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Abstract. The three-dimensional interaction has been widely used as a
natural and direct way in Human-Computer Interaction (HCI). In this
paper, we propose a novel 3D interaction method by recognizing Chinese
character written in the air. Firstly, the moving trajectory of fingertip is
precisely captured using the Leap Motion Controller. Then, we describe
the trajectory by combining the directional feature and direction-change
feature. We construct a dataset called IAHCC-UCAS2014, which con-
tains 3755 classes of Chinese characters and each character class has
65 samples. In the evaluation experiments, the proposed method shows
promising recognition performance with little increase in computational
cost.
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1 Introduction

To achieve high recognition accuracy and system efficiency in online handwrit-
ten character recognition (OHCCR) systems, many features and classifiers have
been proposed [1], and some satisfying experimental results have been obtained
on the existing datasets [2,3]. Recent technologies in vision sensors are capa-
ble of capturing 3D finger positions and movements. To chase a more friendly
experience of writing, the conception of in-air writing has been proposed and sev-
eral writing-in-the-air systems [4-6] have been developed, which brings people’s
writing behavior to the 3D space now.

Feng et al. [4] proposed a finger-writing character recognition system based
on the Kinect sensor. By using the depth information and clustering algorithms,
the fingertip is located and then the fingertip’s trajectory is captured. This app-
roach has gained high tracking accuracy in the dataset including digits and some
Chinese characters. In [5], the algorithms for fingertips’ detection and tracking
are further improved. Jin et al. [6] proposed a digit string recognition method,
where the trajectory captured by Kinect is first over-segmented and then recog-
nized by a path-searching algorithm.

The Leap Motion controller is a new generation of 3D interaction sensor
which focuses on the interaction by human hands. It can accurately track the

© Springer International Publishing Switzerland 2015
Y.-J. Zhang (Ed.): ICIG 2015, Part III, LNCS 9219, pp. 160-168, 2015.
DOI: 10.1007/978-3-319-21969-1_14



Recognition of In-air Handwritten Chinese Character Based on Leap Motion 161

movement of hands and fingertips in a three-dimensional space [7] and it pro-
vides application programming interfaces (API) for related interaction. The Leap
Motion Controller has been applied into many fields [8-10] and these applica-
tions demonstrate the high performance and practical value of it. In our work,
we apply the Leap Motion Controller to provide precise and real-time fingertip
positions in its 3D workspace. Actually, writing with the Leap Motion Controller
is very user-friendly owing to its excellent performance for fingertip detection.
In the proposed system to recognize handwritten characters in the air, users can
write a Chinese character in the air by moving their fingers relatively fast and
fluently.

Compared with traditional OHCCR, in-air handwritten character recognition
(TAHCCR) is technically more difficult due to two reasons: First, in-air writing
behavior is more likely to be casual which can result in great variation and
distortion of the character’s structure. Second, there is no pen-up or pen-down
information when writing in the air, because the whole character is written by
one single stroke. Examples of the handwritten SCUT-COUCH2009 dataset [2]
and some in-air written samples from our TAHCC-UCAS2014 dataset are shown
in Fig. 1.

To overcome the challenges in in-air handwritten Chinese character recogni-
tion, a more robust feature is needed. We exploit the 8-directional feature [11]
widely used in online handwritten Chinese character recognition, since the two
problems have a lot in common. The 8-directional feature can reflect writing
direction for the input Chinese character, and is relatively robust. In [12], a
similar directional feature is introduced and in [13] the 8-directional feature is
improved. In [14,15] the direction-change feature is proposed and combined with
the 4-directional feature. The direction-change feature reflects the direction vari-
ation during the writing process. This paper combines the 8-directional feature
with the direction-change feature into our recognition system for IAHCCR.

