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Abstract. Image segmentation is one of the core task in image process-
ing. Traditionally such operation is performed starting from single pixels
requiring a significant amount of computations. It has been shown that
superpixels can be used to improve segmentation performance. In this
work we propose a novel superpixel-based hierarchical approach for image
segmentation that works by iteratively merging nodes of a weighted undi-
rected graph initialized with the superpixels regions. Proper metrics to
drive the regions merging are proposed and experimentally validated
using the standard Berkeley Dataset. Our analysis shows that the pro-
posed algorithm runs faster than state of the art techniques while provid-
ing accurate segmentation results both in terms of visual and objective
metrics.
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1 Introduction

Region segmentation is a key low-level problem in image processing, as it is at the
foundation of many high-level computer vision tasks, such as scene understand-
ing [7] and object recognition [8]. Traditionally regions are found by starting from
single pixels and then use different approaches to find clusters of pixels. Some
examples of methods include region growing [14], histogram analysis [15] and
pyamidal approaches [12]; another very commonly used class of algorithms treats
the image as a graph. Graph-based techniques usually consider every pixel as a
node in a weighted undirected graph and then they find regions in two possible
ways: by partitioning the graph using some criterion, or by merging the nodes that
are most similar according to a similarity measure. Methods of the first subclass
are usually based on graph-cut and its variations [18] or spectral clustering [6]. For
what concerns node merging techniques, one algorithm that has been widely used
is the one by Felzenszwalb-Huttenlocher [4]. The criterion proposed in this latter
work aims at clustering pixels such that the resulting segmentation is neither too
coarse nor too fine. The graph is initialized considering every pixel as a node; the
arcs between neighboring pixels are weighted with a proper dissimilarity measure
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(e.g. minimum color difference connecting two components). At every iteration
the algorithm merges pair of nodes (components) that are connected by an edge
characterized by a weight that is lower than the intra-component differences. As
consequence, homogeneous components that are not separated by boundaries are
progressively represented by the nodes of the graph.

A recent trend in segmentation, is to start the computation from superpixels
instead of single pixels [16]. As shown in Fig. 1, superpixels are perceptually
meaningful atomic regions which aim to replace rigid pixel grid. Examples of
algorithms used to generate these kind of small regions are Turbopixel [9] and
the widely used and very fast SLIC algorithm [1]. Over-segmenting an image
using one of said techniques, and the performing actual region segmentation,
can be interesting both in term of reducing the complexity of the problem (i.e.
starting from superpixels instead of single pixels) and improving the quality of
the final result, thanks to the intrinsic properties of superpixels [10].

Fig. 1. An image divided into approximately 600 superpixels

In this study, we analyze the benefits of using a simple merging approach
over a graph whose nodes are initialized with superpixels regions. The main
contributions of the paper are:

— design of a local merging approach for the selection of the pair of superpixels
that are likely to belong to the same image region;

— exploitation of CIELAB color space in the definition of the dissimilarity
metric so as to better match human color perception;

— analysis of the performance and complexity trade-off with respect to the
state of the art.
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Our conclusions are that superpixels can efficiently boost merging based seg-
mentation techniques by reducing the computational cost without impacting on
the segmentation performance. In particular we show that such result can be
achieved even without resorting to global graph partitioning such as graph-cut
[20] or spectral clustering [10].

It’s important to note that altough other superpixel-based hierarical
approaches have been proposed in the past, the most notable among them by
Jain et al. [5], none of them have been intended as a general-use segmentation
technique. The work by Jain et al., for example, has been tested only on human
brain images, and its validity on standard datasets is not known. The perfor-
mance of the proposed algorithm, which is intended to work on any type of
image, are going to be instead objectively evaluated on a well known standard
dataset for image segmentation.

The paper is organized as follows. In Sect. 2 the proposed segmentation tech-
nique is presented, whereas in Sect. 3 and Sect. 4 complexity and segmentation
results are discussed, respectively.

2 The Proposed Technique

Let’s start by defining an n regions segmentation of an image I = {xi}évzl with N
pixels as a partition L = {Zi}?zl of the pixels of I; more precisely, the segmented
regions must satisfy the following constraints:

Veel,Ael|xel; (1)
VieL Al e L—{l} |Inl'#0 .

Please note that in the rest of the paper the terms region, label, and segment
are going to be used interchangeably to refer to one of the parts of the segmented
image, i.e. one of the set of pixels [.

In this paper we propose to initialize the segmentation algorithm with an
over-segmented partition L™. This first segmentation can be obtained with any
superpixel algorithm. Since the quality of the starting superpixels is not going to
be checked by the proposed technique, the segmentation accuracy of the chosen
algorithm for finding superpixels is of crucial importance in this context. In
this work SLIC has been used given its known computational efficiency and
segmentation accuracy [1].

