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Abstract. We propose an automatically and accurately facial landmark local-
ization algorithm based on Active Shape Model (ASM) and Gabor Wavelets
Transformation (GWT), which can be applied to both 2D and 3D facial data.
First, ASM is implemented to acquire landmarks’ coarse areas. Then similarity
maps are obtained by calculating the similarity between sets of Gabor jets at
initial coarse positions and sets of Gabor bunches modeled by its corresponding
manually marked landmarks in the training set. The point with the maximum
value in each similarity map is extracted as its final facial landmark location. It is
showed in our laboratory databases and FRGC v2.0 that the algorithm could
achieve accurate localization of facial landmarks with state-of-the-art accuracy
and robustness.
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1 Introduction

Exploring a method of automatic landmark detection with robustness and high accu-
racy is a challenging task, which plays an important role in applications such as face
registration, face recognition, face segmentation, face synthesis, and facial region
retrieval. Motivated by such practical applications, extensive work focusing on
thinking of methods for automatic landmark localization both on 2D and 3D faces has
been done. The active shape model (ASM) and active appearance model (AAM) which
proposed by T.F. Cootes et al. [1, 2] can generate good performance on 2D faces. They
are both based on point distribution model (PDM) [3], and principal component
analysis (PCA) is applied to establish a motion model. An iterative search algorithm is
implemented to seek the best location for each landmark. Compared with ASM’s faster
searching rate, AAM performs better on texture matching. However, both of the two
algorithms suffer from illumination variation and facial expression changes.
Compared to landmark detection on 2D facial images, automatic landmark detec-
tion on 3D facial is a newer research topic. Zhao et al. [6] proposed a statistic-based
algorithm, which detects landmarks by combining a global training deformation model,
a local texture model of landmark, and local shape descriptor. Experiments on FRGC
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v1.0 achieve a high successful rate of 99.09 %. In [7], Stefano et al. first detects nose
tip based on gray value and curvature on range images, then Laplacian of Gaussian
(LoG) operator and Derivative of Gaussian (DoG) operator are applied near the nose tip
to locate nose ends, and Scale-Invariant Feature Transform (SIFT) descriptor is
implemented to detect eye corners and mouth corners at last. However, the algorithm
suffer from facial expression as well. Clement Creusot et al. [18] detected keypoints on
3D meshs which was based on a machine-learning approach. With many local features
such as Local Volume (VOL), Principal Curvatures, Normals et al. combined together,
Linear Discriminant Analysis (LDA) and AdaBoost algorithms are applied separately
for machine-learning. The algorithm achieves state-of-the-art performance. However,
the algorithm relies heavily on local descriptors. Jahanbin et al. [9] proposed a 2D and
3D multimodal algorithm based on Gabor features, which achieves high accuracy.

Inspired by Jahanbin et al., we propose a novel landmark detecting algorithm based
on ASM and GWT in the rest of the paper, which can be applied to 2D and 3D facial
images. The rest of this paper is organized as follows. Section 2 is the main body of our
proposed algorithm. Firstly, we extend ASM to range image for landmarking; sec-
ondly, the notion of “Gabor jet” set and “Gabor bunch” set and their similarity defi-
nition are introduced in detail which are the main contributions of our work.
Experimental results and evaluation are provided in Sect. 3. Several conclusions and
future work are drawn in Sect. 4.

2 Accurate Facial Landmarks Localization Based
on ASM and GWT

2.1 Abbreviations

Before we introduce our algorithm, several abbreviations of fiducials are listed here for
convenience.

NT: nose tip; LMC: left mouth corner; RMC: right mouth corner; LEIC: left eye
inner corner; LEOC: left eye outer corner; REIC: right eye inner corner; REOC: right
eye outer corner.

2.2 Landmark Method

Once these definitions are given, the processing pipeline of this section is outlined as
follows:

1. A set of 50 range or portrait facial images with different races, ages and genders is
selected as the training set, and preprocessing steps are applied to all these images;

2. The “Gabor bunch” set features of 7 manually marked landmarks of each image in
the training set are extracted;

3. A 25 x 25 pixel search area for each landmark is obtained based on the results of
ASM,;

4. Take LEIC searching for example, search counterclockwise and start from the
center of the search area, and jump to step 6 if the similarity between the
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“Gabor jet” set at the search point and the “Gabor bunch” set of LEIC in the training
set is larger than 0.98 (experienced data), else repeat step 4 until all search points are
visited and get a similarity map, as shown in Fig. 4.;

5. The point with the maximum value in each similarity map is extracted as its final
facial feature location;

6. The algorithm is done.

2.3 Coarse Area Localization

Though general ASM algorithm which is usually applied in portrait images suffers
from illumination variation and facial expression changes, it is a good choice for fast
landmarking the coarse area of each landmark. However, few literatures about
detecting these coarse areas on 3D face are presented. In our paper, we extend ASM to
range image in order to solve this problem.

