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Abstract. Background prior has been widely used in many salient
object detection models with promising results. These methods assume
that the image boundary is all background. Then, color feature based
methods are used to extract the salient object. However, such assump-
tion may be inaccurate when the salient object is partially cropped by
the image boundary. Besides, using only color feature is also insufficient.
We present a novel salient object detection model based on background
selection and multi-features. Firstly, we present a simple but effective
method to pick out more reliable background seeds. Secondly, we utilize
multi-features enhanced graph-based manifold ranking to get the saliency
maps. Finally, we also present the salient object segmentation via com-
puted saliency map. Qualitative and quantitative evaluation results on
three widely used data sets demonstrate significant appeal and advan-
tages of our technique compared with many state-of-the art models.

Keywords: Salient object detection + Graph-based manifold ranking -
Multi features - Salient object segmentation

1 Introduction

Salient object detection aims to detect the most salient attention-grabbing object
in a scene and the great value of it mainly lies in kinds of applications such as
object detection and recognition [1,2], image and video compression [3,4], object
content aware image retargeting [5,6], to name a few. Therefore, numerous salient
object detection models have been developed in recent years [7,8]. All these
models can be categorized as either bottom-up or top-down approaches. Bottom-
up saliency models are based on some pre-assumed priors (e.g., contrast prior,
central bias prior, background prior and so on). On the other side, top-down
models usually use high-level information to guide the detection. We only focus
on bottom-up models in this work.

For bottom-up salient object detection models, the priors play a critical role.
The most widely used is the contrast prior and often measured with respect
to local [9-11] or the global fashion [12-14]. Motivated by the early primate
vision, Itti et al. [11] regard the visual attention as the local center-surround
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difference and present a pioneer saliency model based on multi-scales image
features. Goferman et al. [9] take advantage of multi-clues including local low-
level features, high-level features, and global considerations to segment out
the salient objects along with their contexts. In [10], Jiang et al. utilize the
shape information to find the regions of distinct color by computing the differ-
ence between the color histogram of a region and its adjacent regions. Due to the
lack of higher-level information about the object, all these local contrast based
models tend to produce higher saliency values near edges instead of uniformly
highlighting the whole salient object.

On the other side, global contrast based methods take holistic rarity over the
complete image into account. The model of Achanta et al. [12] works on a per-
pixel basis through computing color dissimilarities to the mean image color and
achieves globally consistent results. They also use Gaussian blur to decrease the
influence of noise and high frequency patterns. Cheng et al. [13] define a regional
contrast-based method by generating 3D histograms and using segmentation,
which evaluates not only global contrast differences but also spatial coherence.
Model [14] measures global contrast-based saliency based on spatially weighted
feature dissimilarities. However, global contrast-based methods may highlight
background regions as salient because they do not account for any spatial rela-
tionship inside the image.

The central-bias prior is based on a well-known fact that when humans take
photos they often frame the interested objects near the center of the image. So
Judd et al. [15] present a saliency model via computing the distance between
each pixel and the coordinate center of the image. Their model presents a better
prediction of the salient object than many previous saliency models. Later, both
Goferman et al. [9] and Jiang et al. [10] enhance the intermediate saliency map
with weight implemented via a 2D Gaussian fallof positioned at the center of
the image. This prior usually improves the saliency performance of the most
the natural images. However, the certral-bias prior is not always true when the
photographer faces a big scene or the objects of interest cannot be located near
the center of image.

Besides above two commonly used priors, several recent models also utilize
the background prior, i.e., image boundary should be treated as background, to
perform saliency detection. Wei et al. [16] propose a novel saliency measure called
geodesic saliency, which use two priors about common backgrounds in natural
images, namely boundary and connectivity priors, to help removing background
clutters and in turn lead to better salient object detection. Later, Yang et al.
[17] utilize this background prior and graph-based manifold ranking to detect
the salient object and get promising results. However, they assume that all the
four image sides are background. This is not always true when the image is
cropped. Recently, Zhu et al. [18] propose a novel and reliable background mea-
sure, called boundary connectivity, and a principled optimization framework to
integrate multiple low level cues. They do not treat all the image boundaries
as background.However, their method is too complicated. Unlike all these afore-
mentioned methods, our model not only adaptively treat the image boundaries
as background or non-background, but also is very easy to be implemented.
Figure 1 gives an overview of our framework.



