracer injection and exam start, e.g. [9, 
10]. In addition, supervised algorithms have limited application in PET imaging, un-
like in the MRI or CT fields, due to high heterogeneity that makes the recognition of 
stable features in the training set very difficult. Graph based methods are used to find 
the globally optimal segmentation of images. The RW algorithm was developed by 
Grady [3] in the computer vision domain and then was extended for image segmenta-
tion [11, 12]. RW treats the segmentation as the solution to a linear system with an 
exact solution and it is very accurate in noisy and low contrast images, such as PET 
images. At last, in several works, e.g. [13, 14], the different tumor contours on PET 
and on CT are simultaneously segmented. Although our patients undergo a PET/CT 
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The handmade segmentation is the gold standard for the clinical study. It is used to 
compare the results obtained with the automatic proposed method. PET/CT studies are 
reported by an expert nuclear medicine physician for diagnostic and staging purposes. A 
time-expansive slice-by-slice manual segmentation is performed on a software platform 
(Xeleris workstation) from General Electric Medical Systems healthcare. Due to inevit-
able variability of PET image visualization, the window level setting is changed by the 
nuclear medicine physician to obtain a clear visual appearance of MET PET positive 
structures. Then, the active tumor volume is defined including the tumor volume with 
an intense tracer uptake respect to background MET activity level. 

3.3 Automatic Segmentation 

3.3.1   RW Method in PET Imaging Field 
RW is an efficient and accurate method in low contrast images characterized by noise 
and weak edges such as PET studies [15]. The graph-based segmentation method repre-
sents an image as a graph in which the voxels are its nodes and the edges are defined by 
a cost function which maps a change in image intensity to edge weights [3]. The 
weights wij between nodes are obtained using the following Gaussian function:  
 

wij = exp(-β(gi-gj)
2)                                                  (1) 

 
where both gi and gj are the image intensity values at voxels i and j; β is a free pa-
rameter (in our experiments, β is set to 1). 

RW parameters have been calibrated to be suited for PET imaging modality.  In (1) 
we replace gi and gj with the Standardized Uptake Value (SUV) in the voxels i and j. 
SUV is the ratio of lesion radioactivity concentration, and administered dose at the 
time of injection divided by body weight [16]. The PET image is converted into a 
graph where some nodes are labeled by the user and some nodes are not known.  

The segmentation problem is to assign a label to unknown nodes. This is done by 
trying to find the minimum energy among all possible scenarios in the graph to pro-
vide an optimal segmentation. The RW method partitions the nodes into foreground 
and background subsets from the probability that a “random walker” starting at a 
source node, first reaches a node with a pre-assigned label, visiting every voxel.  

The RW problem has the same solution as the combinatorial Dirichlet problem [3]: 
 

D[x] = (xT L x) / 2                                                (2) 
 

where L indicates the graph’s Laplacian matrix and x the vector of the probabilities 
that each voxel is inner to target. 

A probability array is then produced, and a threshold of 50% is chosen to discrimi-
nate the foreground from the background creating a voxel binary mask, so that: 

• target voxel value = 1 if its probability ≥ 50% 
• background voxel value = 0  if its probability < 50%. 
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3.4 Evaluation 

The segmentation performance of the proposed method is evaluated making a com-
parison with manual MTV segmentation by the dice similarity coefficient (DSC), 
median Hausdorff distance (HD) and true positive and false positive volume fractions 
(TPVF and FPVF). DSC is a measurement of spatial overlap between segmented and 
manual MTV: a DSC of one indicates a perfect match between the two volumetric 
segmentations, while a DSC of zero indicates no overlap. HD is a shape dissimilarity 
metric measuring the most mismatched boundary pixels between automatic and ma-
nual MTV: a small median of HD values means an accurate segmentation, while a 
large median of HD values means no accuracy. TPVF indicates the fraction of the 
total amount of tissue inside the target lesion (sensitivity), and FPVF denotes the 
amount of tissue falsely identified (specificity=100 - FPVF) [17]. A perfect segmenta-
tion algorithm would be 100% sensitive (segmenting all voxels from the target vox-
els) and 100% specific (not segmenting any from the background voxels). 

The average time for delineating brain metastases is recorded to assess algorithm 
performance. 

In addition, lesion segmentation is used to evaluate therapeutic response using 
SUVmax, MTV, and Total Lesion Glycolysis (TLG) variations in sequential scans. 
MTV provides metabolic volumetric information of the tumors; TLG, defined as 
MTV x (average SUV within the MTV), combines the volumetric and SUV informa-
tion, to try to obtain a better evaluation of the treatment response. 

Variations (Δ) in SUVmax, MTV, and TLG in sequential scans are normalized to 
baseline:  

 
Δ(%) = 100 x (post-treatment – baseline)/baseline                      (3) 

4 Experimental Results 

4.1 Trials and Results on Phantoms 

Phantom images are used to validate the proposed method. The size of the spheres is 
known, and the accuracy of the delineation method can be evaluated. The thresholds 
to identify target and background voxels in section 3.3.2 are set to 95% and 30% be-
cause there give better results among the tested values. The DSC range is found to be 
from 81.23% up to 99.99% (95.27±2.98%). The HD range is found to be from 
1.69mm up to 3.66mm (2.10±0.79mm). The average TPVF is 98.80±2.22% (range: 
95.10% - 100%). The average specificity (100 – FPVF) is ~ 100% since the sphere 
voxel number with respect to the background voxel number is very small. 

