
Distance Lower Bounding

Xifan Zheng(B), Reihaneh Safavi-Naini, and Hadi Ahmadi

University of Calgary, Calgary, AB, Canada
{xzheng,rei,hahmadi}@ucalgary.ca

Abstract. Distance (upper)-bounding (DUB) allows a verifier to know
whether a proving party is located within a certain distance bound. DUB
protocols have many applications in secure authentication and location
based services. We consider the dual problem of distance lower bound-
ing (DLB), where the prover proves it is outside a distance bound to
the verifier. We motivate this problem through a number of application
scenarios, and model security against distance fraud (DF), Man-in-the-
Middle (MiM), and collusion fraud (CF) attacks. We prove impossibility
of security against these attacks without making physical assumptions.
We propose approaches to the construction of secure protocols under
reasonable assumptions, and give detailed design of our DLB protocol
and prove its security using the above model. This is the first treatment
of the DLB problem in the untrusted prover setting, with a number of
applications and raising new research questions. We discuss our results
and propose directions for future research.

1 Introduction

Distance (upper) bounding (DUB) protocols have been widely studied in recent
years: a verifier V interacts with a prover P to obtain assurance that the prover
is at a distance at most B from the verifier. A DUB protocol was first proposed
in [3] to thwart relay attacks in authentication protocols, by using the location
as an unforgeable attribute of the prover. DUB protocols have been widely used
for proximity based authentication (e.g., passive keyless entry and start system
in modern cars [8]), proximity based control (e.g., implantable medical device
[15]), and Radio-Frequency Identification (RFID) authentication [1,18].

Secure DUB protocols estimate distance by measuring the round-trip time
between a challenge and its response, which are transmitted as light-speed elec-
tromagnetic (EM) signals. We refer to protocols that use this method for distance
estimation, as class EF (i.e., EM fast-exchange). In this paper, we consider the
dual problem of distance lower bounding (DLB), where a prover P wants to prove
its distance from a verifier V is higher than a bound B. DLB problem naturally
arises in application scenarios where privileges are given based on the distance of
the requester to a verifier. For example a company offering unrestricted Internet
access to games and entertainment software to employees, when they are outside
of main office area of the company campus (e.g., Google campus), and restricted
access when employees are within the main office area. Here the requirement is

c© Springer International Publishing Switzerland 2015
L.C.K. Hui et al. (Eds.): ICICS 2014, LNCS 8958, pp. 89–104, 2015.
DOI: 10.1007/978-3-319-21966-0 7

90 X. Zheng et al.

for employees to prove they are outside the main working area. A second sce-
nario is when the parking lot is divided into zones and parking charge depends
on the distance of the car to the main point of interest (e.g. discounted rate
will be given if users park their car at farer distance from the shopping mall
entrance). In both cases once the privilege is granted based on the distance,
one needs to use monitoring mechanisms such as continuous authentication to
ensure that the user stays within the claimed area. Embedding such authenti-
cation in streaming services such as games or music is straightforward. For the
latter scenario, one can use random scanning of the area to ensure correct claim.
Although determined users may be able to bypass the authentication, but they
will be inconvenient (e.g. move the car frequently) and also have to accept the
risk of detection and penalty.

Despite the relation between DUB and DLB and the fact that a successful
DUB protocol run proves an upper bound on the prover’s distance, its failure
does not say anything about the distance of the prover. None of the DUB proto-
cols protect against distance enlargement attack [6], where the malicious prover
enlarges the distance by delaying the response. Other applications of DUB pro-
tocol, such as using DUB protocols with multiple verifiers for secure positioning
[6], will also be vulnerable to distance enlargement attack. A second approach
would be to use Global Positioning System (GPS)[11] to determine the location
of the user. However one needs to trust the GPS measurements, which is known
to be vulnerable to attacks, such as GPS spoofing attack [21] where fake satellite
signals are used to modify the GPS location data. This solution also results in
privacy loss and so one needs to consider privacy enhancing GPS solutions that
require extra infrastructure.

Attacks on DLB protocols depend on the application scenario. In Sect. 2.1
we formalize attacks that are applicable in the above application scenarios, and
show that they are parallel to attacks on DUB protocols. DUB protocols have
been analyzed against three broad classes of attacks [20]: distance fraud (DF)
where the prover is malicious and wants to shorten its distance to the veri-
fier; collusion fraud (CF) where the prover is malicious and has a helper that
would assist them to shorten its distance to the verifier; and finally Man-in-the-
middle (MiM) attack where the prover is honest and is the victim of an external
attacker, who aims to shorten the distance between the honest prover and the
verifier. These classes include attacks such as impersonation, Mafia fraud and
Terrorist fraud, that are traditionally considered for DUB. We show that all
above attacks are directly applicable to our DLB scenario above and capture
important DLB attacks.

The solution to DLB problem depends on the trust assumption. DLB problem
in a setting that both the prover and the verifier are trusted, has been considered
in [19]. In this paper, we consider a setting where the prover is untrusted and
the verifier is trusted.