Robust Salient Object Detection and Segmentation 273

Background
selection

Saliency map via Salient object
graph-based manifold segmentation
ranking

Fig. 1. Overview of our model. Given input image, we first over-segment the image into
superpixels. Then we adaptively select the background superpixels and compute the
saliency via multi-features enhanced graph-based manifold ranking. Finally we present
the salient object segmentation.

The contributions of this paper are three-fold:

e We adaptively treat the four image boundaries as background. A simple but
effective method is proposed to adaptively treat the boundary pixels as back-
ground and non-background pixels.

e We not only use the color information, but also utilize the variance and his-
togram features in multi color spaces (LAB and RGB) to enhance the detec-
tion performance.

e We present a simple but effective salient object segmentation via computed
saliency map.

The rest of this paper is organized as follows. In Sect. 2, we first give a detailed
description of graph-based manifold ranking, and then present our proposed
model. Then, in Sect.3, we provide a qualitative and quantitative comparison
with previous methods. We will present application of salient object detection:
salient object segmentation in Sect. 4. Finally, we conclude with a short summary
and discussion in Sect. 5.

2 Robust Salient Object Detection

In 2004, Zhou et al. [19,20] propose a graph-based manifold ranking model,
a method that can exploit the intrinsic manifold structure of data. It can be
regarded as a kind of semi-supervised learning problem. We present a robust
salient object detection method via adaptive background selection and multi-
features enhancement. We first give a brief introduction to the graph-based
manifold ranking, and then present the details of our proposed method.
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2.1 Graph-Based Manifold Ranking

Given a set of n data points X = {z1, 22, ..., %4, ..., Ty, }, with each data z; € R™,
the first ¢ points {z1, 2, ..., x4} are labeled as the queries and the rest points
{Z¢+1, ..., xn} are unlabelled. The ranking algorithm aims to rank the remaining
points according to their relevances to the labelled queries. Let f: X — R"
denotes a ranking function which assigns to each data point x; a ranking value f;.
We can treat f as a vector f = [f1, f2, ..., fn]T. We can also define an indication
vector y = [y1, Y2, -, Yn] T, in which y; = 1 if z; is a query, and y; = 0 otherwise.

Next, we define a graph G = (V, E) on these data points, where the nodes V
are dataset X and the edges E are weighted by an affinity matrix W = [w;;]nxn.
Give G, the degree matrix is denoted as D = diag{d11, daa, ..., dnn }, where d;; =
2 i1 Wij-

According to Zhou et al. [20], cost function associated with the ranking func-
tion f is defined to be

Q) =5 wll et = il I wl?)
i 33

i,j=1 i=1

where the regularization parameter p > 0 controls the balance of the first
term (smoothness constraint) and the second term (fitting constraint, containing
labelled as well as unlabelled data.). Then the optimal ranking f* of queries is
computed by solving the following optimization problem:

£ = argmin Q(f) @

The trade-off between these two competing constraints is captured by a pos-
itive parameter p and usually set to be 0.99 to put more emphasis on the label
consistency. The solution of Eq. (2) can be denoted as

Jr=(-as) ™y (3)

where [ is an identity matrix, and S = D=WD~? is the normalized Laplacian
matrix, &« = 1/(1 + p). The detailed derivation can be found in [20].

This ranking algorithm indicates that the salient object detection model
should consist of two parts: graph construction and ranking with queries. In
Sect. 2.2, we present our multi-features enhanced graph construction and then
in Sect. 2.3, we give the details of our adaptive background selection and saliency
ranking.

2.2 Multi-Features Enhanced Graph Construction

To better exploit the intrinsic relationship between data points, there are two
aspects should be carefully treated in graph construction: graph structure and
edge weights. We over-segment input image into small homogeneous regions
using SLIC algorithm [21] and regard each superpixel as a node in the graph G.
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Fig. 2. An illustration of graph construction.

For graph structure, we take into account the local smoothness cue (i.e., local
neighboring superpixels are more likely to belong to the same object) and follow
two rules. Firstly, each node is not only connected with its direct adjacent neigh-
boring nodes, but also is connected with those nodes sharing common boundaries
with its neighboring nodes. Secondly, the nodes on the four image sides should
be connected together. Figure 2 gives an illustration of graph construction.