Starting from an image I and a partition L™ composed of m regions, the pro-
posed algorithm aims at merging at each iteration the pair of labels representing
the most similar regions between the ones determined in the previous step. In
particular at the k-th iteration the two most similar between the k segments of
L* are merged to obtain a new set L*~! composed of k — 1 segments. This pro-
cess can be iterated for k = m,m —1,...,2; when k = 2 a binary segmentation
L? is obtained, where only foreground and background are discriminated.

The proposed iterative merging algorithm generates a full dendrogram, that
carries information about the hierarchy of the labels in terms of regions simi-
larity. We can represent the merging process using a weighted graph. When the
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algorithm starts, an undirected weighted graph G™ = {L™, W™} is constructed
over the superpixel set L™, where

W= {wl}, Vi | I e TP A AT = 1 2)

R i Y

for some adjacency function A. Since G™ is an undirected graph we have that

w; = wj}; the weights represent the distance (or dissimilarity measure) between
pair of regions wj} = & (I;*,17"). The possible functions that can be used to

compute the distance § are going to be discussed in detail in Sect. 2.1.

At each iteration, the algorithm picks the pair of labels l’; , l’qc € L* having
wh. = min {W"} and merges them; i.e. it generate a new partition L*~! =
LF — {lé‘} having all the pixels = € l’; U l’; assigned to the label l’;_l. LF-1
contains now just & — 1 segments. After that, edges and corresponding weights

needs to be updated as well. W*~! is generated according to the following rule:

(LY ifi=pvi=
k—].:{ (p 7] ) I p\/Z qﬂ (3)

wss
t wfj otherwise .

Please note that ’w’;q is not going to be included in W*~! since it doesn’t exist
anymore.

When k& = 2, the algorithm stops and returns the full dendrogram D =
{L™,...,L?} that can be cut at will to obtain the desired number of regions.
An example of different cuts of the dendrogram can be seen in Fig. 2.

JL | . -

Fig. 2. A sample image and hierarchy of 3 segmentations obtained with k = 50,15, 2
and dc metric.

2.1 Region Distance Metrics

The approach proposed here can be used in conjunction with several distance
metrics capable to capture the dissimilarity between a pair of segmented regions.
In the following we discuss a few alternatives that will be used in our experiments.

The first and simplest one that we have explored is color difference between
the two regions. To better match human color perception, CIELAB color space
and the standard CIEDE2000 color difference have been chosen [17]. Given two
regions [; and I, we compute the mean values of the L*a*b* components M; =
(tre1s thax 1, tpe1) and Mo = (pp« 2, tax 2, for 2), and we define the distance
between the two labels as

dc (liy 1) = AEoo (M;, M;) (4)
where AEy is the CIEDE2000 color difference [17].
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Another possibility it to exploit the Mahalanobis distance [11] given its ability
to capture statistical differences between two distributions of color component.
Given a set of n; pixels Iy = {z; = (xr- 4, Tar i, xb*yi)}?:ll, we can estimate their
mean My = (pp«, pa~, e+ ) and covariance as

c =L > (@i — My) (z — My)T (5)

n
Lo

Then we compute the Mahalanobis distance of any other set of no pixels Iy =
na

{vi = (YL~ i>Ya,i> Y= i) },—, from the estimated distribution of [; as

AM (1,1) = = >~ (i~ M) C7 ' s — M) ()

2501

Since AM is non symmetric, i.e. AM (Iy,13) # AM (l2,11), we compute the dis-
tance between two labels as the minimum of their relative Mahalanobis distances
obtaining the following symmetric metric:

(SM (li,lj) = mln{AM (li,lj),AM (lj,li)} . (7)

Since during the iterative merging process is important to merge homoge-
neous regions, in particular without crossing object boundaries, we also inves-
tigate a local Mahalanobis metric that aims at detecting image segment whose
adjacent borders look very different. This border variation consists in evaluating
the Mahalanobis distance just for the pixels near the border between the two
regions. More precisely, let us define b;; the portion of common border between
two adjacent image segments. Then we can define a subset of pixels whose loca-
tion is across the two adjacent regions ¢;; = {x € I | r1 < d(x,b;j) < ra}, where
d is the Euclidean spatial distance and r; and ro are proper ranges. Now we can
introduce function B (l;,1;) that returns two new set of pixels I = [, N¢;; and
l; = lj N ¢;; that represent the pixels of [; and [; respectively that are located
close to the common border. Finally, the distance metric is defined as:

65 (11, 1;) = min {AM (IL,1}) , AM (I, 12)} (8)
where [} and [ are the two outputs of B (l;,1;).