Prior to landmarks detecting, proper preprocessing steps on 2D and 3D data are
appreciated. White balancing is implemented to all portrait images so as to aim a
natural rendition of images [8] (see Fig. 1). 3D point clouds are converted to range
images by interpolating at the integer x and y coordinates used as the horizontal and
vertical indices, respectively. These indices are used to determine the corresponding z
coordinate which corresponds to the pixel value on range image [17].

Fig. 1. White balancing algorithm: original and processed are in left and right respectively

2.3.1 ASM on Portrait and Range Image
As PDM [3] pointed out, an object can be described by n landmarks that are stacked in
shape vectors. The shape vector of portrait and range image is constructed as:

T
X = [Px‘la---an,naPy.la~--aP)un] (1)

(Dx,i» Py.i) refers to the coordinate in portrait and range image. In another way, a shape
can be approximated by a shape model:

X=X+ ob (2)

Where X means the mean shape of all objects in the training set; the eigenvectors
corresponding to the s largest eigenvalues (41 >/, > -+ > /) A, i=1,2,...,s are
retained in a matrix ® = {®;, ®,,...,d,}; b is the model parameter to be solved.
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In order to get the parameter b, local texture models of each sample in the training
set are constructed respectively as profile g;, i = 1,2, .. .,t, then the mean profile g and
the covariance matrix C, are computed for each landmark. Given g; obeys a multidi-
mensional Gaussian distribution, the computation of the Mahalanobis distance between
a new profile and the profile model can be defined as follows:

fMahalanobis(gi> = (gl - g)TCg_I(gl - g) (3)

Both shape model and profile model are combined to search each landmark, and
points with the minimum values of f(g;) are the landmark to find.

2.4 Fine Landmark Detection

Since ASM performs poor in situations such as illumination variation,eye-closing and
facial expression changes, we extract a 25 x 25 pixel area for each landmark centered
at its coarse location as the fine search area. Then Gabor Wavelet Transformation
(GWT) is applied to these search area to get the final location of each landmark.

2.4.1 Gabor Jets
Gabor filters which are composed by Gabor kernels with different frequencies and
orientations can be formulated as:

K2 —k2x? . 52
V) = Gew| 5p Pﬁ%@—“%aﬁ] @)
k= k] — kV cos (l’)u _ —(v+2) o E
In our implementation, ¢ = 27, ¥ is the coordinate of a point, u € {0,1,2,...,7}

and v € {0, 1,2,.. .4} determine the orientation and scale of the Gabor filters.
The GWT is the response of an image /(X) to Gabor filters, which is obtained by the
convolution:

3@ = [ 1@ - 7w (6)
Where J;(X) can be expressed as J; = a; exp(i¢;), a;(X) and ¢;(X) denote the magnitude

and phase respectively. The common method for reducing the computational cost for
the above operation is to perform the convolution in Fourierspace [11]:

J; = F~H{F ;) F(I(2))} ()

Where F denotes the fast Fourier transform, and F~! its inverse. The magnitude of
GWT on range image is shown in Fig. 2.
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Fig. 2. GWT on range image: range image is in left, magnitude of GWT is in right

As proposed in [4], “Gabor jet” is a set J= {Jj,j = u+ 8v} of 40 complex Gabor
coefficients obtained from a single image point. And the similarity between two jets is
defined by the phase sensitive similarity measure as follows:

< S aid] cos (¢ — @)
40
)

(8)

2
i

Here, S(J;,J;) € [~1,1] and a value which is closer to 1 means a higher similarity.

24.2 “Gabor Jet” Set and “Gabor Bunch” Set

For any given landmark j in the image, its Gabor bunch is defined as éj = {J,,;} [12],
where x = 1,2, ---,n denotes different images in the training set. In [13], a set of 50
facial images with different races, ages and genders was selected as the training and
Gabor bunch extraction to detect landmarks. This algorithm achieves a good result on
portrait image, but performs relatively poor on range image.

Inspired by “Gabor jet” and “Gabor bunch”, we propose the notion of “Gabor jet”
set and “Gabor bunch” set in this work. For any given landmark j, a “Gabor bunch” set is
defined as a set constructed by the “Gabor jet” of j and its eight neighborhood; “Gabor
bunch” set is a set constructed by all different images’ “Gabor bunch” set of j in the

training set. Take LEIC for example, its “Gabor jet” set is 75 = {70;7,~,i =
1,2,...8}, where Jo is the “Gabor jet” of LEIC, J; is the “Gabor jet” of its 8 neigh-
borhoods (see Fig. 3). B = {jw-,i =1,2,...,n} is the “Gabor bunch” set of LEIC,

where J. s, means different images’ “Gabor jet” set of LEIC in the training set.
The similarity between any two “Gabor jet” sets is defined as:

S I —i=8 _ = -
SULT) =5 >y ST ) ©)
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Fig. 3. “Gabor jet” set of LEIC Fig. 4. Searching path

Considering that probes are often not contained in the training set, we define the
similarity between a “Gabor jet” set and a “Gabor bunch” set as:

Sp(J,B) = SORT*{S(J,, T )i = 1,2,...,n} (10)

Where SORT{f;,i =1,2,...,n} denotes the sum of « largest values of f;.

