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Abstract. Dimensionality reduction is widely used in image under-
standing and machine learning tasks. Among these dimensionality reduc-
tion methods such as LLE, Isomap, etc., PCA is a powerful and efficient
approach to obtain the linear low dimensional space embedded in the
original high dimensional space. Furthermore, Kernel PCA (KPCA) is
proposed to capture the nonlinear structure of the data in the projected
space using “Kernel Trick”. However, KPCA fails to consider the local-
ity preserving constraint which requires the neighboring points nearer
in the reduced space. The locality constraint is natural and reasonable
and thus can be incorporated into KPCA to improve the performance.
In this paper, a novel method, which is called Locality Preserving Ker-
nel PCA (LPKPCA) is proposed to reduce the reconstruction error and
preserve the neighborhood relationship simultaneously. We formulate the
objective function and solve it mathematically to derive the analytical
solution. Several datasets have been used to compare the performance of
KPCA and our novel LPKPCA including ORL face dataset, Yale Face
Dataset B and Scene 15 Dataset. All the experimental results show that
our method can achieve better performance on these datasets.

Keywords: Locality preserving constraint - Kernel PCA - Dimension-
ality reduction

1 Introduction

Many problems in image understanding involve some kind of dimensionality
reduction [1-6]. Recently, a lot of dimensionality reduction methods have been
proposed such as PCA, LDA, LPP [1], Isomap [7], LLE [8], etc. Among all these
methods, PCA is a powerful and popular linear technique to extract lower man-
ifold structure from high dimensional data, which has been widely used in pat-
tern recognition such as face recognition, object recognition, etc. PCA seeks the
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optimal combination of the input coordinates which reduces the reconstruction
error of the input data to form a low dimensional subspace. The corresponding
new coordinates are called Principal Vectors. It is often the case that only a
small number of the important Principal Vectors is good enough to represent
the original data and can furthermore reduce the noise that is induced by the
unimportant Principal Vector. PCA provides an efficient way to compress the
data with minimal information loss using the eigenvalue decomposition of the
data covariance matrix. In fact, the principal vectors are uncorrelated and form
the closest linear subspace to the data, which is useful in subsequent statistical
analysis.

A lot of variant PCA have been proposed to modify the performance of PCA.
Alexandre and Aspremont [9] proposed DSPCA which was based on relaxing a
hard cardinality cap constraint with a convex approximation. In [10], Ron Zass
and Amnon Shashua proposed a nonnegtive sparse PCA to capture the non-
negtive and sparseness nature of the real world. What’s more, as the real world
observations are often corrupted by noise, the principal vectors might not be
the ones we desired. Hence, people tried to make some efforts to make PCA be
robust to the noisy observations [11-13]. For examples, Candes [11] proposed
to decompose the observations into a low rank matrix and a noise item, which
would make the model be robust to corruptions. And Goes [13] proposed three
stochastic approximation algorithms for robust PCA which have smaller storage
requirements and lower runtime complexity. Because PCA and its variants are
linear transformation of their original space, they cannot capture the nonlinear
structure of the data. However, some kind of data lies in the nonlinear structure
subspace [1]. To solve this problem, Bernhard Scholkopf et al. [14,15] proposed
a nonlinear form of PCA using kernel method, which was called Kernal PCA
(KPCA). KPCA maps the original feature space into a high dimensional fea-
ture space and seeks the principle vectors in the mapped space. It uses “Kernel
Trick” to solve the problem. It has been proved that KPCA outperforms PCA
in pattern recognition problems with same number of principle vectors and the
performance can be furthermore improved using more components than PCA.
However, KPCA is suffered from the memory problem and computational effi-
ciency problem in the situation when the number of training sample is large [16].
To solve the problem, M. Tippings [17] proposed to select a subset of the train-
ing samples to approximate the covariance matrix using a maximum likelihood
approach. And Sanparith Marukatat also discovered the problem and proposed
to use kernel K-means and preimage reconstruction algorithms to solve the prob-
lem. What’s more, Honeine [18] proposed an online version of Kernel PCA to
deal with large scale dataset. Another drawback for KPCA is that it fails to con-
sider the intrinsic geometric structure of the data. The only objective function of
KPCA and PCA is to reduce the reconstruction error of the data without con-
sidering the neighborhood relationship preserving constraint. But it is a natural
and reasonable assumption that a good projection should map two data points
which are close to each other in the original space into two points also close in
the projected feature space [1-4]. However, KPCA does not take this constraint
into consideration explicitly.
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In this paper, we aim to solve the problem of KPCA which does not consider
the intrinsic geometric structure of the data and propose a novel kernel PCA
which preserves the locality constraint relationship in the original feature space
using the graph of Laplacian [1,19] which incorporates the neighborhood rela-
tionship of the data. We call this novel method Locality Preserving Kernel PCA
(LPKPCA).

