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Abstract. The Dual-Camera system which consists of a static camera
and a pan-tilt-zoom (PTZ) camera, plays an importance role in public
area monitoring. The superiority of this system lies in that it can offer
wide area coverage and highly detailed images of the interesting target
simultaneously. Most existing works in Dual-Camera systems only con-
sider simplistic scenarios, which are not robust in real situations, and
no quantitative comparison between different tracking algorithms is pro-
vided. In this paper, we propose a cooperative target tracking algorithm
with bidirectional information fusion which is robust even in moderately
crowded scenes. Moreover, we propose a method to compare the algo-
rithms quantitatively by generating a virtue PTZ camera. The experi-
mental results on realistic simulations and the implementation on a real
surveillance system validate the effectiveness of the proposed algorithm.
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1 Introduction

With rapidly growing demands of security in public area monitoring, multiple-
camera surveillance system has become a hot subject in the field of computer
vision. Among them, one popular example is the Dual-Camera system, which
consists of a static camera and a PTZ camera. A static camera can cover a large
public area. However, it cannot provide high resolution images of the interesting
target which are useful for abnormal behaviour detection, gesture recognition,
face identification, etc. This is where PTZ cameras compensate for the defi-
ciencies of static cameras. A PTZ camera can pan and tilt to center the target
in its view and zoom in to obtain desirable high-resolution images. The Dual-
Camera system which combines these two types of cameras can monitor the
large surveillance area and obtain close-up observation of the interesting target
simultaneously. Figure 1 shows an example of images obtained from the static
camera and the PTZ camera.

Dual-camera systems have been widely studied in surveillance [1-8]. Refer-
ences [2-5] use tracking results from the static camera to guide the movement of
the PTZ camera. They use background subtraction algorithms to detect targets
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Fig. 1. The left is the image obtained from the static camera, and heights of targets in
the image are about 50 pixels. The right is the image obtained from the PTZ camera,
and heights of tragets in the image are about 250 pixels.

and track targets by associating the detection responses with the correspond-
ing targets. They pay more attention to the calibration between the static and
PTZ cameras. However, it requires a level of pointing accuracy to keep a highly
zoomed camera pointing at a moving target, that is not achievable from cali-
bration alone [6]. Instead, [6-8] use control signals from the static camera only
initially, to make the target within the view of the PTZ camera, and then perform
real-time tracking in the PTZ camera to keep the camera centered on the target
with desirable resolution. Considering the requirement of real time processing,
most existing tracking systems which use PTZ cameras adopt simple and efficient
algorithms to perform tracking in PTZ cameras. Reference [6] uses Mean-Shift
algorithm [13] to track the target. References [7,8] use color-based particle filter
algorithm to keep following the target. In [14], Mean-Shift tracker and KLT [15]
tracker are combined for target tracking. Although these methods can guarantee
real-time performance, they are not robust enough in practice. Mean-shift and
color-based particle filter trackers may fail to differentiate between the interest-
ing target and the background with similar color, by using color histogram. KLT
tracker is not robust to background clutters and occlusion. Moreover, all these
methods consider situations where only a few of targets appear without frequent
occlusion. However, in real pubic surveillance areas, occlusion may frequently
occur especially in crowded scenes. No information is fused between the cameras
in these methods, which is very helpful for resolving occlusion.