After modelling the graph structure, the very core problem is how to get the
edge weight between any pairwise nodes given input data. The color information
has been shown to be effective in saliency detection [7,12]. So most models only
adopt color information to generate the edge weights. However, there are other
features can be utilized to improve the performance. We employ more features:
color, variance and histogram feature. We denote the edge weight as following

—( Cc(;’g’"j) + co (i) + cp(risry) )

wij = e c v 0}21 (4)

where 7; and r; denote the superpixel region ¢ and j respectively. c.(r;,7;),
¢y (r4,7;) and ¢ (r;, rj) represent the corresponding color, variance and histogram
feature difference between region r; and r; respectively. o., o, and o}, are feature
parameters controlling the strength of the corresponding weight and we take 5,
2 and 2in all experiments. The color feature is defined as

ce(ri, ) = llee(rs) — ce(ry)II? ()

where c.(r;) and ¢.(r;) denote the mean of region r; and r; respectively in Lab
color space.

Generally speaking, the color distributions of image regions are independent
of each other with different variances, so we should also take advantage of the
variance information. We define the variance feature difference as

llee(ri) — ce(r)I”

\/05(7'1')_’_”%(”)_,[_6

n(r;) n(r;)

(6)

cy(riysj) =

where o, (r;) and o,(r;) are corresponding computed regional variance. n(r;)
and n(r;) are number of pixels in the regions r; and r; respectively. € is a small
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Fig. 3. An illustration of the effectiveness of multi features. (a) Input image, (b)
Ground-truth, (c) Result of GMR [17], (d) Result with color and histogram features,
(e) Result with color and variance features, (f) Our result with all three features.

number to avoid arithmetic error. Note that we also take the region size into
account. This is performed in RGB color space.

For histogram feature, we utilize x? distance instead of simple Euclidean
distance to define the disparity between two histograms as suggested in [22].
The histogram feature is defined by

cn(ri,ry)

d
u ha(r;))?
Z T2 @)

k::l

NJM—\

where hy(r;) denotes the k-th component of the color histogram of region r;,
d denotes the number of component in the histogram, we take d = 256 in this
work for simpleness, however, d can be much more smaller in order to improve
the computational efficiency. This is also performed in RGB color space.

All these three features are normalized to [0, 1]'. We keep all other parame-
ters unchanged, and add feature(s) to compute the saliency map and give an
comparative example in Fig.3. We can see that these two additional features
can both improve the saliency detection performance.

2.3 Saliency Ranking via Adaptive Background Selection

Most background prior based models treat all the four image sides as background
by assuming that photographers will not crop salient objects along the view

! For different channels in LAB and RGB color spaces, we perform the calculation
separately and add the results together to get the corresponding feature descriptor.
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Fig. 4. Visual comparison. (a) Input image, (b) Ground-truth, (c¢) Saliency map of
GMR [17], (d) Bi-segmentation of (c), (e) Our saliency map, (f) Bi-segmentation of
(e). Note that our saliency map is more robust than that of GMR [17].

frame. However, this is not always true. Figure4 shows a special case and the
visual comparison of our model and [17]. We can see that when the salient
object touches the image border, the detection result of [17] is not so robust
anymore. While our proposed method can handle this drawback. See Algorithm 1
and Algorithm 2 for our adaptive background selection and saliency ranking
respectively.

Algorithm 1. Contrast based adaptive background selection

Input: All the n superpixels located on the image boundary
1: Concatenate the superpixels along four image sides into one
vector.
2: Compute the contrast between one superpixel and all other
superpixels as following :

Contrast(r;) = Y7 (ce(r:) — ce(r)))?
where ¢(r;) and c.(r;) denote the mean of superpixel region r;
and r; respectively in LAB color space.
3: Take the superpixels whose contrast is smaller than adaptive
threshold ¢ as background. We take

¢ = 0.5 Contrast(ry,re, ..., Ty),

i.e., half mean of all contrast.
Output: Selected background superpxiels.
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Algorithm 2. Robust salient object detection

Input: An image and its corresponding superpixel image
1: Construct the graph with each superpixel as a node and compute
its weight matrix by Eq. 4.
2: Form the indicator y according to our adaptive background selection.
3: Compute the saliency map by Eq. 3 for each side and integrate
them into one single map according to
Sback = St X Sb X Sl X ST
where S; denotes the complementary saliency map computed by taking
top image side as query. Others are defined the same way.
4: Bi-sement Spqcr using adaptive threshold and get the foreground
queries to form another indicator vector and compute the final
saliency map by Eq. 3.
Output: Final saliency map.