This paper is organized as follows. The related works about locality preserv-
ing constraint are introduced in Sect.2. Then a brief review about PCA and
KPCA is given in Sect. 3. In Sect. 4 the new objective function and the deriva-
tion for LPKPCA are illustrated in details. In Sect.5 the experiment results
are shown to compare the performance between KPCA and LPKPCA on sev-
eral datasets including ORL face dataset, Yale Face Dataset B and Scene 15
Dataset. Finally, in Sect.6 a conclusion is given to summarize this paper and
point out the future work.

2 Related Works

The concept of locality preserving dimensionality reduction can be traced back
to [7,8]. The locality constraint requires the dimensionality reduction projection
to preserve the neighborhood relationship, which has been proved to be a very
reasonable assumption [1,20,21]. In [19], Mikhail Belkin and Partha Niyogi pro-
posed to use laplacian eigenmap to find the low dimensional embedding of the
data which lies in the original high dimensional feature space. X. He, et al. [1]
extended this conception and proposed Locality Preserving Projection (LPP) to
find the optimal linear approximation of to the eigenfunctions to the Laplace
Beltrami operator on the manifold. Although LPP is a linear transformation,
it can capture the intrinsic structure embedded in the data. Following the LPP
and the spirit of locality constraint, a lot of new dimensionality reduction meth-
ods have been proposed recently. In [20], Deng Cai, et al. proposed to add the
locality constraint in to Nonnegtive Matrix Factorization and propose Locality
Preserving Nonnegative Matrix Factorization (LPNMF) to improve the perfor-
mance of large high dimensional database. Quanquan Gu, et al. [21] also focused
on the locality preserving property and added it into Weighted Maximum Mar-
gin Criterion (WMMC) for text classification, which was called Local Relevance
Weighted Maximum Margin Criterion for Text Classification (LRWMMC). In
image classification, sparse coding has been proved to be a successful coding
method [22]. However, Wang et al. [6] argued that the locality preserving con-
straint was more natural than sparseness constraint and propose Linear Locality
Coding (LLC) for coding, which was efficient in coding and achieved the state-
of-the-art in image classification.

Inspired by all these works above, we intend to incorporate the locality
constraint into KPCA to obtain the optimal dimensionality reduction projec-
tion which reduces the reconstruction error and preserves the locality constraint
simultaneously. To formalize the locality preserving constraint, a neighborhood
graph W is built and a Laplician Matrix L is constructed based on the graph.
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We add the Laplician Matrix L into the objective function of KPCA and maxi-
mize the new objective function using “kernel trick”. More details will be illus-
trated in Sect. 4.

3 A Brief Review of PCA and Kernel PCA

PCA and KPCA is widely used in image understanding and pattern recognition.
In this section, a brief review of PCA and KPCA is given in Sects. 3.1 and 3.2,
respectively.

3.1 PCA

The aim of PCA is to seek the optimal orthogonal bases of original space to
reconstruct the input samples in order to minimize the reconstruction error and
compress the data.

Suppose X = [x1,Xa,...,xy] € RP*N be the centered training set, where
D is the dimensionality of the original feature and NV is the number of training
samples. Let U = {uj, us,...,us} be the complete orthogonal set, where
1,j=1
T ) ?
P =3¢ 0770 1
e {O,J 7 M

Thus each sample x can be represented as
oo
X = Z lelj (2)
j=1

If we only adopt a subset of U to approximate x, which is denoted as U=
{ui,us,...,uy}, the approximated feature X can be expressed as

d
X = Z ciuy (3)
j=1
As a result, the expected reconstruction error £ can be represented as
£ = E[(x—%)" (x - %)] (4)
According to (1)—(3), it can be rewritten as
o0
E=E[) ] ()
Jj=d+1
Because ¢; = uij, we get

E=E| Z u?xxTuj] (6)

j=d+1
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So to minimize £, the objective function can be formulated as
N 1. .~
0 = arg max( |07 X[} (7)
U

st 0TU =1

According to the method of Lagrange Multiplier, the optimal U can be
obtained by the eigenvalue decomposition of XX7 .

