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Abstract. The estimation of the background image from a video
sequence is necessary in some applications. Computing the median for
each pixel over time is effective, but it fails when the background is
visible for less than half of the time. In this paper, we propose a new
method leveraging the segmentation performed by a background subtrac-
tion algorithm, which reduces the set of color candidates, for each pixel,
before the median is applied. Our method is simple and fully generic as
any background subtraction algorithm can be used. While recent back-
ground subtraction algorithms are excellent in detecting moving objects,
our experiments show that the frame difference algorithm is a technique
that compare advantageously to more advanced ones. Finally, we present
the background images obtained on the SBI dataset, which appear to be
almost perfect. The source code of our method can be downloaded at
http://www.ulg.ac.be/telecom/research/sbg.

1 Introduction

Estimating the static background image from a video sequence has many inter-
esting applications. Traditionally, the foreground (FG) is defined as objects or
people moving in the front of the scene that form the background (BG). Note that
a temporarily stopped FG object must be dissociated from the BG (e.g. a pedes-
trian waiting for a green light). An example of application is the rendering of
non-occluded pictures of monuments, or landscapes, which are difficult to observe
in crowded places. Another example is the initialization of the background sub-
traction (BGS) algorithms [3] that aim at classifying, into a segmentation map,
for each frame of a video sequence, pixels as belonging to the FG or the BG.
BGS algorithms often assume that the few first frames are motionless, which
leads to inappropriate segmentation maps for the beginning of the sequences if
the assumption does not hold. In order to accelerate the initialization process,
they could benefit from a better estimation of the initial BG image.

The SBMI challenge [8] aims at developing methods to estimate the BG
image of a scene given a video sequence taken from a static viewpoint, but
with potential jitter. To evaluate such methods, the SBI dataset [8], composed
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of 7 sequences, is provided. Their characteristics prevent the use of simple
approaches such as taking the median color per pixel using all the frames (we
refer to this method as the MED method hereafter), as the BG may be visible in
less than 50% of the frames for some pixels [7]. Also, for some sequences, there is
no image void of occluding objects, although the BG color is visible for each pixel
for at least a few frames. Heuristics used in inpainting techniques [10] might be
useless in this context. The BG is assumed to be unimodal, this means that we
do not have to consider effects due to dynamic textures or illumination changes
in the BG, and that there is only one possible BG at each instant. Moreover, as
all the sequences are quite short (they are between 257 and 499 frames long),
one background image should suffice to represent the static background.

In this paper, we present a simple method to estimate the BG image. Instead
of estimating the BG image to initialize BGS algorithms as discussed above, we
rely on BGS algorithms to generate a reference image for the BG. One could
think that it is sufficient to simply extract this image from the BG modeled by
such an algorithm. However, this approach has major drawbacks. Among others,
despite that some BGS algorithms build an internal BG image reference, they
often have a more complex model (e.g. for the Mixture of Gaussians [13]) or
even store samples (e.g. ViBe [2]). Thus, extracting a BG image from the model
of a given BGS algorithm might be complicated due to the internal mechanisms
involved in the model maintenance. Rather than trying to extract a reference
image directly, our idea consists in detecting motion according to the segmen-
tation maps produced by any BGS algorithm, and integrate this process into a
generic framework. Note that the optimal BGS algorithm for video-surveillance
might not be best for our purpose. For example, classifying shadowed areas in
the FG would help us, but this is rarely the targeted behavior of BGS algorithms.

The paper is organized as follows. Section 2 describes the method proposed
in this paper, and presents the related work. Our experiments and results are
provided and discussed in Section 3. Section 4 concludes this paper.

2 Proposed Method

According to Maddalena et al. [7], the stationary BG generation problem can
be solved with the MED method when the BG is visible for half of the time.
Unfortunately, for most sequences of the SBI dataset or also often in practice,
this is not the case. Nevertheless, this simple idea combined to a BGS algorithm
to select relevant frames, for each pixel, proves effective and produces excellent
results. In our method, the median is computed on a per-pixel subset of frames
(of fixed size S), selected by considering the probability p∗

+ of FG elements in
the neighborhood of the considered pixel, instead of the pixel only. For example,
colors might be darkened in shadowed areas but still be undetected by some
BGS algorithms. As casted shadows are spatially close to the associated objects,
the spatial estimation of p∗

+ helps discarding them. More specifically, to estimate
this probability, we divide the image plane in N × N non-overlapping patches,
and compute the proportion of pixels classified in the FG class, by the BGS
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algorithm, for the patch containing the considered pixel. Note that we discard
the first frame processed by the BGS algorithm as the BGS model is undefined
and this frame cannot be segmented.

In practice, all BGS algorithms require an initialization period during which
their outputs are unreliable. The number of frames needed for the initialization
is algorithm dependent, and can be larger than the number of available frames in
the sequences of the SBI dataset. Therefore, we suggest to process the sequences
several times. Let γ denote the total number of passes, which is chosen to be
odd. The odd passes process the frames forwards, while the even ones process
them backwards. Note that the idea of processing frames in a non chronological
order to detect motion was first introduced in [14]. The internal model of the
BGS algorithm is always updated, even during the last pass.