Here we unravel the main difference between DUB and DLB protocols:
DUB protocols have been primarily designed in the setting that an untrusted
prover interacts with a trusted verifier. However in Sect. 2.2, we prove that it

Distance Lower Bounding 91

is impossible to have secure DLB protocol if provers are fully untrusted (have
full control of the device hardware and software), which allows them to deviate
arbitrarily from the protocol. One however can have secure protocols by making
assumptions on the malicious prover’s access to the device and/or communica-
tion channel. Table 1 summarizes trust assumptions in the two problems.

Table 1. Impossibility result of DB protocols with different trust assumptions

Trust DLB problem DUB problem

Trusted prover Possible (e.g., secure ranging [19]) Possible a (c.f., DB [2])

Fully untrusted proverb Impossible (Sect. 2.2)

Partially trusted proverc Possible (Sect. 3, ΠDLB−BM)
a DUB protocols with fully untrusted prover are secure in other trust settings.
b Malicious prover with unrestricted control of the prover device hardware/software.
c Restricted Malicious prover who can run malicious software on the prover device.

Our Contribution. First, we initiate the study of distance lower bounding
(DLB) problem in a setting where the prover is untrusted using motivating
application scenarios. Second, we construct security model for DLB problem and
define three broad classes of attacks: distance fraud (DF), Man-in-the-middle
attack (MiM) and collusion fraud (CF). Third, we prove that security against
any of these attacks without making physical assumptions1 is impossible. In par-
ticular, a fully malicious prover can always succeed in the DF attack, and an
external attacker (without the cryptographic credentials) can always jam-and-
delay the signal between the verifier and the prover, and succeed in the MIM
attack. This also implies that a malicious prover that has a helper (CF) will
always succeed. Fourth, we construct a secure DLB protocols under reasonable
assumptions, and prove its security against DF, MiM and CF attacks. Finally,
we estimate time, memory and energy requirements of our protocol and conclude
with open questions and directions for future research.

Related Work. There is a large body of research on secure positioning and
distance estimation, including distance bounding protocols [2,3,10], positioning
techniques [6,11] and secure ranging protocols [19]. As we argued earlier, these
approaches are not directly applicable to the DLB problem in the setting that
the prover is not trusted. GPS systems use a set of satellites signals to determine
the location and are designed for non-adversarial setting, and so GPS systems
are vulnerable to signal spoofing attacks [21]; DUB protocols protect against
malicious provers trying to shorten the distance, but are in general vulnerable
to the distance enlargement attack [6]; secure positioning systems use a DUB
protocol with multiple verifiers to triangulate the prover’s location, but is also
vulnerable to distance enlargement attack, making positioning an insecure app-
roach for DLB; and secure ranging systems only consider non-adversarial setting
as well.
1 Including limited access to the device hardware, and/or the communication channel.

92 X. Zheng et al.

To our knowledge, this is the first paper to study DLB in a setting where
the prover is not trusted. Our approach to defining attacks, distance estimation,
and design of the protocol is inspired by the large body of literature on DUB,
in particular, [20] for formalization of attacks, and [2,10] for the design of the
protocol. The use of bounded-memory assumption for the prover’s device in the
context of secure code update had been considered in [13]. We refer to [22]. for
a complete review of relevant works.

2 DLB - Model and Impossibilities

We consider a multi-party system where a party U is modeled by a polynomially
bounded interactive Turing machine (ITM) with a certain location locU , and
some pre-shared key. A party can be a prover or a verifier. A prover P engages
in a two-party protocol with a verifier V , to prove the claim that its distance to
the verifier satisfies certain bound. Honest parties run predefined algorithms for
their side of the interaction. The verifier V is always honest. The prover however
may be malicious, in which case it is denoted by P ∗. A protocol instance defines
an experiment denoted by exp = (P (x; rP) ↔ A(rA) ↔ V (y; rV)). At the end of
a protocol instance, V has an output OutV , which is 1 or 0, showing acceptance
or rejection of the DLB, respectively. The prover does not have an output. A
participant in an experiment has a view consisting of all its inputs, coins, and
messages that it can see. The external attacker A may interact with multiple P s
and V s, and its view will include all these interactions.

Definition 1 (DLB Protocol). A Distance Lower Bounding (DLB) proto-
col is a tuple (Gen, P, V,B), where (x, y) ← Gen(1s, rk) is a randomized key-
generation algorithm that takes security parameter s and randomness rk and
outputs keys x and y; P (x; rP) is the prover’s ppt ITM that takes secret-key] x
and randomness rP ; V (y; rV) is the verifier’s ppt ITM taking secret-key y and
randomness rV , and B is a distance-bound. It satisfies two properties:

– Termination: (∀s)(∀R)(∀rk; rV)(∀locV) if (.; y) ← Gen(1s; rk) and (R ↔
V (y; rV)) is an execution of the protocol between the verifier and any
(unbounded) prover algorithm, V halts in Poly(s) computational steps;

– p-Completeness: (∀s)(∀locV ; locP such that d(locV ; locP) ≥ B) we have

Prrk;rP ;rV

[
Outv = 1 :

(x; y) ← Gen(1s; rk))
P (x; rP) ↔ V (y; rV)

]
≥ p

2.1 Attacks on DLB Protocols

We consider three classes of attacks: distance fraud (DF), man-in-the-middle
(MiM) attack, and collusion fraud (CF). In DF, P ∗, with d(P ∗, V) < B wants
to convince V that its distance is at least B. In MiM attack, an external attacker
who does not have the secret key, interacts with multiple P s and V s, and finally
succeeds in taking the role of a prover in a protocol instance (See Fig. 1a). In

Distance Lower Bounding 93

Fig. 1. MiM and CF attack in DLB

CF, P ∗ colludes with a helper to claim a longer distance to V (See Fig. 1b).
The collusion should not leak the prover’s secret key to the helper. The formal
definitions of the attacks are below.