In video tracking using PTZ cameras, comparing different methods directly
is very difficult. It is not possible to work offline with recorded videos, since
each frame in the PTZ camera depends on the pan, tilt and zoom parameters,
and such parameters are differently set by the different tracking algorithms. To
deal with this problem, [11] proposes an experimental framework which allows
to compare different algorithms in repeatable scenarios. The key idea consists in
projecting a video containing the target on a screen in front of the camera. How-
ever, it is difficult to use this framework in a cooperative tracking setting, since
this framework cannot generate different image sequences for different cameras
which have different view points. In [16], a synthetic camera network is placed
in a virtual scene which is created through computer graphics. However, mod-
elling realistic human behavior within a virtual environment is difficult. It is still
different from real situations.
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To overcome the drawbacks of previous methods, we propose a cooperative
target tracking algorithm with bidirectional information fusion. Specifically, an
efficient multi-target tracking algorithm is introduced for online tracking in the
static camera, a robust single-target tracking algorithm is proposed in the PTZ
camera and a bidirectional information fusion strategy is proposed to enhance
the algorithm. The single-target tracking algorithm combines a state-of-the-art
category detector and an online trained classifier. The category detector is offline
trained and robust against the challenges in PTZ cameras, such as background
clutters, abrupt motion and motion blur. The online trained classifier can dif-
ferentiate the interesting target from the other detected targets and adapt to
the appearance changes of the interesting target through online updating. The
bidirectional information fusion method makes the algorithm robust even in
moderately crowded scenes with frequent interactions and occlusions. Moreover,
unlike the existing works in Dual-Camera systems which provide no quantitative
comparison of different tracking algorithms, we propose a method to quantita-
tively compare different algorithms by generating a virtue PTZ camera. The
experimental results on realistic simulations and the implementation on a real
surveillance system show the effectiveness of our proposed algorithm.

2 System Overview

In our Dual-Camera system, the static camera detects and tracks multiple targets
in a wide scene. When an interesting target is detected by an anomaly detection
algorithm or specified by the user, the PTZ camera is directed to gaze at the
target according to camera-to-camera calibration. Then a cooperative tracking
algorithm is used to track the target. The camera control module adjusts para-
meters of the PTZ camera according to the tracking results in the PTZ camera
to follow the target at high resolution. The purpose of the Dual-Camera system
is to continuously keep the interesting target in the PTZ camera view to obtain
high resolution images of the target.

The rest of the paper is organized as follows. The camera calibration and
control strategy are introduced in Sect. 3. Section 4 describes the proposed coop-
erate tracking algorithm. Section 5 presents the experimental results. Section 6
summarises this paper.

3 Camera Calibration and Control

In this paper, we focus on the cooperative tracking algorithm, but camera cali-
bration and camera control strategy are indispensable parts. So we first briefly
introduce the camera calibration and control strategy. We denote the parameters
of the PTZ camera at time ¢ as (P!, T, Z!), where P! and T/ represent the pan-
tilt angles, and Z% means the optical zoom of the PTZ camera. (P!, T! Z!) can
be read from the interface of the PTZ camera, or estimated using the method pro-
posed by [18]. In order to perform cooperative tracking, calibration between the
static camera and the PTZ camera is needed. We use the method proposed by [5]
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to calibrate the two cameras for its simpleness. In [5], ground plane homography
is exploited to realise camera collaboration, assuming that the two cameras share
a common ground plane which is reasonable in typical surveillance scenes. The
ground plane homography H,q between the static camera and the PTZ camera
at parameter (P%, T, Z9) is estimated offline using people correspondence. In
online stage, the bottom center of the bounding box which contains the tracked
target in the static camera image is mapped to the corresponding point in the
image plane of the PTZ camera at parameter (P, T7°, Z%). The pan and tilt
angles which are needed to bring the interesting target to the center of the PTZ
camera image can be computed. Please refer to [5] for more details. Once the
same target is found in the PTZ camera, the cooperative tracking module is acti-
vated to track the target. During tracking, the projective transformation H!_
which maps the bottom center of the target in the static camera image to the
position in the PTZ camera image at frame ¢ is computed as:

H'_, = K'RYRO)™ (K°) " Hyg (1)
where R is the rotation matrix corresponding to the pan and tilt angles (P!, T?!) at
frame ¢, and K is the intrinsic matrix corresponding to the zoom Z. The intrinsic
matrix K? is estimated using the method proposed by [17]. For the camera control
strategy during tracking, the current and previous distances between the position
of the target and the center of the PTZ camera image are used to deal with the
camera speed. If the distance becomes larger, we give a higher speed, and vice
versa. This strategy can give a smoother tracking than absolute positioning.

