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Abstract. Segmentation of the liver from abdominal CT images is a
prerequisite for computer aided diagnosis. However, it is still a challeng-
ing task due to the low contrast of adjacent organs and the varying
shapes between subjects. In this paper, we present a liver segmentation
framework based on prior model using level set. We first weight all of
the atlases in the training volumes by calculating the similarities between
the atlases and the test image to generate a subject-specific probabilistic
atlas. Based on the generated atlas, the most likely liver region (MLLR)
of the test image is determined. Then, a rough segmentation is performed
by a maximum a posteriori classification of probability map. The final
result is obtained by applying a shape-intensity prior level set inside the
MLLR with narrowband. We use 15 CT images as training samples, and
15 exams for evaluation. Experimental results show that our method
can be good enough to replace the time-consuming and tedious manual
approach.

Keywords: Liver segmentation · Shape-intensity prior model · Level
set · Probability map · Maximum a posteriori (MAP)

1 Introduction

Recent studies on liver segmentation can be classified into two types: The first
type segments liver by use of pure image information, such as thresholding,
clustering, and region growing. The deficiency of these schemes is the tendency
to leak into adjacent organs because of their similarity in grey levels.

Another type is model-based methods. These methods aim to overcome the
limit of the techniques mentioned above by combining local and global prior
knowledge of liver shape. And they can be further divided into three categories:
active and statistical shape models, atlas-based segmentation, and level set-based
segmentation. In active shape model based approaches, statistical shape models
(SSM) are usually employed to learn the shape-prior models [1,2]. However, SSM
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approaches tend to overly constrain the shape deformations and overfit the train-
ing data, because of the small size of training samples. In atlas-based studies.
Oda et al. [3] divided an atlas database into several clusters to generate multiple
probabilistic atlases of organ location. In recent work, subject-specific proba-
bilistic atlas (PA) based methods have been proposed [4], which is generated by
registering multiple atlases to every new target image. In level set-based studies,
Oliveira et al. [5] proposed a gradient-based level set model with a new opti-
mization of parameter weighting for liver segmentation. Li et al. [6] suggested a
combination of gradient and region properties to improve level set segmentation.

In this paper, an automatic scheme on segmenting liver from abdominal CT
images are proposed. Firstly, the similarities between all atlases and the test
volume are calculated; Secondly, the most likely liver region (MLLR) of the
test image is constructed, and a maximum a posteriori (MAP) classification of
probability map is depicted; Then, a shape-intensity prior level set is applied to
produce the final liver segmentation inside the MLLR. Finally, for constructing
shape-intensity models of the liver, 15 CT samples are used as training samples,
and 15 test volumes are used for evaluating the proposed scheme.

2 Description of the Method

Our research consists of a training phase and a testing phase. We will explain how
to segment the liver automatically from abdominal CT images stage by stage,
with shape-intensity prior models using level set technology. Figure 1 depicts the
flowchart of the segmentation scheme.

2.1 Image Preprocessing

In the image preprocessing stage. Firstly, All the volumes are regularized to
reduce the changes between individuals according to the centers of the lungs.
And then, the traditional binary thresholding algorithm is used for the lung
parenchyma extraction. Thirdly, for reducing noise and preserving the liver con-
tour, an anisotropic diffusion filter is applied, followed by an isotropic resampling
process based on trilinear interpolation technology. In this way, z-axis is resam-
pled to the same number of slices, since a fixed number of the input vectors are
required by principal component analysis (PCA) algorithm.

2.2 Liver Rough Segmentation

Liver rough segmentation can be divided into three stages: (1) Most likely
liver region construction; (2) Probability map based classification; (3) Non-liver
elimination.

Most Likely Liver Region Construction. For constructing the subject-
specific weighted probabilistic atlas, the image similarities between all chosen
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Fig. 1. Flowchart of the scheme: (a) training phase (b) testing phase
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atlases and the test image are calculated, and then, arranging them in descending
order, which would be evaluated by normalized cross correlation (NCC) [7]:

NCC(A, T ) =

∑
i,j,k(A(i, j, k) − Ā)(T (i, j, k) − T̄ )

∑
i,j,k(A(i, j, k) − Ā)2 × ∑

i,j,k(T (i, j, k) − T̄ )2
(1)

where A and T denote the atlas and the test image, respectively, and Ā, T̄
represent the average intensity of A and T . i, j and k denote the coordinate
value of x, y , z axes, and each atlas is assigned with a weight as

w(n) = 1 − 2 × (order(n) − 1)/N (2)

where n represents the index of atlas, w(n) is the weight of the n-th atlas,
order(n) denotes the order of the n-th atlas, and N is the total number of atlases.
It is evident that, the more similar to the target image, the bigger order and
weight the atlases would be assigned. Then we defined the weighted probabilistic
atlas Wp(lv) of liver at voxel p as:

Wp(lv) =
1

∑N
i=1 w(i)

N∑

i=1

w(i)s(Li
p, lv) (3)

and s(x, x′) represents the similarity function, if I = I ′, then, s(I, I ′) = 1;
otherwise, s(I, I ′) = 0. i is the atlas index, and Li

p denotes the voxel p on atlas i.
In this way, the subject-specific weighted PA is constructed, and then, we obtain
the most likely liver region (MLLR) by appropriate thresholding processing.