4.2 Trials and Results on the Clinical study 

24 PET studies (2 scans for each patient) are used to assess the accuracy of our me-
thod by comparing the automatic to manual segmentation. Fig. 5 shows the lesion 
segmentation obtained using the two different methods in three patient studies. The 
RW delineation is not subject to both intra and inter-operator variability. 
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Table 1. Metabolic response obtained on the segmented lesions for each patient 

Patients     ∆SUVmax     ∆MTV ∆TLG 

#1 -30.10% -62.20% -66.67% 
   #2  -26.21%  -31.53%  -43.83% 

#3 -1.00% -61.12% -59.43% 

#4 9.47% -16.89% -8.50% 

#5 -41.83% -81.16% -83.86% 

#6 -44.36% 24.85% -26.15% 

#7 -62.72% -20.22% -64.93% 

#8 CMR CMR CMR 

#9 14.73% -49.98% -39.74% 

#10 -39.64% -13.27% -10.21% 

#11 -37.00% -30.95% -56.50% 

#12 CMR CMR CMR 

5 Discussions and Future Works 

Gamma Knife radiosurgery is a stereotactic treatment defined as the delivery of a 
single, and high dose of radiation for a precise destruction of target tissues. MRI, the 
commonly used imaging modality in neuro-radiosurgery, has limitations for the post-
operative evaluation. We integrate PET imaging to evaluate the treatment response in 
12 patients with cervical metastases. PET has, however, not yet been fully incorpo-
rated into routine Gamma Knife procedure: metabolic segmentation is a critical task 
due to the lack of consistency in tumor contour, low image resolution, and a relatively 
high level of noise and heterogeneity of uptake within a tumor. Nevertheless, an accu-
rate automatic 3D delineation is desirable because manual segmentation is a prohibi-
tively laborious task. In addition, automated segmentation is also important because 
of the need for repeatable delineation in patient studies for a proper quantification of 
therapy response, given the considerable variations within and across nuclear medi-
cine physicians. 

In this paper a modified RW method for PET images segmentation has been pre-
sented. We propose an extension of our previous method [4] to automatically change 
the probability value needful to lesion from background area discrimination and to 
make it fully automatic. 

First, our method uses an adaptive probability value instead of a fixed one to make 
the segmentation performance independent of the choice of the β factor in the Gaus-
sian weighting function (1). Second, the algorithm automatically identifies the RW 
seeds: our method is an operator independent method, satisfying this critical require-
ment in a clinical environment. Third, the method accuracy is optimal with high DSC 
and TPVF values and low HD and FPVF values. At last, the proposed method is very 
powerful in terms of time performance: the algorithm is fast (one slice in ~ 0.3 
seconds) if compared against the time needed for manual segmentation. 
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In addition, we use our method to calculate MTV and TLG in order to reflect me-
tabolic changes in sequential PET scans after Gamma Knife treatment throughout the 
entire tumor mass. These parameters should be more accurate methods of detecting 
global changes than a single-pixel value measurement such as SUVmax. The results in 
Table 1 show that the patient number 3, 4, and 9 could be a demonstration of this 
theory. On the other hand, in the literature cut-offs for SUV are reported [1, 18], in-
stead there are no data for MTV or TLG evaluations. Analyses of receiver operating 
characteristic curves to estimate these cut-offs will be evaluated. In addition, MTV 
and TLG values depend on the delineation processes. Our segmentation approach is 
fully automatic, and an experienced nuclear medicine physician is considered in the 
manual lesion definition, to assess our method accuracy. Nevertheless, partial volume 
effect is one of the most important factors impacting the quality and the quantitative 
accuracy in PET imaging [19]. The images are blurred due to the limited spatial reso-
lution of PET scanner and small lesions appear larger [20]. Several corrective tech-
niques have been developed and a method of partial volume correction could be in-
cluded in the algorithm, as that described in [21]. 

At last, the sixth patient shows a positive ΔMTV, and a negative ΔTLG that is in-
dicative of partial response to treatment. TLG combines the volumetric (MTV) and 
the semi-quantitative parameter (SUV) information: it probably provides a better 
evaluation of the prognosis compared to MTV.  

In conclusion, PET delineation in neurosurgical radiosurgery appears helpful for 
assessing the effects of therapy in brain metastases. The developed method could be 
used as a Medical Decision Support System to help clinicians in treatment response 
evaluation of oncological patients. Nevertheless, as this is only a preliminary study, 
further investigations are required with a larger number of patients in order to assess 
the prognostic usefulness and long-term clinical impact to correlate MTV segmenta-
tion with clinical outcomes, progression-free survival and overall survival.  
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