(a) handwritten data for Chinese “Shi”. (b) in-air handwritten data for “Shi”.
Fig. 1. Examples of handwritten and in-air handwritten Chinese characters

The rest of this paper is organized as follows: First, we introduce how the
trajectory was captured using the Leap Motion Controller. Second, we describe
our combined feature using 8-directional feature and direction-change feature.
Third, the framework of our recognition system is introduced. Finally, we test
the proposed feature on our TAHCC-UCAS2014 dataset and compare the per-
formance with 8-directional feature and the origin direction-change feature.
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2 Writing Trajectory Capturing

In our system, by using the Leap Motion Controller, users can move their fingers
casually in a customized 3D space. Compared with the Kinect sensor, the Leap
Motion Controller has a higher tracking accuracy for fingertips. So the proposed
method makes it possible for users to just write by their fingertips with little
body movement. Also, owing to the real-time performance of the Leap Motion
Controller, users can write relatively fast and naturally, which is hard to achieve
in systems based on Kinect sensors. The writing progress by our system can be
seen from Fig. 2, where the user is writing the Chinese character of “Shi”.

Fig. 2. A user writing a Chinese character “Shi” using our writing-in-the-air system

The 3D writing trajectory can be captured by tracing the movement of the
writing fingertip based on the APIs of the Leap Motion Controller. Further, the
2D writing trajectory is obtained by projecting the 3D trajectory onto a screen
plane. By adjusting the parameters of Leap Motion Controller, the stability and
accuracy of writing trajectory can be guaranteed.

In practice, we find the detection accuracy of the Leap Motion is so high
that a slight shake of fingertip can cause apparent structure jitter in the 2D
trajectory. So we apply the classic Kalman Filter to smooth the obtained 2D
tracking trajectory to reduce the distortion caused by slight shake.

In OHCCR, the imaginary stroke refers to manual straight lines between the
end point of one stroke and the start point of its next stroke. In our writing-
in-the-air system, the character is always written by one single stroke, so the
imaginary stroke is already there for recognition. It should be also noted that
the sampling points are usually dense in OHCCR problem, but in our system
they can be sparse, since some users can write really fast. So we join the sampling
points using Bresenham’s line algorithm to construct the final 2D trajectory.

3 Combined Directional Feature

3.1 8-Directional Feature

After several pre-processing steps, each testing sample is normalized into a fixed
size of 64 x 64, and then the 8-directional feature is extracted. Concretely, for a
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given point P; = (z;,y;) in the the sequence of sampling points P;,j =1,2,---,
let V'; denote its direction vector, V'; is defined as follows:

=5 . .
PPy If P;is a start point

V=4 Pj_1Pj11 If Pjis a non-end point (1)
_-

P;_1P; If P;is an end point

(a) Eight direction axes for 8- (b)An mapping example of the direction vec-
directional feature. tor.

Fig. 3. Axes and mapping example of the direction vector

Then its normalized V ;/||V ;|| is projected to two directions from eight direc-
tions as shown in Fig. 3(a). One is from the direction set {D1, D3, D5, D7} and
denoted by d7, and the other is from set {D2, D4, D6, D8} and denoted by d5.
Figure 3(b) shows an example, where d} = D1 and d? = D8 for the highlighted
sampling point. The corresponding mapping values a} and a? for directions d;
and dj is computed by

a; — |dw ; dy|7
(2)
o2 V2 - min(d,, d,)
J s ’

where d, = |vj41 — 21|, dy = |yj41 —yj-1], and s = ,/d2 + dZ for a non-

end point. Further, eight directional pattern images {Bq = [fa(z,y)],z,y =
1,--+,64,d = D1,--- D8} are generated by setting far (zj,y;) = aj and
fd? (xj,y5) = a?. All the remaining values for f;(z,y) are set as 0s. The eight
directional pattern images are thickened by a maximum filter and then smoothed
by a Gaussian filter G(z,y) = 5 exp[—%]
the plane wave of the original Gabor filter.
Finally, each directional pattern image is divided uniformly into 8 x 8 grids.
In each grid, the values are summed up to get a feature value. Since we have 8
images and each image has 64 grids, we obtain 8 x 64 = 512 dimensional feature
vector. A nonlinear transformation (the square root function) is applied to form

the final 8-directional feature vector.