3.2 Kernel PCA

As is mentioned in section I, traditional PCA only captures the linear embedding
relationship of the data, however many data in reality lies in the non-linear
embedding space. To dig out the non-linear relationship of the data, Kernel
PCA (KPCA) is proposed by Bernhard Scholkopf [15]. It is proved that KPCA
performs better than PCA in many problems.

Specifically, suppose ¢ be a mapping from original feature space to ker-
nel space which satisfies the Mercer Condition. Thus the inner product of the
mapped features @(x), ¢(y) can be represented as

K(x,y) = (x)"(y) (8)
Thus the kernel matrix (Gram Matrix) can be represented as
K = [k(x;,%x)],4,7=1,2,...,N (9)
And the centered kernel matrix K is
K=K -EyK - KEy + ExyKEy (10)
where Ey is a N x N matrix with all elements equals to %
Using “Kernel Trick” to seek the optimal orthogonal bases in the mapped

feature space, which minimizes the reconstruction error, the transformed repre-
sentation of data x can be expressed as

y = QTr(X,x) (1)

where Q = [a1,Qa,...,ap] be the top D eigenvectors of the centered kernel
matrix K divided by the square root of the corresponding eigenvalues.

It can be seen that KPCA obtains the linear transformation in a high dimen-
sional kernel space to minimize the reconstruction error using “Kernel Trick”,
which may be a nonlinear transformation in the original space. Thus it can cap-
ture the nonlinear relationship in the embedded data space. KPCA is efficient
and stable, and is widely used in many areas of signal processing to which the
dimensionality reduction is applied.

However, in the derivation of KPCA, it doesn’t consider the neighborhood
relationship preserving constraint, which is now proven a very important con-
straint in many related works [6]. It is a very natural and reasonable assumption
and we intend to add it into KPCA for better performance.
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4 Locality Preserving Kernel PCA

In this section, the mathematical derivation is shown in details.
The objective function of KPCA is

~ 1 ama
U= arg?laX(iﬂUT@(X)II%) (12)
U
st. UTU =1

where @(X) is the zero mean collection of the features in the kernel space. To
add the locality constraint into the objective function of KPCA, we first model
the neighborhood relationship in the original feature [1] WY where

(13)

1, if x; is among the k neighbors of x;
W,;,;, =
* 0, otherwise

Denoting y; = UT®(x;) as the feature in the transformed space, the locality
constraint can be represented as

R=>llyi - y;llFwi (14)

,J

Thus the locality constraint can be added into (12) as

N 1 -
U= argmaX(§\lUT¢ )NE — Z lyi = yjllFwis) (15)
U
st. UTU =1

where \ is a tradeoff between the reconstruction error and the preservation of
locality, bigger A would increase the credibility of locality. Laplacian Matrix L
is defined as L = D — W [29] with D is the diagonal matrix D;; = ) wy;.

J
Using the Laplacian Matrix L, the objective function of LPKPCA can be
rewritten as

. 1 ammn
U = arg max(§||Ungs(X)||% —Mr(YLYT)) (16)
O
st. UTU=1

where Y = {y1,y2,...,yn~} and tr() is the trace of the matrix.
To obtain the optimal orthogonal bases U, the objective function (16) can
be rewritten as

U = argmax(tr(UT (#(X)&(X)" — \$(X)Lo(X)")U)) (17)
U
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Thus for each u in U, it satisfies the following objective function

arg min(u” (#(X)d(X)" — AG(X)LH(X)T)u) (18)

u

st.ufu=1

According to Lagrange Multiplier method, we get

Flu,p) = u" (@X)EX)” ~ ABX)LEX) )u+ p(u’u—1)  (19)

then
gi —2 (gz%(X)gZS(X)T - AqB(X)Lés(X)T) u+ 2uu (20)
u
Let % = 0, it is easy to see that u is the eigenvector of A&(X)L&(X)T —
P(X)p(X)T. A
Denote S? = ¢(X)(AL — I)@(X)T, we get
pu = S%u
= $(X)(AL — D)$(X)Tu
= d(X)(AL — D) (21)

where we define a as ®(X)  u.
Thus,

u x $(X)(AL — Da (22)
Hence, according to (21) and (22), we get
KL — D)o = pa (23)

Thus o is the eigenvector of K(AL —I). This « is then divided by a factor w
to satisfy the constraint u”u = 1 in Eq. (18). Then the projected feature y can
be represented as

y = UTd(x)
= QTk(X,x) (24)

where Q = [a1,a9,...,a4)Nxd, and &(X,x) = [.(X;,%x)],4 = 1,2,...,N. The
pseudo code is illustrated in Algorithm 1.