For each pixel, our method selects the S frames with the lowest probability
p∗
+ of FG computed for the corresponding patch. The S frames are issued from

the ones processed during the γ passes, as we observed the trend that discarding
the γ − 1 first passes deteriorates our results. In the case where S is too small to
select all the frames with equal probabilities, we arbitrarily select the last ones
encountered during the processing. Then, the BG color is estimated by taking
the median of the colors in the S selected frames, the median being computed
for the red, green, and blue components independently.

2.1 Related Work

Following the terminology of Maddalena et al. in [7], our method is:

– Hybrid. We combine the pixel-level analysis of a background subtraction
algorithm with a region-level selection process to extract patches with the
highest background probabilities.

– Non-recursive. Our method stores colors observed in the previous frames in
a buffer, and directly derives the estimated background image by means of
a temporal median filter.

– Selective. The median is computed in each pixel on a selection of samples
with high background probability.

To the best of our knowledge, the closest method of the literature has been
proposed by Amri et al. [1]. Its main idea lies in the application of a median filter
on a set of frames, selected according to a criterion based on motion analysis.
However, this method presents significant differences with our one.

Among others, due to the different targeted application (constructing a wide
panoramic image from a video sequence taken with a moving camera), the work
of Amri et al. is much more complicated. Moreover, the authors propose an
iterative method processing frames until a stopping criterion is achieved. And
last but not least, instead of being detected by temporal analysis, the motion
is detected with a comparison between each processed frame and the last esti-
mated BG image. Note that such a comparison is made by using a hysteresis
thresholding technique while a raw BGS algorithm is used in our method.



480 B. Laugraud et al.

3 Experiments and Results

Our proposed method has 4 parameters: the used BGS algorithm, the buffer
size S, the amount of patches N × N , and the number of passes γ. In our
experiments, we have tested all combinations of 10 BGS algorithms, S ∈
{5, 11, 21, 51, 101, 201}, N ∈ {1, 3, 5, 10, 25, 50}, and γ ∈ {1, 3, 5, . . . , 19}. The
chosen BGS algorithms are listed in Section 3.1. The metrics used to assess the
estimated BG images are detailed in Section 3.2, and results are presented and
discussed in Section 3.3.

3.1 Background Subtraction Algorithms

All BGS algorithms proceed at the pixel level. The most intuitive one, the frame
difference (F. Diff.), is based on a simple motion detection method which applies
a threshold to the distance of colors between consecutive frames.

As noise is not spatially and temporally uniform, other algorithms have
been proposed to estimate the statistical distribution of background colors over
time. Wren et al. [15] supposed a Gaussian noise, and modeled the background
with a Gaussian distribution whose mean and variance are adapted constantly
(Pfinder). Stauffer et al. extended this idea to handle dynamic backgrounds using
a mixture of Gaussians [13] (MoG G.). Zivkovic improved this by adapting the
number of needed Gaussians over time [16] (MoG Z.). The Sigma-Delta algo-
rithm (S-D) is another variant of Pfinder, proposed by Manzanera et al. [9],
estimating the median (instead of the mean) based on a Σ − Δ estimator.

As an alternative, El Gammal et al. [4] proposed, in their KDE algorithm
(KDE), to build the distribution by applying Parzen windows on a set of past
samples. ViBe (ViBe), proposed by Barnich et al. [2], uses a pure sample-based

Fig. 1. The 7 video sequences of the SBI dataset (50th frame on the 1st row), the
result obtained by the MED method (2nd row), our best result (F. Diff., S = 21,
N × N = 3 × 3, γ = 11) (3rd row), and the corresponding ground-truth (last row).
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approach and random policies to sample, in a conservative way, the observed
background values. Some variants have been developed by, among others, Hof-
mann et al. [5] with PBAS (PBAS) by adding adaptive decision thresholds and
update rates, and by St-Charles et al. [12] with SuBSENSE (SuBS.) by associ-
ating these adaptive parameters with the sampling of LBSP strings.

Finally, an approach based on self organization through artificial neural net-
works has been proposed by Maddalena et al. with the SOBS algorithm, whose
idea is inspired from biologically problem-solving methods [6]. It should be noted
that the implementations of the 10 used BGS algorithms are provided by the
BGSLibrary [11] or by the authors.

3.2 The Metrics Used to Assess the Estimated Background Images

For each set of parameters, we have computed the eight metrics suggested by
Maddalena et al. [8]. As two metrics are normalized versions of two others, we
decided to keep only six of them: the Average Gray-level Error (AGE), the Per-
centage of Error Pixels (pEPs) (a difference of values larger than 20 is considered

Table 1. Comparison of the BGS algorithms. The best set of parameters, as well as the
averaged metrics are given for each algorithm. We selected the best sets of parameters
according to the the averaged pEPs (arbitrary choice of metric).