, where X is the wavelength of
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3.2 Direction-Change Feature

The direction-change degree and the directions after direction change are
obtained from the normalized on-line data by using the direction-change fea-
ture. For each sampling point P;, the direction-change degree is measured by

. . . . . . Pa——
the absolute value of the difference in direction from direction vector P;_; P; to

the next direction vector P;P;41. The direction-change feature’s degree (Fdc),
is calculated by

| DY
Fde="——+1 3
c= 0 T 3)

where DO (—180° < D@ < 180°) is the angle of the direction change between
Pj—lpj and Pij+1.

Just as the 8-directional feature, the Fdc of each sampling point is also
mapped to eight directions as Fig. 3(a). However, in direction-change feature,
each Fdc is mapped to only one direction dj* from D1, D2, ..., D8. Concretely,
it is the direction which the greater value between a;
ilarly, 8 direction-change pattern images {Bd = [fd(x, ), x,y=1,2,...,64,d =

D1,... D8} are generated by setting fap (z;,y;) = max(a},a?) and the remain-

and a7 corresponds to. Sim-

32 %
ing values as 0s. Then, the same computation is carried out on the generated

direction-change pattern images to obtain the 512-dimensional direction-change
feature vector.

We combine it with the 8-direction feature to form 1024-dimensional com-
bined feature vector. Figure4 shows 16 pattern images extracted from the Chi-
nese character “Shi”, where the first row represents the eight directional pattern
images and the second row represents the direction-change pattern images.

D1 D2 D3 D4 D5 Dé D7 D8

Fig. 4. Examples of pattern images for the directional and direction-change feature

4 Framework of Our Recognition System

We have implemented an recognition system for the in-air handwritten charac-
ters. Our system contains the following three stages of computations.
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(1)

Pre-processing. A series of pre-processing steps are used to reduce the noise
and normalize the trajectory shapes of input characters to make the samples
easier to recognize. First, we normalize the X-coordinates and Y-coordinates
of the sampling points to a fixed size of 64 by 64 by linear mapping. Then, the
coordinates of each sampling point are smoothed by computing the average
of its neighbors, and we remove some redundant points to ensure that only
one point left in the same position of the trajectory. Further, we exploit the
dot density shape normalization method [16] to adjust the trajectory shape
of the input Chinese character. Finally, the re-sampling step is carried out
to generate a sequence of equidistance points.

Feature Extraction. After the preprocessing step, we can extract the 1024-
dimensional combined features. The related computational details have been
presented in Subsects. 3.1 and 3.2.

Two-Level Classifier. To make the classification more efficient, we exploit the
Linear Discriminant Analysis (LDA) to learn a projection subspace so as to
project the feature vector to a low-dimensional subspace. The projection axis
learned by LDA helps to make prototypes more separable in the subspace. In
LDA, we define within-class and between-class scatter matrices by Sy and
Sp respectively and also define the optimal projection axis (discriminant
vector) by w. We then estimate w by maximizing the Fisher criterion:

J(w) = tr((w! S,w) Y (w! Spw)) (4)

where tr(-) denotes the trace of matrix. This criterion considers the within-
class and between-class scatter matrices and helps to make the data sepa-
rable in the projected subspace. It can be shown that w is the solution to
the generalized eigenvector problem Spw; = \;Sww;,i = 1,2,... where w;
denotes the eigenvector for the ith eigenvalue A;. By using LDA, the dimen-
sion of the feature space is reduced while different classes are separated. Also,
the dimension reduction makes the following computation cost of training
process decrease.