Definition 2 (DF-resistance). A DLB protocol Π is α-resistant to distance
fraud if (∀s)(∀P ∗)(∀locv such that d(locv, locp∗) ≤ B)(∀rk), we have

Prrv

[
Outv = 1 :

(x, y) ← Gen(1s; rk)
P ∗(x) ↔ V (y; rv)

]
≤ α

where P ∗ is any dishonest prover. Because of the concurrent setting we effec-
tively allow polynomially bounded number of P (x′) and V (y′) close to V (y) with
independent (x′, y′).

Distance hijacking Definition 2 captures distance hijacking attack [7] against
DLB protocols. In this attack, P ∗ who is at distance < B, uses DLB communi-
cations of unaware honest provers at a distance ≥ B, to claim a distance ≥ B.

Definition 3 (MiM-resistance). A DLB protocol Π is β-resistant to MiM
attack if (∀s), (∀m, �, z) are polynomially bounded, (∀A1, A2) polynomially
bounded, for all locations such that d(locPj

, locV) < B, where j ∈ {m+1, · · · , �},
we have

Prrv

⎡
⎣Outv = 1 :

(x, y) ← Gen(1s)
P1(x)...Pm(x) ↔ A1 ↔ V1(y)...Vz(y)
Pm+1(x)...P�(x) ↔ A2(V iewA1) ↔ V (y)

⎤
⎦ ≤ β

Here probability is over all random coins of the protocol, and V iewA1 is the
final view of A1. The definition effectively allows polynomially bounded number
of P (x′), P ∗(x′), and V (y′) with independent (x′, y′), anywhere.

Mafia fraud and impersonation attack. Definition 3 covers Mafia fraud and imper-
sonation attack as special cases. In Mafia fraud, there is no learning phase. The
attacker interacts with an honest prover and makes the verifier to output accept.
That is, m = z = 0 and, � = 1 in the attack phase. In impersonation attack the
attacker uses multiple possibly concurrent interactions with the verifier to make
the verifier output 1. This attack is captured by letting � = m.

Definition 4 (CF-resistance). A DLB protocol Π is (γ, η) resistant to collu-
sion fraud if (∀s)(∀P ∗)(∀locv0) such that d(locv0 , locP ∗) < D), (∀ACF ppt.):

94 X. Zheng et al.

Prrv

[
Outv0 = 1 :

(x, y) ← Gen(1s)

P ∗(x) ↔ ACF ↔ V0(y)

]
> γ

implies existence of an extended2 MiM attack with m, �, z, A1, A2, Pi,
Pj , Vi that uses interaction with P and P ∗ both, and V in learning and satisfies

Pr

⎡
⎣Outv = 1 :

(x, y) ← Gen(1s)

P
(∗)
1 (x)...P (∗)

m (x) ↔ A1 ↔ V1(y)...Vz(y)
Pm+1(x)...P�(x) ↔ A2(V iewA1) ↔ V (y)

⎤
⎦ > η

Here, prover P (∗) is either P or P ∗ and we have d(locPj
, locV) < B, for j ∈

{m + 1 · · · �}. We implicitly allow a polynomial number of P (x′), P ∗(x′), and
V (y′) with independent (x′, y′) anywhere but honest participants are close to V0.

Terrorist fraud. In Terrorist fraud, P ∗, with d(P ∗, V) < B, gets aid from a
helper who does not have the secret key. Definition 4 captures terrorist fraud as
a special case by letting m = z = � = 1, by simply allowing A1 to run ACF and
succeed in impersonation and making V to accept.

2.2 Impossibility Results

We consider protocols in EF . Let C denote speed of light, tc and tr denote the
verifier’s clock readings, when the challenge is sent and the response is received,
respectively. If the received response is correct, the verifier calculates TΔ = tr−tc
to estimate the distance of the prover. Let Tproc denote the processing time of
the prover. The verifier estimates the prover’s distance D as

D =
(TΔ − Tproc)C

2
. (1)

Theorem 1. 1. Any DLB protocol in EF is vulnerable to DF if P ∗ has full
(hardware and software) control over the prover’s device.

2. No DLB protocols in EF can provide β-resistance with β < 1 to MiM attack
by an external attacker who can jam and delay messages to/from the prover.

3. For any DLB protocol in EF , P ∗ can succeed in CF with probability 1 and
negligible key leakage to the helper, if the helper has full access to the commu-
nication channels with P ∗, and P ∗ has full control over the prover’s device.
The result holds even if communication is only allowed in one direction
between the prover and the helper.

