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Abstract. We have developed a dietary assessment system that uses
food images captured by a mobile device. Food identification is a crucial
component of our system. Achieving a high classification rates is chal-
lenging due to the large number of food categories and variability in food
appearance. In this paper, we propose to improve food classification by
incorporating temporal information. We employ recursive Bayesian esti-
mation to incrementally learn from a person’s eating history. We show
an improvement of food classification accuracy by 11% can be achieved.

1 Introduction

Mobile devices will transform the healthcare industry by increasing accessibil-
ity to quality care and wellness management. Dietary intake provides valuable
insights for fitness monitoring as well as mounting intervention programs for
chronic diseases. Accurate methods to assess food and nutrient intake are essen-
tial [7,15]. We have developed a dietary assessment system, known as the mobile
Food Record (mFR) [1,18], to automatically estimate food type, volume, nutri-
ents, and energy from a food image captured by a mobile device [18,19]. The
mFR system consists of: a web-based user interface, a mobile application and
a backend system including a computational server and an associated database
system [2,18].

To achieve high classification accuracy in food images is challenging due to
lighting and pose variations, background noise and occlusion. One type of food
can have various serving styles (different portion sizes, distinct appearance). As
a result, the use of contextual information may reduce the complexity of food
image analysis. “Context” refers to any prior knowledge that is not derived from
the image pixel values [4]. The use of contextual information has gained attention
in psychology and computer vision with respect to its effects on visual search,
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localization and recognition [4,14,16]. There has been work in using contextual
information in food image analysis. Matsuda et al [13] proposed to use mani-
fold ranking method to improve food classification rate using food co-occurrence
statistics. Beijbom et al [5] made use of geographic location as context and
focused on identifying foods in restaurants. In previous work [9] we incorpo-
rated two types of contextual knowledge, food co-occurrence patterns and an
individual’s food consumption frequency for a week.

In this paper, we propose to incorporate temporal information to learn a
person’s dietary pattern based on a recursive Bayesian model to improve food
classification accuracy. The learning process is achieved by incorporating user
feedback in the food classification. The user feedback consists of confirmed, mod-
ified, or added food labels based on the food image analysis.

2 Food Image Analysis

2.1 Image Acquisition and User Feedback

In our mFR system, a mobile application is used to capture a pair of before and
after meal images at each eating occasion [18]. The images are sent to the server
for automatic image analysis. Results are sent back to the user for confirmation
and review using the mobile application [2]. In this paper, we used food images
collected from one of our dietary assessment studies, where 45 participants were
asked to acquire a pair of before and after meal images at each eating occasion
for roughly 7 days. A total of 1453 food images were analyzed classifying 56
commonly eaten food items using the methods described in [10,11,19]. Figure 1
shows the food consumption pattern of a subset of foods from our data. Each
square in Fig.1 indicates the consumption frequency of a particular food, λi, for
a participant, Sj , where the consumption frequency is defined as followed,

Freq(λSj

i ) =
Ni

Ntotal
. (1)

Ni is the number of times that Sj has consumed λi and Ntotal is the total
number of food items that Sj has consumed. The food consumption pattern for
Sj is [Freq(λSj

1 ), . . . , F req(λSj
n )], where n is the total number of food categories.

To evaluate our learning model, we manually selected participants with simi-
lar food consumption patterns to build personalized eating datasets for a month.
We measure the similarity using Euclidean distance between each food con-
sumption pattern and used K-means to find clusters. For example, one of the
personalized eating dataset contains food images from participant 14, 17, 20
and 32, which can be treated as images from a single participant for a month.
As illustrated in Fig.1, participant 14, 17, 20 and 32 all show relatively high
consumption frequency of milk, salad mix and lasagna. We constructed three
separate datasets, each features a different food consumption style and contains
approximately 120 images. We labeled them as Dataset 1, 2 and 3 from User 1,
2 and 3.



The Use of Temporal Information in Food Image Analysis 319

Fig. 1. A food consumption pattern. Horizontal axis represents the participants and
vertical axis represents food items.

2.2 Image Segmentation and Food Identification

We used graph based segmentation using local variation [8,10]. The internal dif-
ference of a segmented region is defined to be the largest weight in the minimum
spanning tree while the difference between two segmented regions is defined to
be the minimum weight edge connecting the two regions [8]. The ratio of the
region difference to the internal difference within at least one of the two regions
determines whether two regions are segmented or not. The degree to which the
difference between regions must be larger than minimum internal difference is
controlled by a threshold k, where k roughly controls the size of the regions in
the resulting segmentation. In our experiments, k was initially set to 150. For
each segment, a set of color, texture and local region features are extracted and
classified using k-Nearest Neighbor (KNN), vocabulary trees and Support Vector
Machines (SVM) [12,19]. Finally we combine the decisions from all the feature
channels using a majority vote rule.