Probability Map Based Clustering. After the construction of MLLR, we
divide the CT intensities inside the MLLR into six categories: liver, heart, right
kidney, spleen, bone and background, and we utilized the intensity histograms
of the six categories in the training stage. The likelihood for each category is
defined by p(I(x)|q) (q represents the six organs.), which can be calculated by
convolving their histograms. Then according to the Beyesian theorem, we get
the following equation:

P (lv) = P (lv|I(x)) =
p(I(x)|lv) · p(lv)

∑
q p(I(x)|q) · p(v)

(4)

where P (lv) denotes the liver probability map, and I(x) represents the CT inten-
sity of position x. By a MAP classification of probability map, we get a rough
segmentation of the liver.

Non-liver Region Elimination. The rough segmentation of liver could results
in some segmentation errors, due to the similar intensities with its adjacent
organs. Based on the fact that liver is the largest organ in the MLLR, thus we
applied a morphological operation to fill the holes, followed by the connected
component analysis to eliminate the non-liver region. A rough segmentation
process is shown in Fig. 2.
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Fig. 2. Liver rough segmentation: (a) original CT (b) denoised image (c) MLLR in the
original CT (d) liver MAP (e) non-liver eliminate

2.3 Refinement of Rough Segmentation

In this section, we would refine the rough segmentation result through four steps:
(1) Maximum a posteriori (MAP) framework construction; (2) Construction of
prior model; (3) Formulation of level set; (4) Evolution of the liver surface.

Maximum aPosteriori (MAP) Framework Construction. For making the
best use of image information, such as the shape and the grey level, we derived the
MAP framework referring to the conclusion proposed by Yang et al. [8]:

ϕ̂ = arg min
ϕ

[− ln p(I|ϕ, Iϕ ≈ I) − ln p(ϕ, Iϕ ≈ I)] (5)

where I denotes the target image with object ϕ, and Iϕ is the synthetic model of
image I; Îϕ is the segmentation of Iϕ. In this case, we assume the synthetic image
Iϕ is quite close to the real image I ( I ≈ Iϕ ), and p(I|ϕ, Iϕ) is the term based on
the image intensity information. In three-dimensional image, assuming intensity
homogeneity within the object, the following imaging model is derived [9]:

p(I|ϕ, Iϕ) =
∏

inside(ϕ)

(2πσ2
1)

− 1
2 exp[−(I(x) − a1)2/(2σ2

1)]

×
∏

outside(ϕ)
inside(Ωϕ)

(2πσ2
1)

− 1
2 exp[−(I(x) − a2)2/(2σ2

2)]
(6)



634 J. Wang and Y. Cheng

here, function p(ϕ, I) combined shape ϕ with intensity I, and a1, σ1, a2 , σ2 denote
the average gray level and the variance, inside and outside ϕ, respectively.

ConstructionofPriorModel. For constructing the shape-intensity based prior
model with the training samples, the technology proposed by Cootes et al. [10] is
utilized, Therefore, an estimate of the shape-intensity pair [Ψ̄T , ĪT ]T can be rep-
resented by k principal components and a k dimensional vector of coefficients α:

[
Ψ̃

Ĩ

]

=
[
Ψ̄
Ī

]

+ Ukα (7)

where Ψ is the level set function, I represents the sample images, and Uk represents
the matrix consisting of the first k columns of matrix U . Figure 3 demonstrates the
variation of shape-intensity on the first three modes.

Under the assumption of a Gaussian distribution of a shape-intensity pair rep-
resented by α, the joint probability of a certain shape ϕ and the related image
intensity I, p(ϕ, I) can be represented by

p(α) =
1

√
(2π)k|Σk|exp[−1

2
αT Σ−1

k α] (8)

Similar to [9], a boundary smoothness regularization term is incorporated to
add robustness against noise data: pB(ϕ) = e−μ

∮
ϕ
ds, where μ is a scalar factor.

By adding the above regularizing term, the shape-intensity probability p(ϕ, I) can
be approximated by a product of the following probabilities:

p(ϕ, I) = p(α) · pB(ϕ) (9)

Substitute Eqs. 6 and 9 into Eq. 5, we derive ϕ̂ by obtaining the minimizer of the
following energy functional E(ϕ) shown below

E(ϕ) =λ ·
∫

inside(ϕ)

[

− ln
1
σ1

+
|I(x) − c1|2

2σ2
1

]

x

+ λ ·
∫

outside(ϕ),inside(Ωϕ)

[

− ln
1
σ2

+
|I(x) − c2|2

2σ2
2

]

x

+ ω · αT Σ−1α + μ ·
∮

ϕ

ds

(10)

In this paper, the minimization problem of energy functional E(ϕ) would be for-
mulated and solved by the level set strategy.