3 Experiments

In this section, we extensively evaluate our model and make quantitative evalua-
tion and qualitative evaluation on three widely used datasets SOD [23], ECSSD
[24] and ASD [12].

We compare our approaches with twenty state-of-the-art salient object mod-
els on these three widely used datasets. These twenty models are: CA [9], CB
[10], CHM [25], FES [26], FT [12], GMR [17], GS [16], HDCT [27], HS [24], MC
[28], MSS [29], PCA [30], SF [31], SVO [32], SWD [14], BM [33], LRMR [34],
GB [35], SR [36], IT [11].

3.1 Quantitative Evaluation

For quantitative evaluation, we evaluate the performance using three commonly
used metrics including the PR (precision-recall) curve, F-Measure and MAE
(mean absolute error).

PR curve is based on the overlapping area between pixel-wise annotation
and saliency prediction. F-Measure, jointly considers recall and precision. We
also introduce the mean absolute error (MAE) into the evaluation because the
PR curves are limited in that they only consider whether the object saliency is
higher than the background saliency. MAE is the average per-pixel difference
between the pixel-wise annotation and the computed saliency map. It directly
measures how close a saliency map is to the ground truth and is more meaningful
and complementary to PR curves.

Figures 5, 6 and 7 show the PR curves, F-Measures and MAEs of all compared
and our models on these three data sets. We note that the PR curve of proposed
method outperforms PR curves of all other methods on SOD dataset. On ECSSD
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Fig.5. (a), (b): precision-recall curves of different methods. (c), (d): precision, recall
and F-measure using an adaptive threshold. (e), (f): MAE. All results are computed
on the SOD dataset. The proposed method performs well in all these metrics.
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Fig. 6. (a), (b): precision-recall curves of different methods. (c), (d): precision, recall
and F-measure using an adaptive threshold. (e), (f): MAE. All results are computed
on the ECSSD dataset. The proposed method performs well for all these metrics.
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Fig. 7. (a), (b): precision-recall curves of different methods. (c), (d): precision, recall
and F-measure using an adaptive threshold. (e), (f): MAE. All results are computed
on the ASD dataset. The proposed method performs very well.

and ASD data sets, our model is among the best performance models. For F-
Measure, our model gets the best performance on all data sets. And for MAE,
our model has the smallest value on all these three data set and this indicates
that our saliency maps are closest to the ground truth masks.

3.2 Qualitative Evaluation

For qualitative evaluation, the results of applying the various algorithms to rep-
resentative images from SOD, ECSSD and ASD are shown in Fig.8. We note
that the proposed algorithm uniformly highlights the salient regions and pre-
serves finer object boundaries than all other methods. It is also worth pointing
out that our algorithm performs well when the background is cluttered.

4 Salient Object Segmentation

n [37], Cheng propose an iterative version of GrabCut, named SaliencyCut,
to cut out the salient object. However, their work is based on predefined fixed
threshold and is a little bit time consuming. We just use the adaptive threshold
to segment the salient object. We first define the average saliency value as

Salmean = — Z Z S(i,7) (8)
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Fig. 8. Visual comparison of proposed model and twenty other methods. From top to
bottom and left to right are input, ground truth and results of BM [33], CA [9], CB
[10], CHM [25], FES [26], FT [12], GB [35], GMR [17], GS [16], HDCT [27], HS [24],
IT [11], LRMR [34], MC [28], MSS [29], PCA [30], SF [31], SR [36], SVO [32], SWD
[14] and ours.
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where m and n denote image rows and columns respectively. Then the salient
object mask is denoted as
1, S(i,7) >= salmean

9
0, S(Z,]) < Salmean ( )

Salmask(i7j> = {

The final segmented salient object is defined as
Sobj =1.x% Salmask (10)

where .x denotes pixel-wise multiplication. See Fig.9 for some segmentation
examples.

Fig. 9. Examples of salient object segmentation. (a) input images, (b) saliency maps,
(c) segmented salient objects.

5 Conclusion

In this paper, we address the salient object detection problem using a semi-
supervised method. We tackle the failure case when the salient object touches
the image border by adaptive background selection. We also take more features
into account to better exploit the intrinsic relationship between image pixels.
We evaluate our model on large datasets and demonstrate promising results with
comparisons to twenty state-of-the-art methods. Finally, we present a simple but
effective salient object segmentation method.
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