The proof sketch of Theorem 1 can be found in Appendix A.

2.3 Restricted DF, MiM, and CF

To remove the above impossibility results, we must use reasonable assumptions
(restrictions) on the adversary’s control of the device and/or the communication
channel. We refer to attacks under these conditions as restricted DF, MiM and
CF (rDF, rMiM and rCF), to emphasize extra assumptions are needed.

2 Because learning phase allows interaction with P ∗.

Distance Lower Bounding 95

Table 2. DLB security against the three attacks in different settings.

Attacks Assumptions

No Assumption Prover’s device Communication Combined

[BM] [OC] [BM + OC]

DF-security × � × �
MiM-security × × � �
CF-security × × × �

Notations. We use PD to denote the prover’s device, and rX[Y] to denote
restricted version of attack X, where X ∈ {DF,MiM,CF} and restrictions
are stated in Y . For example, rDF[BM] refers to the restricted DF attack, under
the restriction that PD has bounded memory.

Table 2 summarizes our impossibility results and shows assumptions used in
our construction in Sect. 3. The assumptions that we use for security against rDF
are, (i) P ∗ cannot access (read or write) the PD ’s read-only memory (ROM), and
(ii) PD has bounded memory (BM). Note that the first assumption still allows P ∗

to inject malicious codes into the device writable memory (RAM), and modify
correct execution of the protocol. The bounded memory assumption is a well-
established model in cryptography [4], and has been used in the design of security
systems [13]. To achieve the security against rMiM and rCF, in addition to the
above assumptions, we require the helper to have no On-line Communication
(OC) with the prover during the fast-exchange phase. In Sect. 3, we present a
DLB protocol that provides security against rDF, rMiM and rCF under the above
assumptions. Note that one may achieve rDF, rMiM and rCF resistance using
other assumptions that restrict the prover and the helper. For example instead
of assuming a root of trust on the PD, one may establish a dynamic root of trust
using software attestation. We give a software attestation-based DLB protocol in
full version [22]. This protocol also requires no online-communication assumption
for security against all attacks. We also provide an overview of security analysis
and implementation challenges of the protocol.

3 DLB Protocol Constructions

Assumptions and Attack Model. We assume the PD is a bounded memory device
with a protected memory (ROM), and a writable memory (RAM) of (fixed) L bit
size. We consider RAM as an array indexed from 1 to L. The DLB protocol code
is stored partly in ROM, denoted by DLBROM , and partly in RAM, denoted
by DLBRAM . We assume V has a shared key with the PD, and holds the same
DLB code. The secret key of PD is stored in ROM and is accessible only to the
code in ROM. We assume communication channel is noise free, although our
results are extendable to noisy communication by applying similar methods as
[17]. The adversary may store and run arbitrary malicious code on the RAM of
the PD, but is not able to tamper the hardware of the device.

96 X. Zheng et al.

Approach. Using Eq. 1, P ∗ at distance D can always delay the response by 2D′/C
second(s) to claim a longer distance D + D′. Let Tmax denote the maximum
expected response generation (processing) time by the verifier. (This can be
estimated for example, by measuring the processing time of a set of functional
devices, and choosing Tmax larger than all the measured times.) Knowing that
0 ≤ Tproc ≤ Tmax, the verifier uses the round-trip time TΔ to obtain the following
distance bounds.

D ≥ Dlower =
(TΔ − Tmax)C

2
(2)

We propose a protocol that assumes bounded memory for PDand enables V to
force an upper bound on the delay introduced by P ∗.

3.1 The Protocol ΠDLB−BM

The secret key consists of two binary strings, x, and x̂ in {0, 1}� respectively.
When clear from context, we refer to each string as key also. The protocol uses
a secure Pseudo Random Function (PRF) fx : {0, 1}2k → {0, 1}2n, x ∈ {0, 1}�,
and a secure keyed-hash function (Hx̂)x̂∈{0,1}� : {0, 1}∗ → {0, 1}b. Figure 2 shows
the messages communicated in the three phases of the protocol.

Phase 1: Initialization Phase. The prover generates a k-bit nonce Np and sends
it to the verifier. The verifier selects a k-bit nonce Nv and a 2n-bit random string
A, calculates M = A ⊕ fx(Np, Nv), and sends (M,Nv) to the prover. With this
information, the prover decrypts M to retrieve A = M ⊕ fx(Np, Nv) and stores
it in memory. A is the response table that will be used by the prover to respond
to challenges in Phase 2. Considering A = (a(1,j), a(2,j)), where j = 1 · · · n, as a
sequence of n bit pairs, we define a third string a(3,j) = a(1,j) ⊕ a(2,j) ⊕ x. a(3,j)

is computed at run time from the response table and so is not stored in memory.