Formulation of Level Set. For formulating the level set prior model, we replace
ϕ with φ in the energy functional of Eq. 10, and for calculating the associated
Euler-Lagrange equation, we minimize E with reference to φ. According to the



Automatic Liver Segmentation Scheme Based on Shape-Intensity 635

Fig. 3. Shape-intensity variabilities of the first three modes (a) the first mode (b) the
second mode (c) the third mode

gradient descent method with artificial time t � 0, the evolution equation in
φ(t, x) is obtained (Hamilton-Jacobi equation):

∂φ

∂t
= −ω · g

(
Uk1Σ

−1
k [UT

k1(G(φ) − Ψ̄) + UT
k2(G(I) − Ī)]

)

δε(φ)
{

λ

[ |I − c1|2
2σ2

1

− |I − c2|2
2σ2

2

+ ln
σ1

σ2

]

+ μdiv
[ ∇φ

|∇φ|
]} (11)

where G(.) is used for representing matrix in column scanning, while g(.) denotes
its reverse operation, and Uk1 and Uk2 represent the upper and lower half of the
matrix Uk, respectively.

Evolution of the Liver Surface. The evolving of the surface inside MLLR can
be summarized by the following six steps:

step 1: Initialize the curved surface of the liver φ at time t;
step 2: Calculate p(α) using PCA;
step 3: Calculate a1(φt), σ1(φt) and a2(φt), σ2(φt);
step 4: Update φt+1;
step 5: Repeated from step 1;
step 6: If convergence, algorithm stop, otherwise, continue from step 3.
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Fig. 4. Segmentation results between Linguraru’s approach and ours : (a) liver with
tumor; (b) liver close to heart; (c) liver close to kidney. The first row shows Linguraru’s
result, and the second row shows our result. Red line represents the ground truth, blue
line indicates the testing methods.

3 Experimental Results

In this section, we perform quantitative evaluations and demonstrate segmenta-
tion results via testing on 15 volumes provided by our clinic partner. Performance
results are compared with Linguraru’s method [11]. 15 training samples with ref-
erence from Weihai Municipal Hospital are used to construct the shape-intensity
models of the liver, while the accuracy of scheme was quantitatively performed
using the following three measures: average symmetric surface distance (ASD),
root mean square symmetric surface distance (RMSD), and Jaccard similarity
coefficient (JSC).

Figure 4 shows some typical segmentation results between Linguraru’s method
and ours, and our method obtain a better performance in some difficult cases.

Figure 5 shows the ASD error between Linguraru’s method and ours. The aver-
age ASD error is 1.56 ± 0.13 mm (min 1.21, max 2.47) by Linguraru’s method, and
1.18 ± 0.12 mm (min 0.82, max 2.12) by ours.

Figure 6 shows the RMSD errors between Linguraru’s method and ours. The
average RMSD error is 2.40 ± 0.20 mm (min 1.91, max 3.41) by Linguraru‘s
method, and 1.87 ± 0.23 mm (min 1.42, max 3.01) by ours.

Table 1 shows the Jaccard similarity coefficient (JSC) on the 15 exams among
Lingurarus method, ours, and a manual segmentation from a senior radiologist.
All the comparison results above indicate that, our segmentation scheme achieved
a better segmentation accuracy than Lingurarus method, and is closer to the level
of radiologist.
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Fig. 5. Average symmetric surface distance (ASD) between Linguraru’s method and
ours

Fig. 6. Root mean square symmetric surface distance (RMSD) between Linguraru’s
method and ours
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Table 1. Jaccard similarity coefficient (JSC) between every pair among Linguraru’s
method (L) , ours, and the manual approach (ground truth) from radiologist (R)

Volume ID 1 2 3 4 5 6 7 8 9 10

R vs. L (%) 85.26 71.01 81.85 82.11 85.36 83.19 84.47 78.92 77.82 73.86

R vs. ours (%) 95.24 81.39 91.05 92.52 96.62 91.86 94.77 88.27 87.95 85.35

Volume ID 11 12 13 14 15

R vs. L (%) 81.66 86.68 84.72 83.32 71.75

R vs. ours (%) 92.22 97.27 94.33 88.07 83.71

4 Conclusion

In this paper, a shape-intensity prior level set method is applied for segmenting
liver from contrast-enhanced CT images, combined with probabilistic atlas and
probability map constrains. We used 15 training samples of abdomen CT to con-
struct liver shape-intensity prior models, and compare our approach with Lingu-
raru’s method on 15 testing volumes. Results show that our method is a good
promising tool on liver segmentation.
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