Best parameters Averaged metrics

BGS method S N × N γ AGE pEPs pCEPs PSNR MS-SSIM CQM

F. Diff. 21 3 × 3 11 8.211 0.026 0.015 29.803 0.986 41.481

Pfinder 11 1 × 1 1 16.361 0.160 0.123 26.227 0.886 37.915

MoG G. 51 3 × 3 17 11.569 0.063 0.047 28.975 0.934 39.757

MoG Z. 5 50 × 50 19 13.106 0.109 0.072 25.145 0.876 37.620

S-D 11 3 × 3 1 16.029 0.141 0.111 26.619 0.881 38.324

KDE 101 1 × 1 15 11.400 0.079 0.058 27.610 0.935 39.577

ViBe 21 1 × 1 11 15.555 0.124 0.103 27.003 0.890 37.107

PBAS 11 1 × 1 9 10.406 0.057 0.039 27.030 0.947 38.550

SOBS 11 1 × 1 7 15.990 0.159 0.121 25.229 0.878 37.022

SuBS. 5 3 × 3 19 10.939 0.070 0.048 26.936 0.947 39.205

Table 2. According to the pEPs metric, the optimal BGS algorithm and set of param-
eters depend on the considered video sequence.

Best parameters Metrics

Sequence BGS method S N × N γ AGE pEPs pCEPs PSNR MS-SSIM CQM

CaVignal F. Diff. 51 3 × 3 1 9.231 0.000 0.000 27.539 0.993 39.737

Foliage F. Diff. 201 5 × 5 19 12.018 0.015 0.000 26.019 0.992 34.113

HallAndMonitor SOBS 101 5 × 5 1 2.000 0.000 0.000 39.118 0.994 47.195

HighwayI MoG Z. 101 1 × 1 1 1.693 0.001 0.000 39.201 0.990 58.794

HighwayII MoG Z. 101 10 × 10 1 1.786 0.000 0.000 39.729 0.996 48.417

PeopleAndFoliage KDE 11 1 × 1 5 11.202 0.005 0.002 26.367 0.993 34.374

Snellen F. Diff. 11 1 × 1 5 14.858 0.056 0.047 22.426 0.982 40.001
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Fig. 2. According to the pEPs metric averaged over the 7 sequences, the best results
are obtained with F. Diff., S = 21, N ×N = 3× 3, and γ = 11. This figure shows that
this is at least a local optimum as it is not possible to improve this metric by varying
the parameters (left column). Moreover, we observed that our conclusion about the
best set of parameters is very close to those one would obtain by considering other
metrics (see the metric CQM in the right column). Note that the CQM metric tends
to prefer an increased buffer size and a reduced number of passes. The performance of
the MED method is shown as a point of comparison (baseline).
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as an error), the Percentage of Clustered Error Pixels (pCEPs) (any error pixel
whose 4-connected neighbors are also error pixels), the Peak-Signal-to-Noise-
Ratio (PSNR), the Multi-Scale Structural Similarity Index (MS-SSIM) that esti-
mates the perceived visual distortion, and the Color image Quality Measure
(CQM). The AGE, pEPs, and pCEPs are to be minimized, while the PSNR,
MS-SSIM, and CQM are to be maximized. For any set of parameters, metric
values were averaged over the 7 video sequences of the SBI dataset.

3.3 Results

Table 1 compares the metrics for the 10 tested BGS algorithms. On average, the
frame difference algorithm performs best with respect to all metrics. The best
values for the other parameters are S = 21, N = 3, and γ = 11. Despite the
metrics indicate our results are imperfect, Figure 1 shows that the differences
between our background images and the ground-truths are barely noticeable, to
the contrary of images obtained with the MED method. However, we note in
Table 2 that the best BGS algorithm depends on the sequence. Figure 2 shows
the performance sensitivity with respect to parameters S, N , and γ, when they
vary around the optimal values given above, and compares the performance
with the MED method. Despite the small size of the SBI dataset, we observed
that the different metrics agree to a large extend on the ranking of the BGS
algorithms for our purpose (there is a high agreement for the top 5 methods,
and the frame difference is always ranked first), even if small discrepancies exist
(e.g. the ranking of the MED method for the pEPs and CQM metrics).

The processing time of our method tuned with its best parameters can be
easily estimated in terms of pixel throughput (the number of pixels processed
per second). According to our experiments, the mean pixel throughput of a naive
implementation, excluding the temporal median filter, is approximately equal to
479×106 pixel/s for an Intel Core i7-4790K processor. Note that the most naive
implementation of a temporal median filter has an asymptotic time complexity
of O(S log S), and represents an additional processing load of approximately
120 × 108 pixel/s using the same processor.

4 Conclusion

In this paper, we present a simple, yet efficient, method for estimating the BG
image corresponding to any video sequence taken from a fixed viewpoint. Note
that the source code of our method can be downloaded at http://www.ulg.ac.
be/telecom/research/sbg. The main contribution consists to embed any BGS
algorithm into a generic process. For each pixel separately, this process analyses
the BGS segmentation maps locally to select a subset of the frames encountered
during a given number of passes. At the end of the selection process, the median
is applied on the selected frames. Surprisingly, the frame difference outperforms
more advanced BGS algorithms in this particular context. Results are also con-
vincing as we obtain nearly perfect background images on the SBI dataset.

http://www.ulg.ac.be/telecom/research/sbg
http://www.ulg.ac.be/telecom/research/sbg
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