Phase 2: Fast-exchange Phase. This phase proceeds in n consecutive challenge-
response rounds. In each round 1 ≤ i ≤ n, the verifier chooses a random challenge
ci ∈ {1, 2, 3} and sends it to the prover, immediately followed by a random eras-
ing sequence RSi of length zi. In Sect. 3.2, we will discuss how zi is determined.
The role of RSi is to prevent P from delaying the response to extend its distance.
On receiving the challenge ci, the prover will retrieve the response ri = a(ci,i).
When zi − 1 bits of RSi are received, the prover must send ri to avoid it being
overwritten by the final bit of RSi. The prover must also send the response
to the erasing sequence (also referred to as proof of erasure hi). By correctly
designing the computation of the hash, the correct proof of erasure will “prove”
that the prover has received and stored the full RSi and also has kept the code
DLBRAM intact (see Sect. 3.2 for details). In addition, the verifier records the
time difference TΔ,i between sending ci and receiving ri.

Phase 3: Verification Phase. The verifier checks the correctness of response ri and
proof of erasure hi for all rounds, i = 1 · · · n. It also verifies whether all response

Distance Lower Bounding 97

Fig. 2. Distance lower bounding protocol ΠDLB−BM

times are higher than a threshold θ, determined as follows. Let B denote the
distance-bound, and T (zi − 1) denote the time interval required by the prover
to receive zi − 1 bits. The acceptable round-trip time in round i must satisfy
TΔ,i ≥ θ = 2B

C + T (zi − 1), where C = 3 ∗ 108 is the speed of light (see Eq. 2).
The verifier outputs Outv = 1, if and only if all verifications and time checks
succeed. For simplicity, we assumed the communication channel is noiseless; thus,
a successful protocol requires all challenges to be correctly responded.

3.2 The Design of Erasure Sequence and Its Response

In fast-exchange round i, an erasure sequence RSi is sent to the P , and a correct
response is required. RSi is used to guarantee all the device memory is erased,
except DLB code and the part of the memory that is required for future response.
The length of the erasing sequence RSi must be chosen as follows.

Sequence Length. Let the sizes of the RAM and DLBRAM , be L and λ, respec-
tively. After the initialization phase, the 2n-bit random table A is stored in
the prover’s device memory. In Round 1, the erasing sequence RS1 must erase
L − λ − 2n unused memory, together with (a(1,1), a(2,1)), the two response bits
associated with round 1. In each subsequent challenge-response round i, two
additional bits (a(1,i), a(2,i)) of A will be used and so the length of the erasing
sequence must be increased by two bits. By induction, the random sequence RSi

in round 1 ≤ i ≤ n must have length L − λ − 2(n − i). Figure 3 shows the state
of the prover’s memory during protocol execution.

Response to the Erasure Sequence. The response in round i, denoted by hi,
must guarantee that the PD’s memory, contains the sequence RSi and DLB
code DLBRAM in full, and prove that the rest of the memory is erased. We
refer to this response as proof of erasure, as it is inspired by [13]. An efficient
approach is to send the cryptographic hash of RSi. To prevent the prover from
calculating the hash value in real-time without storing the whole RSi, we require

98 X. Zheng et al.

Fig. 3. Prover’s memory during protocol execution

the hash function to be applied to the received sequence in the reverse order
of arrival. That is, assuming RSi = (u1 · · · uzi

), the hash will be applied to
R̄Si = (uzi

· · · u1). This leaves the prover no choice other than waiting for the
last bit to arrive, before starting the calculation. To prevent P ∗ to simply store
the required hash value of the code, we use hi = Hx̂(R̄Si ‖ DLBRAM). In
this construction, R̄Si serves as a random nonce, and rules out the possibility
of P ∗ successfully passing the verification without storing the full DLBRAM .
The response calculation must be such that it cannot be delegated to a helper.
This requirement is for achieving security against rCF (Sect. 4). We thus use a
keyed-hash message authentication code, that requires the prover’s secret key.
The keyed-hash message authentication code uses a suitable cryptographic hash
function in a specific structure (e.g. HMAC), to construct a secure MAC, which
ensures the keyed-hash value cannot be forged.

4 Security Analysis of ΠDLB−BM

ΠDLB−BM protocol uses a PRF and HMAC, and we analyse its security against
a computationally bounded adversary. We note that it is possible to construct an
information theoretically secure version of this protocol, by replacing the PRF
and HMAC with appropriate primitives.

rDF[BM] resistance. In DF, a malicious prover P ∗ with d(locv, locP ∗) ≤ B,
wants to prove, its distance is higher than the bound. To achieve this goal,
P ∗ must send the correct response bit ri, and the correct proof of erasure hi,
both with sufficient delay, in all rounds 1 ≤ i ≤ n, of the fast-exchange phase.
Theorem 2 proves that the DF resistance of the DLB protocol ΠDLB , assuming
that a malicious code of length at least g bits is required.

Theorem 2. ΠDLB−BM is ε-resistant to rDF[BM], with ε = max
(
2−(g

2)2 ,

2−n(n+1)
)
, against any rDF[BM] attack that requires at least g-bit malicious code,

assuming Hx() is HMAC with a suitable cryptographic hash function.