Our LPKPCA can be interpreted as a novel KPCA which captures the intrin-
sic geometry structure in the data simultaneously. The locality preserving con-
straint can improve the performance as is illustrated in [6], when the data lies
in a low dimensional Riemannian space. Furthermore, our LPKPCA only adds
a little bit computation burdens when constructing the neighborhood graph.
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Algorithm 1. Locality Preserving Kernel PCA

: Choose a kernel function & in (8).

: Compute K and K according Eq. (9), (10) using training data.

: Compute Laplacian matrix L according to similarity matrix W in (13).

: Do the eigenvalue decomposition of K(AL -I).

: Sort the eigenvalues in descent order; choose the eigenvectors v;,i = 1,2,...,d
corresponding to the top d eigenvalues.

6: Let w; = vi (AL — I)v;, then oy = \},w% Thus we get matrix Q in Eq. (24).

U W =

5 Experiments and Results
In this section, we compare the performance of LPKPCA and KPCA on three

datasets: ORL dataset [23], Yale Face Database B [24], and Scene 15 dataset
[25]. The performance will be judged by average accuracy,

Accuracy = —

i
S
5

where

Number of True Positives in Class i

"~ Total Number of samples in Class i
C is the number of classes. We first describe the experiment settings in Sect. 5.1.
And then the results are shown in Sects. 5.2, 5.3 and 5.4, respectively.

5.1 Experiment Preparation

For each dataset, we extract different features according to the content of these
datasets. Then the KPCA and LPKPCA are performed on these features. We
use cross validation to determine the hyperparameters of k£ and A in Egs. (13) and
(15) respectively. When building the similarity matrix W and Laplacian Matrix
L, Euclidean Distance is used in the original space to measure the neighborhood
relationship. As for classifiers, Liblinear [26] is adopted, which is a SVM library
for large linear classification and can deal with multi-class classification. The
parameter of Liblinear is set as follows: s = 0, ¢ = 10, e = 0.01. The RBF Kernel
is adopted to compute the kernel matrix in equation (9) with sigma values fit for
different datasets. In the experiment, the performance comparison is conducted
by evaluation on different number of principle vectors.

5.2 Results on ORL Face Database

There are ten different gray images of each of 40 distinct subjects in the ORL face
dataset [23]. These images vary in the different conditions of the lighting, facial
expressions (open/closed eyes, smiling/not smiling) and facial details (glasses/no
glasses) [23]. Some images in ORL face database are illustrated in Fig. 1. All the
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Fig. 1. Some images of ORL face database [23].

images are taken against a dark background and the subjects in an upright,
frontal position. The size of each image is 92 x 112 pixels. Following previous
work [27], a gray image is converted to a vector as feature which concatenates
all the pixels of the image. We split the dataset with equal number of images
as training and testing set, respectively. The comparison performance on ORL
dataset with different number of principal vectors can be seen in Fig. 2, where the
hyperparameters k£ and A are set as 8 and 0.05 respectively by cross-validation.
We also show the performance comparison between LPKPCA and KPCA with
different A values in Tables 1 and 2. We can see that the novel LPKPCA outper-
forms KPCA significantly.

Table 1. Classification accuracy comparison on ORL Face Database with number of
principal vector is 60 and k =5

A 0.02]0.030.04 | 0.05|0.06
LPKPCA % |94 (95 |95 |96 |95
KPCA % 86.5 | 86.5 | 86.5 | 86.5| 86.5

5.3 Results on Yale Face Database B

There are 5850 gray face images in Yale Face Database B with 10 subjects. Each
subject is seen under 576 viewing conditions (9 poses and 64 illuminations).
Moreover, there is one image with ambient illumination (i.e., background) for
each pose of the subject. Thus the total number of images for each subject is 585.
The images of the 10 individuals are illustrated in Fig. 3 [24]. The size of each



130 Y. Zheng et al.

Table 2. Classification accuracy comparison on ORL Face Database with number of
principal vector is 60 and A = 0.05

k 4 5 6 7 8 9
LPKPCA % |95 |96 |96 |95.5 96.5|95
KPCA % 86.5 | 86.5 | 86.5 | 86.5 | 86.5 | 86.5
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30 35 40 45 S0 S5 60 65 70 75
Number of Principal Vectors

Fig. 2. Classification accuracy on ORL Face Database with different number of prin-
cipal vectors.