Finally, we investigate a fourth metric based on the color histogram distance.
One possible solution to measure histogram difference is the Bhattacharyya dis-
tance [3], which is the general case of the Mahalanobis distance. Given two
histograms h; and hy composed each by B bins, the Bhattacharyya distance is
defined as

AH (hi,hy) = |1 = ——=> V/h1 (i) - ha (i) (9)

where h(i) is the number of pixels in the bin 4, while h = 2?:1 h (7). Since
images in the L*a*b* color space have three channels, AH is going to be com-
puted on each channel independently, and then the maximum value of the three
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is going to be used as dissimilarity measure; this has been chosen over other
possibility, like taking the mean of the three distances, as it yields higher dis-
criminating power in finding differences just on one of the channels. In conclusion,
the last dissimilarity measure between two regions /; and I; having respectively
histograms H; = {hr ;, ha= i, hp= i} and H; = {hr« j, he= j, hp~ j} is defined as:

AH (hL*ﬂ-, hL*,j) ,
(51—] (li, l]) = max AH (ha*,i» ha*yj) s . (10)
AH (hys 3, ho- )

3 Complexity

In this section the complexity of the proposed algorithm is going to be discussed.
We will start by analyzing the complexity of the distance metrics presented in
Sect. 2.1. To this end let us consider any two regions [; and Iy with a total
number of pixels n = |l; Uls|. The complexity of the different distance metrics
is discussed in the following.

dc Computing the color mean of both regions requires O(n) time while com-
putation of distance between the mean values has unitary cost.

dar All the operations required to compute Mahalanobis distance (mean and
color covariance estimates) are in the order of O(n).

dp Since the computation is going to be performed on the n' = |I} U l}| pixels
in the border area, the complexity is again O(n'), with n’ < n.

0y The dominant cost is assigning every pixel to a bin; then, the cost of calcu-
lating the actual distance is negligible. Therefore the overall complexity is
O(n) also in this case.

To recap, computing any of the distances we proposed is linear to the number of
pixels in the considered segments. Then, according to (1) computing all distances
for a whole partition L of an image of N pixels will require O(N) time.

Finally, we can discuss the overall complexity of all the algorithm steps:

1. The starting step of the algorithm is to compute the m superpixels. For that
purpose, using SLIC, O(N) time is required [1];

2. Next, the graph G™ needs to be constructed. The time required for this task
is in the order of O(N), as all the weights needs to be computed once;

3. Then, the m merging iterations are performed. At every iteration just a small
number of the weights is going to be updated, and since all the regions are
going to be merged once, the overall complexity is once again O(N).

In conclusion, the overall time required by the algorithm is linear to the size of
the image.

We can conclude that the proposed technique exhibits lower complexity
than both merging techniques that works on pixels, like the Felzenszwalb-
Huttenlocher algorithm which has complexity of O(NlogN) [4], and other
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widely used techniques that works on superpixels, like SAS [10] and ¢,-sparse-
coding [20], which both have complexities higher than linear.

To verify our claims, in Fig. 3 the running times of the different components of
the algorithm are shown. It can be noted that the time needed by both SLIC and
the clustering algorithm using all the different distance measures here proposed
are growing linearly to the size of the input.

9000, T T T T T
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-9 - CIEDE2000 u
8000 .+ Mahalanobis
Bhattacharyya +
7000 1
6000 1
“ 5000[ .
)
£
= 4000 . 1
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Fig. 3. Mean running times of SLIC and the proposed clustering algorithm using the
different distance measures; these results are computed on three 5.3MP images scaled
at different smaller resolutions.

4 Performance Evaluation

In this section the performance of the proposed algorithm is validated both visu-
ally and using objective metrics. To this end the standard Berkeley Dataset
BSDS500 [2] has been used. This latter, although originally constructed for
boundaries evaluation, has become a well recognized standard for evaluation
of regions segmentation in images.

The discussion on objective metrics for an effective evaluation of the segmen-
tation performance is still open [2]; still the usage of a standard set of images
makes our results easier to reproduce and compare with past and future research.

In this work we have selected as benchmarks for performance evaluation two
well known superpixel-based algorithms, namely SAS [10] and {y-sparse-coding
[20]. Moreover, the Felzenszwalb-Huttenlocher algorithm [4] has been selected
as representative of a merging approach that starts from individual pixels.

4.1 Metrics

Two common metrics have been used to evaluate the performance over the
dataset. They have been chosen because results using these metrics are available
for all the algorithms that have been cited in this work. For the Felzenszwalb-
Huttenlocher algorithm they can be found in [2], while for ¢y-sparse-coding and
SAS they can be found directly in the respective papers.
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Probabilistic Rand Index. The Probabilistic Rand Index is a variation of the
Rand Index, proposed for dealing with multiple ground-truths [19]. It is defined
as:
1
PRI(SA{Gw}) = 7 > leigpis + (1= cig) (1= pij)] (11)
1<j

where ¢;; is the event that pixels ¢+ and j have the same label while p;; is its
probability. T is the total number of pixel pairs. To average the Rand Index over
multiple ground-truths, p;; is estimated from the ground-truth dataset.