Distance Lower Bounding 99

The proof is given in Appendix B. The theorem implies that attacks with
longer codes directly reduce the success probability of P ∗. This substantially
limits designing malicious codes. Note that for a 1-byte malicious code (g = 8)
leads to a success chance of ε < 10−6, for protocols with at least 4 rounds, n ≥ 4.

rMiM[OC] resistance. In rMiM[OC], the adversary cannot send or receive signal

to, or from the prover during the fast-exchange phase of the target instance. It
however has full communication power during other phases. We do allow the
adversary to jam communications between the verifier and provers in all phases
of the protocol (including fast exchange phase). The proof outline of the following
Theorem 3 is given in full version [22].

Theorem 3. The DLB protocol ΠDLB−BM is β-resistant to rMiM[OC]attack with
β = 2−l, by choosing b > l

n − 1.

rCF[BM, OC] resistance. Providing rCF security requires security against rDF and

rMiM, and so their associated assumptions. We consider rCF[BM, OC], and show
(i) this is a stronger attack than rDF[BM], and (ii) ΠDLB−BM is secure against
this attack (see Theorem 4 and its formal proof is given in [22]).

Theorem 4. The protocol ΠDLB is (γ, η)-resistant to rCF[BM, OC], with η = 2−l

and γ ≤ max{2− g+0.5
2

g+1
2 , 2−(n+0.25)(n+1)}, assuming malicious code length ≥ g.

5 Practical Consideration

The computation during the initialization and challenge-response is similar to
DUB protocols and so the excellent works [14] on the implementation of DUB
protocols can be used for performance estimates. However using erasing sequence
is unique to ΠDLB−BM . We estimate memory, time, and energy consumption
of ΠDLB−BM on a MicaZ sensor [12] using TinyOS. We assume the following
parameters: n = 10 rounds and k = 192 bits of nonces. We use HMAC-SHA1,
denoted by HMAC(.; .), for the PRF, fx, and generation of response for RSi,
Hx̂. That is, fx(Np, Nv) equals the first 2n = 20 bits of HMAC(x;Np||Nv) and
Hx̂(R̄Si||DLBRAM) equals HMAC(x̂; R̄Si||DLBRAM) of length b = 160 bits.

MicaZ Sensor Specifications. The device is supplied by two AA batteries and
includes an ATMEGA128 microcontroller and a TI-CC2420 radio transceiver.
The micro-controller provides 4 KB of writable memory (SRAM), with 4 KB of
EEPROM and 640 KB of write-protected flash memory. The radio transceiver
chip works for an RF band of 2.4–2.48 GHz and has 250 Kbps data rate.

Memory Consumption. HMAC-SHA1 takes code size of 4650 bytes [13] for
implementation on ROM, and around 124 bytes of RAM to load data structures
and stack. Considering l = 128 of secret key x, we have a reasonable estima-
tion of code size to be 10 KB. Although the EEPROM is only 4 KB large, the

100 X. Zheng et al.

ATMEGA128 architecture allows for ROM extension via the use of mask ROM,
locked flash memory, and fuse bits. Using these extension methods, one can build
read-only memory of size 10 KB or more. Note that in order to obtain maximum
energy consumption, we assume the size of DLBRAM to be 0.

Energy and Time Consumption. The writable memory in ATMEGA128
(when flash memory is write-protected) is the 4KB SRAM. For a n = 10 rounds
DLB protocol, the erasing sequence has length 32758 bits on average.

Communication Costs. The protocol requires the prover to receive Nv, M
in initialization phase and ci, RSi in each fast-exchange round, which gives
a total of lrx = len(Nv) + len(M) + 2n + n × len(RSi) = 326912 bits.
There is also requirement for sending Np, ri’s, and hi’s which sums to ltx =
len(Np) + n + n × len(hi) = 1802 transmission bits. Sending (resp. receiving)
a single bit requires Erx = 2.34μJ/b (resp. Etx = 4.6μJ/b) by the radio trans-
ceiver with typical power adjustments [5]. The total communication energy is
thus Ecomm = ltxEtx + lrxErx = 773mJ .

Computation Costs. The cost is highly due to computing hi. The rest is negligi-
ble. Extrapolating memory erasure phase figures in [13] to our 4KB-memory
device, we require less than 600 milliseconds time for computing proof of
erasure, which is quite practical. As for energy consumption, each HMAC-
SHA1 computation uses 3.5μJ per memory byte. Considering the memory size
and the number of rounds, the required computation energy is obtained as
Ecomp = 3.5 × 10−6 × 4 × 210 × 10 = 140mJ . Each AA battery is capable
of delivering 1.2 Amperes under an average voltage of 1.2 Volts for one hour
[5], implying the power supply of 10, 368J via the two batteries. This means the
proving device can be used for approximately 10,368

(773+140)10−3 > 11, 000 runs of
DLB protocol before the batteries die. This is quite a reasonable turn out for
power consumption. Although we should consider idle/sleep mode energy con-
sumption for more accurate analysis, this consideration will not cause a drastic
change on the above result.

