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Abstract. Fiber tracking is a basic task in analyzing data obtained by diffusion
tensor magnetic resonance imaging (DT-MRI). In order to get a better tracking
result for crossing fibers with noise, an improved fiber tracking method is
proposed in this paper. The method is based on the framework of Bayesian fiber
tracking, but improves its ability to deal with crossing fibers, by introducing the
high order tensor (HOT) model as well as a new fiber direction selection
strategy. In this method, orientation distribution function is first obtained from
HOT model, and then used as the likelihood probability to control fiber tracing.
On this basis, the direction in candidates that has the smallest change relative to
current two previous directions is selected as the next tracing direction. By this
means, our method achieves better performance in processing crossing fibers.
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1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) is a widely used MRI method
to investigate microscopic structures of living tissue. As a noninvasive technology
in vivo, DT-MRI has the potential to trace trajectories of fiber tracks. Currently, this
technology has been used for brain disease diagnosis [1, 2], where fiber tracking is a
basic task, and takes an important role in deriving maps of neuroanatomic connectivity.

Many fiber tracking methods have been proposed in the last decades. Most of them
can be classified into deterministic methods and probabilistic methods. Moreover, new
signal processing techniques such as high angular resolution diffusion imaging
(HARDI) [3] and compressed sensing (CS) [4, 5] also attract the interests of researchers
in this area.

All deterministic fiber tracking methods [6–8] assume that white matter fiber paths
are parallel to the principal eigenvector of the underlying diffusion tensors. When the
measured signals are effected by noise, the tracing results could be wrong. Due to the
noise and uncertainty in measurement, probabilistic fiber tracking methods were pro-
posed in [9, 10]. This kind of methods can process the noise problem to some extent.
But most of them have the assumption that there is only one fiber orientation in each
voxel. When there are crossing fibers in a voxel, they often fail to trace the right ones.
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To deal with crossing fibers, high order tensor (HOT) model [11, 12] was proposed,
where multiple fibers are allowed in a voxel. In this case, the direction with the
maximum diffusion rate is often chosen as the fiber forward direction in fiber tracing.
This simple selection strategy often leads to incorrect results in the crossing area of
fibers, especially for noisy data.

In order to address the issue mentioned above, we propose an improved method to
trace noisy crossing fibers. This method is based on the framework of Bayesian fiber
tracking proposed by Friman et al. [9] and the high order tensor model [11]. In
Friman’s method, fiber direction is determined by the prior and likelihood probabilities
of current voxel. In this paper, we replace the likelihood probability with orientation
distribution function that is calculated from HOT model, and then control the fiber
tracing with a new fiber direction selection strategy. By this means, we improved the
performance of fiber tracking for noisy crossing fibers.

The remainder of this paper is organized as follows. In Sect. 2, we briefly review
the related work. In Sect. 3, we describe our method and its implementation. Test
results are included in Sect. 4. Section 5 is for conclusions and future work.

2 Related Work

As mentioned before, our method is based on the framework of Bayesian fiber tracking
proposed by Friman et al. [9] as well as the high order tensor voxel model [11]. To help
understand our method, we describe them briefly in this section.

2.1 Framework of Bayesian Fiber Tracking

In [9], Friman et al. proposed a novel probabilistic modeling method for white matter
tractography that can deal with the noise problem to some extent. According to the
Bayes’ theorem, the probability density function of local fiber orientation pðvi j vi�1;DÞ
is defined as:

pðvi j vi�1;DÞ ¼ pðD j viÞpðvi j vi�1Þ
pðDÞ ð1Þ

where D represents diffusion measurements with the underlying tissue properties and
fiber architecture, vi is the fiber direction of in the current voxel, and vi�1 is the prior
fiber direction. The denominator pðDÞ is a normalization factor given by

pðDÞ ¼
Z
S
pðD j viÞpðvi j vi�1Þdvi ð2Þ

where pðvijvi�1Þ is prior probability and S is a set of unit vectors which can be obtained
by several times tessellation of an icosahedron [9].

The likelihood probability pðDjviÞ in Eq. (1) is calculated according to Eq. (3) for
each predefined unit vectors vk in S.
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where

lj ¼ l0e
�abje�bbjðgTj vkÞ2 ; ð4Þ

zj ¼ ln sj; ð5Þ

and lj is the estimated intensity in gradient directions gj ( j ¼ 1; � � �N), sj is the cor-
responding observation intensity. r2 is the noise variance of the error between the
estimated intensity and the observation intensity. As usual, l0 is the intensity without
diffusion gradients applied. Parameters a and b are derived from standard DTI model.
Supposed that the eigenvalues of DTI model are k1 � k2 � k3, then a ¼ 1

2 ðk2 þ k3Þ and
b ¼ k1 � c.