In our system, we design a two-level classifier to achieve both accuracy and

efficiency. Our classifier is based on the Nearest Prototype Classifier (NPC) rule.
For each unknown pattern, we label it by the class of the nearest prototype.
The metric we use between samples and the prototypes is the the Euclidean
distance. The first-level classier is the coarse classifier which aims to remove
most impossible candidate classes with low computation cost. In the first level
classifier, the combined feature vector is projected to 20-dimensional, and the
nearest 450 prototypes are retained. Afterwards, in the second level classifier, we
project the combined feature vector to 160 dimensional subspace, and then the
distances are computed between the testing sample and prototypes retained by
the first-level classifier. Finally, we sort these prototypes by the corresponding
distances and generate the candidate label list.
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5 Experimental Results

We evaluate the performance of the proposed feature on the IAHCC-UCAS2014
dataset which is constructed by ourself, since there is no related dataset pub-
licly available. The dataset includes 3755 classes of Chinese characters, and
each of them has 65 samples. The 3755 classes include all Chinese characters
in GB2312-80 level-1 set, which makes our dataset challenging since works of
other researchers [4,5] only cover limited number of classes in Chinese charac-
ters. Some of the samples in our dataset are shown in Fig.5. As described in
the previous section, it can be seen from Fig.5 that the TAHCCR is technically
difficult due to great variation of character’s structure.

Fig.5. Some in-air handwritten chinese characters from our IAHCC-UCAS2014
dataset

To evaluate the classification performance, the recognition accuracy on the
testing data is of primary interest. We compare our recognition result with the
other two features. The 8-directional feature refers to the method in [11] and the
direction-change feature refers to the feature in [14]. The recognition accuracy
is calculated by

Ry = Np/N (5)

where Rj, denotes the top-k recognition accuracy of the system. For each testing
sample, we generate a candidate label list for it by the two-level classifier. The
top-k metric means we check candidate label list and find out if the right label
is included in the top k label of the list. The Nj denotes the number of testing
samples whose labels are properly included in the top-k candidate labels, while
the N denotes the total number of the testing samples. We compare the accuracy
of top 1, top 5, and topl0, which are metrics widely used to compare Chinese
character recognition performance. In our experiments, we randomly select 10
samples from each class as the testing samples and the remaining samples are
used for training. The experimental results are summarized in Table 1.

It can be seen from the table that the proposed feature obtained better
performance compared with the other two features according to top 1/5/10
metrics. It is also worth noting that the framework of our recognition system
achieves 90.6 % accuracy on the top 1 metrics when dealing with the OHCCR
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Table 1. Recognition accuracy comparison of three features on our in-air handwritten
Chinese character dataset

Methods Topl Topb Top10

direction-change | 66.68% | 83.36 % | 87.42 %
8-directional 68.81 % | 84.80 % | 88.52 %
Combined (Ours) | 69.67 % | 85.36 % | 89.08 %

using dataset of SCUT-COUCH2009 [2]. The relatively low accuracy on the
TAHCC-UCAS2014 dataset indicates that the TAHCCR is very challenging and
it needs more research efforts in the future.

Compared with the 8-directional feature, the proposed method seems to bring
more computational cost owing to combining the two features together. In prac-
tice, we apply the same pre-processing steps and direction vector extraction
process to the two features in our recognition system so that the time cost can
be reduced. We compare the time consumption (millisecond) during the feature
extraction step and the recognition step. The experiments are performed on a
desktop computer with 2.40 GHz CPU, and the recognition system is imple-
mented using MATLAB. It can been seen from Table 2 that our combined fea-
ture results in little time consumption. Regarding the applied background of the
TAHCCR, the increase of time consumption is negligible.

Table 2. Comparison of time consumption (millisecond) vs. 8-directional feature

Methods Extraction | Recognition | Total
8-directional 96.5 10.7 107.2
Combined (Ours) | 128.6 10.8 139.4

6 Conclusions

In this paper, we present a novel HCI interface for writing interaction. The writ-
ing behavior can be conducted in a 3D space and in a more natural and user-
friendly way by using the Leap Motion Controller. We then propose a combined
feature based on the 8-directional feature and the direction-change feature, and
apply them to our in-air handwritten character recognition system. The perfor-
mance of the combined feature is evaluated on our IAHCC-UCAS2014 dataset
and the experimental results show that the combined feature can achieve better
performance with reasonable computational cost.
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