3 Temporal Context

Temporal context in this paper refers to which days a person eats a particu-
lar food. An example might be that person A drinks 2% milk everyday while
person B never has milk but eats Greek yogurt everyday. Such time-related eat-
ing habits can be of great help when designing a personalized training model
because it allows the classifier to only select among the food classes relevant to
an individual’s dietary pattern [9]. According to representative cross-sectional
surveys collected between 1999-2008, less than 1,000 foods capture 99% of the
foods consumed in the United States for individuals between 11-65 years old and
that the number of foods consumed by each person is far less [6].
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3.1 Recursive Bayesian Model

In this paper, we use recursive Bayesian estimation to incrementally learn a
person’s dietary pattern [3,17]. We model whether a person, Sj eats a particular
food, λi as an independent Bernoulli trial,

W =
{

1,X
0, 1 − X

.

where W = 1,X represents Sj eats λi with a possibility, X, and X is assumed
to follow a Gaussian-like distribution with the support from 0 to 1.

We would like to estimate the probability, Pλi
, that a person, Sj , will eat a

particular food, λ on the next day given the past. Let pλi
(xk) be the probability

density function (PDF) representing Sj eats λi on the kth day, and zk be the
observation whether Sj eats λi on the kth day. In our case, the observation, zk is
obtained from the user feedback in the mFR. The following equations describe
the posteriori update step in the recursive Bayesian network,

pλi
(xk|z1:k) =

pλi
(zk|xk)pλi

(xk|z1:k−1)
pλi

(zk|z1:k−1)
=

likelihood × prior
normalization term

. (2)

Initially, pλi
(x1) is assumed to follow a Gaussian-like distribution centered at

0.5 with unit variance. The likelihood and prior PDFs are updated according to
the user’s feedback. If the user eats λ on the kth day, pλi

(zk|xk) becomes the
Gaussian-like distribution centered at 1 with unit variance, otherwise the distri-
bution centers at 0. pλi

(xk|z1:k) is used to predict pλi
(xk+1|z1:k) and the PDF

is computed by multiplying the likelihood and prior followed by normalization
between 0 and 1. On the k + 1th day, the optimal estimate of Pλi

is computed
as Pλi

= arg max
x

pλi
(xk|z1:k).

For all the foods in the training dataset, we have a set of probabilities,

Ψk+1 =
[
P k+1

λ1
, . . . , P k+1

λn

]T
.

where n is the total number of food categories. We further define the context-
based confidence scores (CCS) to be:

Φk+1 =
[
φk+1

λ1
, . . . , φk+1

λn

]T
=

[
ωP k+1

λ1
, . . . , ωP k+1

λn

]T
. (3)

where ω controls the trust weight we assigned to the context-based decisions
(more details in Sect.3.2).

3.2 Decision Fusion

So far, we have obtained the confidence scores from both image analysis based
on multiple feature channels and temporal context. From the image analysis, a
set of candidate classes was assigned to each segmented region, Sq, associated
with the corresponding confidence scores for each food class:

Λauto
cand =

[
λauto
1 , . . . , λauto

n

]T
, Φauto

cand =
[
φauto
1 , . . . , φauto

n

]T
.
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where Λauto
cand represents the candidate set, Φauto

cand indicates the corresponding con-
fidence scores of n different food classes in the training dataset, i.e., n = 56 food
classes in our dataset. From (3), we know the context-based decision for each
food class on a certain day. To combine the above two source of decisions, we
used a strategy of maximum confidence score. The final score is determined as:

Φfinal
cand =

[
φauto
1 , . . . , φauto

n

]T + [ωPλ1 . . . ωPλn
]T . (4)

ω, also in (3), is set to be 1/h of the maximum automatic analysis based con-
fidence score: ω = 1

h max(Φauto
cand). In our experiments, we observed best results

when h was set to 4-5.

4 Experimental Results

Three separate datasets (i.e. Dataset 1, 2 and 3 described above) with a total of
358 food images were used with and without temporal context. Fifty-six unique
food items were contained in the datasets. Each dataset features different food
composition and consumption style. For example, milk, lasagna, mixed salad and
garlic bread are the most frequently-consumed foods in Dataset 1 while Dataset 2
does not have any frequently-consumed foods except milk. Dataset 3 represents
a significant dietary pattern change within a month. The first three weeks in
Dataset 3 have similar food consumption style as Dataset 1. However, we selected
data from participant 7 in Fig.1 for the last week, which has noticeably different
eating pattern.