The prior density pðvi j vi�1Þ that defines prior knowledge about fiber regularity is
simply given by

pðvi j vi�1Þ / ðvTi vi�1Þc;
0;

�
vTi vi�1 � 0
vTi vi�1\0

ð6Þ

where c is a positive constant.

2.2 High Order Tensor Imaging

Barmpoutis et al. [11, 12] proposed a unified framework to estimate high order dif-
fusion tensors for DT-MRI data, and developed a robust polynomial solution to solve
the computation in high order tensor estimation.

Given a set of diffusion-weighted MRI data, the signal of DT-MRI can be estimated
by Stejskal-Tanner signal attenuation model:

S=S0 ¼ e�bdðgÞ ð7Þ

where dðgÞ is the diffusivity function, and S is the observed signal intensity with
gradient orientation g and the diffusion weighting b. S0 is the intensity without diffusion
gradients applied.

The diffusion function dðgÞ in Eq. (7) can be approximated by Cartesian tensor as
follows

dðgÞ ¼
X3
i¼1

X3
j¼1

� � �
X3
k¼1

X3
l¼1

gigj � � � gkglDi;j;���k;l ð8Þ
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where gi is the ith component of the three-dimensional unit vector g, and Di;j;���k;l is the
tensor coefficient. When the tensor is even order and in full symmetry, according to the
theory in [11], the Eq. (8) can be rewritten as:

dðgÞ ¼
XNL

k¼1

qkDk

YL
p¼1

gkðpÞ ð9Þ

where NL is the number of different elements, L is the order of the tensor, Dk is kth

different elements of the L-order tensor, qk is the number of repetitions of the element,
and gkðpÞ is the pth component of the gradient direction specified by kth unique element
of the generalized diffusion tensor.

According to homogeneous polynomials conversion theory [13], any positive-
definite polynomial can be written as a sum of squares of lower order polynomials.
Equation (9) can be written as follows

dðgÞ ¼
XM
j¼1

pðg1; g2; g3; cjÞ2 ð10Þ

where cj is a vector that contains the polynomial coefficients. pðg1; g2; g3; cjÞ is L-
order homogeneous polynomials in three variables, M is number of polynomials
terms.

As addressed in [11], the high order tensor model generalizes the two-order tensors
and has the ability to detect multiple fiber orientations. With the measured DT-MRI
data, we can compute the diffusion function dðgÞ, and further get the orientation
distribution function.

3 Our Approach

3.1 Overview

The Bayesian fiber tracking in [9] can effectively reduce the impact of noise, but it
often fails to get the right tracts when encountering crossing fibers due to assumption
that there is only one fiber orientation in each voxel. High order tensor model can detect
multiple fiber orientations, and has advantages in processing crossing fibers, but how to
select a direction for a fiber approaching to the crossing area is still a problem.
Improper selection may cause wrong results.

In this paper, we propose an improved method for fiber tracking. This method
combines the advantages of the HOT model and Bayesian fiber tracking. We first
compute orientation distribution function for each voxel, and then carry out probabi-
listic tracking in the framework of Friman’s method where the likelihood probability is
replaced by orientation distribution function. At last, we choose the fiber tracing
direction based on the current direction and its change from the previous direction.
Here, we assume that the fiber will not take a sharp turn during the tracing procedure.
So the direction with the smallest change relative to the current direction will be chosen
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as the next forward direction. Finally, our method works as the flow chart shown in
Fig. 1, including the following steps.

1. Initialization. Set parameters for fiber tracing, including step size, seed points, initial
directions, fiber termination criteria, etc. In our experiments, we use fractional
anisotropy as one of the termination criteria. And the initial fiber direction at the
seed point is set to the main eigenvector of the local standard two-order tensor.

2. Start from the voxel where the seed point lies.
3. Calculate the orientation distribution function of the current voxel according to the

HOT model, and use the distribution as the likelihood probability required by the
Bayesian approach.

4. Calculate prior probability according to Firman’s method.
5. Get posterior distribution by multiply prior probability and likelihood probability.
6. Draw N directions randomly from a predefined unit vector set S, and then choose

the direction with the smallest change relative to the current tracing direction as the
next forward direction.

7. Trace to the next point in the forward direction, and repeat steps 3–7 until the
termination of the fiber.

Start

Initialization

Start tracking from 
the seed point

Calculate the 
orientation 

distribution function 

Calculate the prior 
probability

Calculate the 
posterior 

distribution

Select a direction 
and trace a step

Satisfy 
termination 

criteria

End

YES

NO

Fig. 1. Flow chart of our algorithm
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3.2 Processing for Crossing Fibers

The step 6 in our method is specially designed for crossing fibers, which differs our
method from existing ones. As shown in Fig. 2, when using HOT model to detect
crossing fiber, we can get the directions of crossing fibers a and b. But, with traditional
HOT-based method,when we start tracing from the red arrow, a is often be chosen,
because the magnitude of a is bigger than b (here, the magnitude represents diffusion
rate). In fact, b is the direction that should be followed in this case.