Table 3. Classification accuracy comparison on Yale Face Database B with number of
principal vector is 60 and k = 23

A 0.02 |0.03 |0.04 |0.05 |0.06
LPKPCA % 94.83 |97.79 | 97.90 | 98.38 | 98.66
KPCA % 92.10 /92.10 1 92.10 |92.10 |92.10

image is 640x480 and we rescale the images to 40x30. Same as the experiment on
ORL, the images are converted to vectors of 1200 dimension by concatenating the
pixels. In experiment, the dataset is divided with two parts with equal number
which is used as training and testing set, respectively. By cross-validation, the
hyperparameters are set as 23 and 0.046 for £ and A respectively. The comparison
with different number of principal vectors are shown in Fig. 4 and with different
A values in Tables3 and 4. We can see that the LPKPCA outperforms KPCA
significantly.

5.4 Results on Scene 15 Database

There are 15 kinds of scene image in Scenel5 dataset such as store, office, high-
way, etc. The number of images ranges from 200 to 400 and there are 4485 images
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Fig. 3. Some images in Yale Face Database B [24].

Table 4. Classification accuracy comparison on Yale Face Database B with number of
principal vector is 60 and A = 0.046

k 20 21 22 23 24 25
LPKPCA % |97.69|97.90 | 98.38 | 98.90 98.72 97.24
KPCA % 92.10 /92.10 1 92.10 |92.10 |92.10 | 92.10
105
100 e G L o S S 4
< 95 /{H—V’M
()
P
& % ._.,I—I/{*"
? 85
-1
. ——LPKPCA
75 = KPCA
70

T T T T T T T T T T T T 1

30 35 40 45 S0 55 60 65 70 75 80 85 90
Number of Principal Vectors

Fig. 4. Classification accuracy on Yale Face Database B with different number of prin-

cipal vectors.

in total. Some images in Scene 15 database are illustrated in Fig. 5. The dataset
is challenging compared to the above ORL and Yale-B dataset because the intra
class variance is large. To extract the features to express the holistic content of
scene image, GIST descriptor [28] is adopted on all the images. Following the
common practice, 100 images are selected randomly per category for training
and the remaining ones are treated as test set. The accuracy is reported with
different number of principal vectors in Fig.6. k and A are set as 8 and 0.038,
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Fig. 5. Some illustrations of Scene 15 database [25].

Table 5. Classification accuracy comparison on Scene 15 Database with number of
principal vector is 60 and k =8

A 0.02 |0.03 |0.04 |0.05 |0.06
LPKPCA % | 60.35|60.27 | 60.81 | 60.49 | 60.03
KPCA % 59.50 |59.50 |59.50 | 59.50 |59.50

Table 6. Classification accuracy comparison on Scene 15 Database with number of
principal vector is 60 and A = 0.038

k 4 5 6 7 8 9
LPKPCA % | 60.29 | 60.23 | 60.41 | 60.57 | 61.05 | 59.86
KPCA % 59.50 | 59.50 |59.50 | 59.50 |59.50 |59.50

respectively, by cross-validation. We also show the performance comparison with
different A in Tables5 and 6. We can see that the performance of LPKPCA is
also better than KPCA.
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Fig. 6. Classification accuracy on Scene 15 Database with different number of principal
vectors.

6 Conclusion

In this paper, a novel kernel PCA approach, which is called Locality Preserv-
ing Kernel PCA (LPKPCA), is proposed to simultaneously reduce the recon-
struction error in the projected feature space and preserve the neighborhood
relationship in the original space. The formulation of LPKPCA is given and
experimental results show that LPKPCA achieves better performance on ORL
Face Database, Yale Face Database B and Scene 15. The gain in performance
results from taking into consideration the intrinsic geometry structure of the
data. In the future, we intend to combine the sparseness and locality constraint
together to seek for better methods for dimensionality reduction in image under-
standing and pattern recognition.
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