3 Experimental Results and Evaluation

In this section, we present the performance of our proposed approach when tested both
on the FRGC v2.0 and our laboratory database (OLD).

FRGC v2.0 [14] is one of the largest available public human face datasets, which
consists of about 5,000 recordings covering a variety of facial appearances from sur-
prise, happy, puffy cheeks, and to anger divided into training and validation partitions.
The training partition which is acquired in Spring 2003 includes 273 individuals with
943 scans. The validation partition for assessing performance of an approach includes
4007 scans belonging to 466 individuals (Fall 2003 and Spring 2004). Since there was
a significant time-lapse between the optical camera and the operation of the laser range
finder in the data acquisition, 2D and 3D images are usually out of correspondence [9].

OLD consists of 247 scans from 83 individuals with expression, eye-closing, and
pose variation. All data are acquired by our laboratory self-developed 3D shape
measurement system based on grating projection, where a certain map exists between
2D and 3D data.

3.1 Experiment on Portraits

Two training sets are needed in our work. The ASM training set for finding search areas
which consist of 1040 portraits with different expressions, pose, and illumination is
selected from FRGC v2.0 and OLD at the rate of 25:1; the Gabor training set for fine
landmark detection includes 50 portraits covering facial appearance from subjects with
different gender, age, expression, and illumination, which is selected in the same ratio
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as the ASM training set. The probe set consists of 895 portraits selected at random from
the FRGC v2.0 and the remaining portraits in the OLD. All portraits are normalised to
320 x 240 pixel.

The Euclidean distance between the manually marked and the automatically
detected landmarks is measured as d, so as to evaluate the accuracy of the algorithm.
mean and std are the mean and standard deviation of d, respectively. The positional
error of each detected fiducial is normalized by dividing the error by the interocular
distance of that face. The normalized positional errors averaged over a group of fi-
ducials is denoted m,, adopting the same notation as in [5].

Compared with general ASM algorithm which suffers from eye-closing, illumi-
nation and expression, the algorithm we proposed performs well in such situations as
shown in Fig. 5. It is evident from the statistic in Table 1 that LEIC, LEOC, and LMC
which have significant texture features perform best in sharply contrast with NT that
performs worst. Moreover, the algorithm we proposed achieves a high successful ratio
of 96.4 % with just 1.41 mm of mean and 1.78 mm of std in FRGC v2.0. By contrast, it
performs even better in OLD that the successful ratio is 97.7 %, that mean and std are
1.31 mm and 1.49 mm respectively. The reason why the results in OLD outperform

Fig. 5. Landmark detection on portraits: the first row is FRGC v2.0, the second row is OLD

FRGC v2.0 may be that there are less probes and facial variation in OLD.

3.2 3D Landmark Localization Experiment

Due to the definitely corresponding relationship between 2D and 3D facial datum in
OLD, accurate landmark localization can be realized by mapping the 2D localization
results to 3D point cloud according to the corresponding relation-ship. However, the
corresponding relationship between 2D and 3D faces does not exist in FRGC v2.0.
Therefore, to achieve a precise 3D landmark localization, the 3D point cloud is con-
verted into a range image at first, and then ASM is used to locate landmarks coarsely in
the range image. Finally, the best landmarks can be found by extracting Gabor wavelet
feature in the coarse location area. Both the training set and test set are range images
and the selection rules are as described in Sect. 3.1. The results of 3D landmark
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Table 1. statistic landmark result on portraits

Landmark | FRGC v2.0 OLD

mean | std | m, <0.06 | mean std | m, <0.06
LEIC 1.39 144|981 % |1.43 |1.66|98.5 %
LEOC 147 1.57/97.0 % |1.57 |1.48|98.8 %
REIC 1.64 1241|942 % 1.61 [2.39]95.7 %
REOC 1.41 1 1.83]96.1 % 1.04 [ 1.27]97.9 %
NT 1.33 | 1.86|94.3 % 1.36 [1.13/97.1 %
LMC 1.28 1.55/984 % |0.99 |1.07 |99.1 %
RMC 1.35 11.90|97.1 % 1.19 149|974 %
average |1.41 |1.7896.4 % 1.31 [1.49/97.7 %

localization in FRGC v2.0 are as shown in Fig. 6 and Table 2. In OLD, we just need to
map the 2D localization results to 3D point cloud according to the corresponding
relation-ship, so the localization results are as shown in Table 1.