6 Concluding Remarks

We motivated the novel security problem of DLB in the setting that the prover is
not trusted using a number of application scenarios, and gave formal definition of
security against three general classes of attacks (DF, MiM and CF). We proved
that it is impossible to provide security against any of these attacks without
making physical assumptions. Our results show that an adversary, even if it
is computationally bounded, will always succeed in DF if it has unrestricted
access to the prover’s device (fully untrusted prover), and will succeed in MiM
attacks, if it has unrestricted access to the communication channel. And security
against CF requires restrictions on both types of accesses. These results show
a fundamental difference between DLB and DUB problems. The only physical

Distance Lower Bounding 101

assumption in DUB protocols, is that the speed of EM signals is constant. In
DLB protocols however, in addition to this assumption, one must assume other
restrictions on the physical access of the adversary.

Our protocol provides security against rDF[BM], rMiM[OC], and rCF[BM, OC], using
reasonable assumptions that have been used in theoretical cryptography as well
as security systems in practice, including systems for secure code update [13].
Enforcing assumptions in practice would need special technologies such as tar-
geted jamming [9]. One can replace the above assumptions with other reasonable
assumptions. For example, instead of assuming bounded memory, one can use
a software-based externally verifiable code execution (EVCE) system such as
Pioneer [16], to guarantee that the target executable code associated with the
distance measurement, is executed without modification by a malicious code
that may reside on the device. a trusted network to eliminate proxy attacks
allowing the construction to provide security against rMiM[OC] and rCF[SA, OC].
The important point to note is that one must restrict the adversary’s physical
access to the environment to achieve any DLB security.

Our primary application scenarios of DLB in this paper were examples of
proximity-based access control. Other application scenarios in DLB may have
different security requirements. Examining these requirements will be an impor-
tant step in modelling security and designing secure protocols. Another inter-
esting question is to efficiently incorporate DLB in DUB protocol to provide
security against distance enlargement.

A Proof Sketch of Theorem 1

For (1), assume a malicious prover (who can calculate correct responses to the
verifier challenges) at D < B. To claim a longer distance D + D′, the prover
modifies the execution to add appropriate delay by tampering with the hard-
ware/software and responds after 2D′/C second(s). The attack succeeds with
probability 1. For (2), A MiM attacker can use the following strategy: upon
receiving a message from one party, the adversary jams the signal to prevent it
from being received by the other, and later forwards it with appropriate delay.
For (3), note that CF resistance requires both DF resistance and MiM resistance:
A CF attacker can simply simulate a successful DF attacker by simply ignoring
the helper. It can also simulate a successful MiM attacker, by allowing P ∗ in the
CF attack to run the algorithm of P , and the helper in CF to run the algorithm
of the MiM adversary, AMiM .

B Proof of Theorem 2

A dishonest prover P ∗ succeeds if it passes verification in all rounds. A P ∗’s
strategy σ, is defined by a sequence of actions that it will take over the n rounds.
P ∗ needs a malicious code of size at least g to implement its strategy. The code
must be stored in the PD’s RAM. In each round, P ∗ must dedicate g bits of
RAM for the malicious code MC, by either over-writing the response table A[i],

102 X. Zheng et al.

or RSi, or DLBRAM , or part of each, Here A[i] is the un-used part of A at the
start of round i. It is important to note that success probability of P ∗ in each
round, depends on the action taken in the current round, and all actions taken in
all the previous rounds. For example if P ∗ has overwritten (a(1,i), a(2,i)), during
an earlier round j, where j < i, then the success probability of producing the
correct response to ci, will be at most 1/2.

Let Pr(Succσ
DF) denote the prover’s success probability for a strategy σ (n-

round strategy, possibly adaptive) used by P ∗. Let Si denote the event associated
with the success in round i, 1 ≤ i ≤ n. We have the following:

Pr(Succσ
DF) = Pr(

n∧
i=1

Si) =
n∏

i=1

Pr(Si|Si−1, . . . , S1).

The properties of probability imply: ∀i, Pr(Si|Si−1, . . . , S1) ≤ 1. In round i,
P ∗’s device receives a challenge symbol ci, followed by L − λ − 2(n − i) bits of
RSi. The response consists of ri, and hi = Hx̂(R̄Si||DLBRAM). Because of the
unforgeability of HMAC, to calculate hi, the string RSi must be fully stored,
and DLBRAM must remain intact. If some of these bits, say �, are overwritten,

to generate the correct response, the � missing bits can be guessed., with
success probability 2−�.

Let g be even and smaller than the response table original size, g ≤ 2n. In
each round, 2 bits of the table are used and the erasing sequence is lengthened
by 2 bits. The reduction in the size of the table in each round finally reaches a
round n0

	
= n − g

2 , after which the size of A[i], i > n0, is less than the malicious
code. That is, 2(n − i) < g and the length of RSi satisfies L − 2(n − i) > L − g.
From round i > n0, to keep the g bit malicious code, some bits from RSi must
be overwritten and this number equals,

g − 2(n − i) = g − 2(n0 +
g

2
− i) = 2(i − n0).

This leads to a success chance of 2−(2(i−n0)+1) in calculating hi in round i. The
overall success chance is given by,

Pr(Succσ
DF) ≤

∏
1≤i≤n0

1 ×
∏

n0+1≤i≤n

2−(2(i−n0))

= 2−(∑n
i=n0+1 2(i−n0)) = 2−(∑n−n0

i′=1
2i′) = 2−(g

2)(g
2 +1) < 2−(g

2)2 .