In order to deal with crossing fibers and get the right tracing results, we resample the
unit vector space, get all directions with high probabilities, and select one from them to
continue the tracing. As shown in Fig. 3, supposeV1 andV2 are already known vectors in
the fiber. And candidates with high probabilities for next step are labeled with V3, which
are the re-sampling results of the current voxel. We first compute the angle between V1
andV2, and then compute the angles between V2 and all V3 candidates. The one fromV3
candidates that is in best consistency with V1 and V2 will be chosen. In other words, the
angle between the selected V3 and V2 is the closest to the angle between V1 and V2. For
the case in Fig. 3, the selected V3 is drawn in red. By this means, our method can avoid
falling into wrong directions in most of cases, just as shown in the test results.

4 Test Results

In this section, we evaluate the performance of our method with tests on three synthetic
dataset and a real DT-MRI dataset.

4.1 Synthetic Data

Two sets of synthetic data were created with the following parameters: 30� 30� 1
voxels, 1� 1� 1 mm, b = 1500 s=mm2, 21 gradient directions, 10% noise, according
to the simulation method in [14]. The first dataset contains two bundles of straight

Fig. 2. Example of crossing fibers (Color figure online)

Fig. 3. Selection of fiber directions (Color figure online)
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fibers that are 60� crossing, and the second has 90� crossing fibers, just as shown in
Fig. 4 (a) and Fig. 5 (a), respectively.

We compared our method with Friman’s method and HOT method. With the same
seed point, we tracked 50 times for all methods. The results are given in Figs. 4 and 5.
Obviously, our method improved the performance of crossing fiber tracking, because
most of fibers traced along the right way in our method, while they deviated from the
truth in Friman’s method. Here, it should be noted that HOT method always get the
same wrong result, because it is a deterministic method that traces along the direction
with the largest diffusion rate.

The third synthetic data set was designed by Peter [15]. It contains 15� 30� 5
voxels and 162 gradient directions with b = 1500 s/mm2. The comparative results are
shown in Fig. 6, where the ground truth of fiber directions is included in Fig. 6 (a).

(a) 60 crossing fibers (b)Friman's method  (c) HOT method   (d)Our method 

Fig. 4. Test results for 60� crossing fibers. The seed point is at (15, 1).

(a) 90 crossing fibers (b)Friman's method  (c) HOT method   (d)Our method 

Fig. 5. Test results for 90� crossing fiber. The seed point is at (15, 1).

(a)peter’s data  (b)Friman’s method  (c)HOT method   (d)Our method 

Fig. 6. Test results for Peter’s dataset. The seed point is at (3, 5).
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For Friman’s method, most of fibers ran out of the field when they encountered the
crossing area, as shown in Fig. 6 (b). For HOT method, it also can not get the right
tract. But, for our method, most fibers successfully went through the crossing areas, and
disclosed the structure of fibers.

4.2 Real DT-MRI Data

We further tested our method with the DWIVolume dataset, which is a sample data of 3D
Slicer [16]. In this test, the fiber step size was set to 0.4, fractional anisotropy was no
smaller than 0.12, and the seed points were set on the Corpus Callosum structure. Figure 7
gives the test results of the DT-MRI data, where fibers generated by Friman’s method,
HOT method, and our method are drawn in red, green and yellow colors, respectively.

(a) Friman's method

(b) HOT method    

(c)  Our method 

Fig. 7. Test results for the DWIVolume dataset. (Color figure online)
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Comparing the fiber tracts in Fig. 7, we can see that our results in Fig. 7 (c) are
consistent with the arcuate structure, showing the symmetrical features. For the Fri-
man’s method and the HOT method, the symmetry of fibers is broken, because some
fibers turned around and changed their tracing directions. Although the ground truth is
not available, we infer that the problem of turning around may be caused by something
that is similar to crossing fibers. Our method is more robust in dealing with crossing
fibers, so it got better results.

5 Conclusions

In this paper, we propose an improved fiber tracking method on the framework of
Bayesian fiber tracking. This method replaces the likelihood probability with the ori-
entation distribution function obtained from high order tensor model, and integrates a
new fiber direction selection strategy. By this means, it achieves better performance in
processing crossing fibers, just as shown in test results. In future work, our method
would be further evaluated on more real datasets and extended to process more
complicated fiber structures.
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