Variation of Information. The Variation of Information (Vol) metric allows
one to compare two different clusterings of the same data [13]. It measures the
distance between two segmentations in terms of their conditional entropy, given
as:

VoI (S,S')=H(S)+H(S")—2I(S,S') (12)

where H represents the entropy and I the mutual information between two
clusterings of data, S and S’. In the case presented here, these clusterings are
the segmentations performed by the algorithms to be tested and the ground-
truths.

4.2 Results

First of all in Fig. 2 and Fig. 4 we show some segmentation results obtained using
the simple color metric difference d¢; every segmented region is filled with its
mean color. Figure 2 reports different segmentations of the same image obtained
by stopping the hierarchical clustering at progressively lower numbers of regions
showing that the proposed solution can achieve different levels of segmentation
granularity down to the separation into foreground and background. The images
shown Fig. 4 are obtained selecting the value of k that yields the best overlap
with ground-truth segmentations in the BSDS500 dataset. It can be observed
that the proposed solution is able to effectively segment images; the boundary
accuracy clearly depends on the starting superpixel technique, e.g. in our case
SLIC, whereas the proposed hierarchical merging criterion can group the main
image regions very effectively.

We do not show images segmented using the other similarity metrics proposed
in Sect. 2.1 since they yields similar visual results.

In Tab. 1 objective segmentation metrics computed on the BSDS500 dataset
are shown. In particular, we report PRI and Vol results yielded by our method
with the four different similarity metrics proposed in Sect. 2.1 and other bench-
marks in the literature. We started with 600 superpixels, then for the calculation
of boundary-based metric g we have set 71 = 3 and ry = 11 respectively, while
for 6y we have set B = 20. From the obtained results it can be noted that
all the techniques we compare exhibits about the same value of PRI. More-
over, it can be noted that the proposed solution yields better Vol results than
the Felzenszwalb-Huttenlocher pixel based algorithm and competing superpixel
based {p-sparse-coding [20]. Only the SAS [10] algorithm exhibits a lower value
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Fig. 4. Sample images from BSDS500 (top) and their best corresponding segmentation
outputs (bottom) using dc metric.

Table 1. Results obtained by the proposed technique in all its variations compared to
other state-of-the-art techniques over the BSDS500

|Algorithm |PRI|VoI|
SAS [10] 0.83[1.68
£o-sparse-coding [20] 0.84(1.99
Felzenszwalb-Huttenlocher [4]|0.82 |1.87
Ours (using d¢) 0.83]1.78
Ours (using dnr) 0.83|1.71
Ours (using 6p) 0.82(1.82
Ours (using d#) 0.81(1.83

for Vol. At the same time, it is worth recalling that the proposed technique is
by far the cheapest in terms of computational cost with respect to the other
benchmarks.

We can also note that color and Mahalanobis metric provides the same
segmentation accuracy. On the other hand the histogram and boundary based
metrics are slightly less effective. This slight difference in performance can be
explained by considering that superpixel over-segmentation is able to i) retain
very homogeneous areas; ii) accurately follow image boundary. The first feature
makes the advantage of a more statistically accurate metric for the description of
intra-pixel color variation, such as Mahalanobis distance, negligible with respect
to simple color distance in L*a*b* space. Finally, the fact that superpixels does
not cut image edges makes the usage of a boundary based criterion ineffective.

In Fig. 5 we conclude the analysis of our results by showing the preci-
sion/recall curves yielded by the four proposed region distance metrics. The
curves have been obtained by comparing the segmentation generated by our algo-
rithm setting different values for k& with ground-truth data in BSDS500 dataset.
It can be observed that dc and d,; appears to be slightly superior to both dp
and & also in terms of precision/recall trade-off.
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Fig. 5. Precision and recall of the proposed technique, using dc, dar, 0 and dg

5 Conclusions

In this paper a new approach to image segmentation has been presented. The
proposed approach is based on iterative merging of nodes in a graph initialized
with an over-segmentation of an image performed by a superpixel algorithm.
The algorithm employs proper distance metrics to select regions to be merged.
We have shown that both CIEDE2000 and Mahalanobis color distances are very
effective in terms of segmentation accuracy. Our experimentation worked out
on the BSDS500 dataset shows that the proposed tool yields competitive results
with respect to other state of the art techniques that segments starting both with
superpixels and single pixels. Finally, one of the most important achievements
is that the overall complexity of the proposed method is kept linear to the
dimension of the image as opposed to the other techniques we compare to.
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