Figure 2 shows how the recursive Bayesian network updates the prediction
probabilities for three example food items in Dataset 1. On Day 1, every food
has the same prediction of 0.5. In the end, the predictions of milk, orange and
pretzel converge to 0.99, 0.34 and 0.12 respectively. Milk was consumed almost
every day in Dataset 1, so the blue curve in Fig.2 gradually increases to show
improved confidence. Note the prediction for pretzel decreases and the red curve
for orange oscillates around 0.3 because pretzel or orange were consumed less
frequently.

Note we used the food label with the highest confidence score from classifier,
and define the classification accuracy as, Θ = TP

TP+FP+TN , where TP denotes
True Positives (correctly detected food segments), FP denotes False Positives
(incorrectly detected food segments or misidentified foods) and TN denotes True
Negatives (food not detected).

As we show below the classification accuracy from the highest confidence
score is in the range of 50-65%. In the typical operation of our mFR system we
report the top 4 food labels and have a classification accuracy of 80-85% [11]. In
this paper we want to emphasize how the contextual information improves the
classifier performance.

Figure 3 demonstrates the food classification accuracy improvement. The
blue lines in Fig.3(a), 3(b) and 3(c) indicate the average daily food classification
accuracy with temporal context, Θcontext, while the red lines indicate the one
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Fig. 2. Food occurrence prediction of three food items (Blue: Milk; Red: Orange; Black:
Pretzel).

without, Θauto. The accuracy improvement is illustrated in Fig.3(b) is deter-
mined by Θcontext−Θauto

Θauto
. As shown in Fig.3(d), the accuracy improvement drops

from Day 10 to Day 20 as the baseline (classification accuracy without context)
increases from 47% to 57%. This implies that the proposed method is more effec-
tive when the automatic image analysis does not work well. If we set a threshold
for the baseline, the average accuracy improvement when the baseline is above
0.55 is just 6.92% compared to 32.97% when the baseline is below 0.55. The
80% accuracy rate achieved with temporal context on Day 25 demonstrates the
effectiveness of the proposed method when the automatic image analysis result is
poor. In Dataset 2 , the classification accuracy without context is always above
0.55 (see the red line in Fig.3(b)). The deep valley shown in Fig.3(e) implies
the learning process in the first week. Nevertheless, Fig.3(d) and Fig.3(e) both
illustrate an ascent trend of accuracy improvement.

We selected the images of the last 7 days to have a noticeably different food
consumption pattern compared to the first 23 days in Dataset 3. We would like
to verify the behavior of our training model under circumstance where a person
may change their eating style. As expected, the blue line and the red line inter-
sect in Fig.3(c) on Day 24. We witnessed a huge drop in Fig.3(f) followed by
the re-learning state. The accuracy improvement is negative on Day 24, because
the context-based prediction puts more confidence on the specific food, which
Dataset 3 no longer contains after changing one’s eating habit, for example,
milk is not consumed on Day 24. Due to the dietary change in Dataset 3, the
increasing trend of classification accuracy is not as conspicuous as Fig.3(d) and
Fig.3(e). Table 1 summarizes two statistics for the datasets, average daily clas-
sification accuracy (in %) and average daily accuracy improvement (in %). Due
to our dataset selection, the classification accuracy using automatic image anal-
ysis alone in Dataset 2 is significantly higher than other datasets. Thus, the
accuracy improvement for Dataset 2 is expected to be lower (3.85%). The fact
that Dataset 2 has less frequently-consumed foods also contributed to the lower
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(a) Dataset 1
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(c) Dataset 3
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Fig. 3. Learning curves for one month. Daily classification rates with(blue) and with-
out(red) temporal context are illustrated in (a),(b) and (c). Corresponding accuracy
improvements are shown in (d),(e) and (f).

accuracy improvement. When a person has a more consistent eating pattern, such
as User 1 ’s dataset, the classification accuracy gain using temporal contextual
information is significantly higher (18.45%). On average, the proposed method
of utilizing temporal context shows approximately 11%(≈ 18.45+3.85+12.39

3 %)
improvement (see Table 1).

Table 1. Food classification performance statistics

statistics user ID with context without context

user1 61.88 53.23
user2 65.25 62.90

average daily
classification
accuracy(%) user3 59.69 53.28

user1 18.45
user2 3.85

average daily
accuracy

improvement(%) user3 12.39

5 Conclusions

In this paper we investigated the use of temporal context to improve food classifi-
cation accuracy. We used a recursive Bayesian network to achieve active learning.
Experimental results showed the classification accuracy was improved by 11%
on average. In the future, we plan to extend our learning model by combining
various ranges of eating history and separating eating occasions based on the
time of day.
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