The first row is in FRGC v2.0, the second row is that in OLD. Tables 1 and 2 show
that the algorithm in this paper can also achieve better results in 3D landmark locali-
zation: in the case of a small error m, <0.06, the accuracy can be 94.2 % in FRGC
v2.0. Meanwhile, in OLD, because of the corresponding relationship, we can directly
locate landmarks on portrait images which have richer texture information, then we can

Fig. 6. 3D landmark localization in FRGC v2.0 (first row) and OLD (second row)

Table 2. 3D landmark localization results in FRGC v2.0

Landmark | LEIC |LEOC |REIC |REOC |NT LMC |RMC | Average
mean 1.54 | 2.74 194 | 2.55 1.29 1.78 1.66 1.92
std 1.62 | 272 | 250 | 2.61 1.00 1.45 1.30 1.88
me <0.06 |96.1 % | 91.7 % | 96.3 % | 92.4 % | 96.9 % |91.9 % | 94.7 % | 94.2 %
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map the localization results to the 3D point cloud. Finally, the accuracy we achieve is
97.7 %.

3.3 Landmark Localization Results Comparing

The landmark detection algorithm proposed in this paper first locates the landmarks
coarsely basing on ASM, then the accurate localization is accomplished by the use of
Gabor features. The algorithm can overcome the shortage of the ASM that the reduced
accuracy is caused by eyes slightly open, eyes closed, large expressions and obvious
illumination changes and so on. Furthermore, the landmark localization performance is
greatly improved compared with ASM. AAM is also a sophisticated 2D facial land-
mark localization algorithm. As is pointed out in literature [15], the accuracy of AAM
algorithm to locate the landmarks is only 70 % under the circumstance that error
satisfies m, <0.1. However, the accuracy of the algorithm locating landmarks in 2D
faces in both literature [13] and this paper is over 99 % under the same circumstance.
But compared with the automatic landmark localization algorithm pro-posed in this
paper, the algorithm in literature [13] is only semi-automatic because its coarse land-
mark localization area cannot be completely determined automatically. Figure 7
describes the relationship between permissible error m, <0.1 and the accuracy of 2D
landmark localization resulting from the algorithm in literature [13] and this paper. We
can also conclude that the algorithm in this paper has a better performance than that of
the algorithm in literature [13] from it.

Table 3 displays the results of the comparison among three 3D landmark detection
algorithms. The literature [16] used the Shape Index and Spin Image as local
descriptors to locate landmarks coarsely, and FLM is used as topological constraint
among landmarks, then the group of landmarks which meets FLM model in the coarse
location area is chosen as the best landmarks. This method can also locate each
landmark well in the case of large deflection in faces, but its average error is larger
than that of the method in this paper from Table 3. The 3D landmark-locating algorithm
in literature [13] also shows a good performance, and has a higher locating accu-
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racy than that in literature [16]. However, compared with the automatic landmark
localization algorithm pro-posed in this paper, the 3D landmark detection algorithm in
literature [16] is only semi-automatic. What’s more, Fig. 8 shows that the algorithm in

Table 3. the comparison of average error of three 3D landmark detection algorithms

LEIC | LEOC | REIC | REOC | NT |LMC | RMC
In[16] [4.41 |5.83 |5.03 |579 |4.09|542 |5.65
In[13] | 1.65 393 |1.63 |3.77 |1.40|1.89 |1.81
Our |1.54 |2.74 194 255 |1.29]1.78 |1.66

this paper has a higher locating accuracy than that in literature [13]. Figure 9 also
shows 3D landmark localization can be realized by transforming it into corresponding
2D landmark localization to improve locating accuracy due to the mapping relationship
between 2D and 3D images.

4 Conclusion

This paper proposes an automatic facial landmark localization algorithm on the basis of
ASM and GWT. The method is based on the coarse localization using ASM, then the
concepts of “Gabor jet” set and “Gabor bunch” set are introduced. Hence, the precise
localization of the facial landmarks can be realized. The experimental results show that
the landmark localization algorithm proposed in this paper has a higher accuracy and is
robust to facial expressions and illumination changes. The algorithm has the following
characteristics: (1) it is suitable for both 2D and 3D facial data; (2) it is based on ASM
coarse localization, then the accurate localization is realized because of the use of
“Gabor jet” set and “Gabor bunch” set. The localization accuracy is significantly
increased compared with ASM.

GWT algorithm which has been used to locate landmarks accurately in this paper is
rotation invariant. If ASM algorithm can be improved to realize coarse localization, the
accurate landmark localization in faces having arbitrary pose can be achieved. This
paper uses 5 directions, 8 scales and 40 Gabor filters to make up a filter group. If
coupling filters in it can be reduced, the instantaneity of the algorithm in this paper will
be better.
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