If g is odd: A similar argument can show that the prover needs to drop 2(i−n0)−1

bits in rounds i > n0 =
	
= n − g+1

2 . The success probability equals

Pr(Succσ
DF) ≤ 2−(∑n

i=n0+1 2(i−n0)−1) = 2−(∑n−n0
i′=1

2i′−1)

= 2−(g+1
2)(g+1

2 +1).2
g+1
2 = 2−(g+1

2)2 < 2−(g
2)2 .

Distance Lower Bounding 103

If g ≥ 2n. Here, the prover needs to drop some bits of the erasing string RSi in
all rounds 1 ≤ i ≤ n; in other words, n0 = 0 and the prover’s success chance is,

Pr(Succσ
DF) ≤

∏
1≤i≤n

2−(2i) = 2−(∑n
i=1 2i) = 2−n(n+1).

This means that the success probability of P ∗ in any strategy is bounded, and
the proof is complete.

References

1. Avoine, G., Tchamkerten, A.: An efficient distance bounding RFID authentication
protocol: balancing false-acceptance rate and memory requirement. In: Samarati,
P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735,
pp. 250–261. Springer, Heidelberg (2009)

2. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Secure and lightweight distance-
bounding. In: Avoine, G., Kara, O. (eds.) LightSec 2013. LNCS, vol. 8162,
pp. 97–113. Springer, Heidelberg (2013)

3. Brands, S., Chaum, D.: Distance bounding protocols. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)

4. Cachin, C., Maurer, U.M.: Unconditional security against memory-bounded adver-
saries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306.
Springer, Heidelberg (1997)

5. Calle, M., Kabara, J.: Measuring energy consumption in wireless sensor networks
using GSP. In: Personal, Indoor and Mobile Radio Communications (2006)

6. Capkun, S., Hubaux, J.-P.: Secure positioning in wireless networks. IEEE J. Sel.
Areas Commun. 24(2), 221–232 (2006)

7. Cremers, C., Rasmussen, K.B., Schmidt, B., Capkun, S.: Distance hijacking attacks
on distance bounding protocols. In: S&P, pp. 113–127 (2012)

8. Francillon, A., Danev, B., Capkun, S.: Relay attacks on passive keyless entry and
start systems in modern cars. In: NDSS (2011)

9. Gollakota, S., Hassanieh, H., Ransford, B., Katabi, D., Fu, K.: They can hear
your heartbeats: non-invasive security for implantable medical devices. In: ACM
SIGCOMM, pp. 2–13 (2011)

10. Hancke, G.P., Kuhn, M.G.: An rfid distance bounding protocol. In: SecureComm,
pp. 67–73 (2005)

11. Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J.: Global Positioning System
Theory and Practice. Springer, Wien (1993)

12. C. T. Inc., Micaz datasheet
13. Perito, D., Tsudik, G.: Secure code update for embedded devices via proofs of

secure erasure. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 643–662. Springer, Heidelberg (2010)

14. Rasmussen, K.B., Capkun, S.: Realization of rf distance bounding. In: USENIX
Security Symposium, pp. 389–402 (2010)

15. Rasmussen, K.B., Castelluccia, C., Heydt-Benjamin, T.S., Capkun, S.: Proximity-
based access control for implantable medical devices. In: Computer and Commu-
nications Security, pp. 410–419 (2009)

16. Seshadri, A., Luk, M., Perrig, A., Doorn, L.v., Khosla, P.: Externally verifiable
code execution. Commun. ACM 49(9), 45–49 (2006)

104 X. Zheng et al.

17. Singelée, D., Preneel, B.: Distance bounding in noisy environments. In: Stajano,
F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572,
pp. 101–115. Springer, Heidelberg (2007)

18. Song, B., Mitchell, C.J.: RFID authentication protocol for low-cost tags. In: Wire-
less Network Security (2008)

19. Tippenhauer, N.O., Rasmussen, K.B., Capkun, S.: Secure ranging with message
temporal integrity. IACR Cryptology ePrint Archive (2009)

20. Vaudenay, S., Boureanu, I., Mitrokotsa, A. et al.: Practical & provably secure
distance-bounding. In: the 16th Information Security Conference (2013)

21. Warner, J.S., Johnston, R.G.: A simple demonstration that the global positioning
system (gps) is vulnerable to spoofing. J. Secur. Adm. 25(2), 19–27 (2002)

22. X. Zheng, R. Safavi-Naini, and H. Ahmadi. Distance lower bounding. Cryptology
ePrint Archive, Report 2014/xxx (2014). http://eprint.iacr.org/

http://eprint.iacr.org/

	Distance Lower Bounding
	1 Introduction
	2 DLB - Model and Impossibilities
	2.1 Attacks on DLB Protocols
	2.2 Impossibility Results
	2.3 Restricted DF, MiM, and CF

	3 DLB Protocol Constructions
	3.1 The Protocol DLB-BM
	3.2 The Design of Erasure Sequence and Its Response

	4 Security Analysis of DLB-BM
	5 Practical Consideration
	6 Concluding Remarks
	A Proof Sketch of Theorem 1
	B Proof of Theorem 2
	References