4 Proposed Cooperative Tracking Algorithm

The overview of the proposed cooperative tracking algorithm is shown in Fig. 2.
It consists of multi-target tracking in the static camera, single-target tracking in
the PTZ camera, and information fusing through transferred positions from the
previous tracking result. Details are described in subsections.

4.1 Multi-target Tracking in Static Camera

The multi-target tracking algorithm in the static camera follows the tracking-
by-association framework [21]. At each frame, pairwise association is performed
to associate detection responses with tracklets. In Dual-Camera systems, most
existing methods use background subtraction algorithms to detect objects. How-
ever, they can only detect moving objects and it is difficult to model the back-
ground in PTZ cameras. Hence, we use a fast state-of-the-art object detector [19]
to detect objects. For each tracklet, a Kalman Filter is applied to refine the posi-
tions and sizes of its detection responses and estimate its velocity. The affinity
measure A; ; to determine how well a detection D; and a tracklet T; are matched
is defined as:

Ay = Aappr (DHIT}) Ao (DiITy) Apes (D4T) (2)
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Fig. 2. The overview of the proposed cooperative target tracking algorithm.

The affinity is the product of affinities of appearance, shape and motion models,
which are computed as follows:

Aapp'r(Di|Tj) = Eumzl V hZ(Dll)zhu(T])’

Asize(Di|T}) = exp (_ {‘ hp, Thr, wp, +wr,
Apos(Di|Tj) = N(PTj + UTjAt; PDi, Es)

j) ®

Color histograms of the detection responses of 7} are computed and averaged
as the appearance model of Tj. The appearance affinity Aqpp-(D;|T;) is the
Bhattacharyya coefficient between the color histogram h,,(D;) of D; and h,,(T})
of T;. The bin number of the histogram is m. The shape affinity Ag;..(D;|T}) is
computed with the height h and width w of targets. Apos(D;|T;) is the motion
affinity between Pr; the last refined position of T; and the position Pp, of D; with
the frame gap At and velocity vr,. vr; is estimated by the Kalman Filter. The
difference between the predicted position and the observed position is assumed
to follow a Gaussian distribution N.

Once the affinity matrix is computed, the optimal association pairs, which
maximize the global association affinity in A, are determined using the Hun-
garian algorithm [20]. Detection responses which are not associated with any
tracklet are used to generate new tracklets. To avoid false alarms, new tracklets
are generated from detection responses with overlap bigger than 90% in five
consecutive frames.

4.2 Single-Target Tracking in PTZ Camera

For single-target tracking in the PTZ camera, we propose a robust algorithm
within the particle filter framework. The particle filter approach is popularly
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used for visual tracking. It can approximate multi-modal probability density
function, so it is suitable for tracking in clutter [9]. Let Z; and Y; denote the
latent state and observation, respectively, at time t. A particle filter approximates
the true posterior state distribution p(Z;|Y1.;) by a set of samples {Z{} ¥, with
corresponding weights {w}}~ ; which sum to 1. This can be done by the well-
known two-step recursion. One is the Prediction, which uses a motion model to
propagate the particles; the other is the Update, which uses observation models
to compute the weight of each particle. In our implementation, we define the
state at time t as Z; = {xy, yt, u, v, St }, where (z, y¢) is the 2D image position,
(ug,v¢) is the velocity, and s; is the scale of the bounding box.

Motion Model. We use a constant velocity motion model, which is defined as:

(e, ) = (-1, Ye—1) + (U—1,ve-1) + €1

(we,ve,8¢) = (Up—1,v—1,5¢—1) + €2 (4)
where €1 and e9 are drawn from zero-mean Gaussian distributions.

Observation Model. The observation model is a critical issue in the parti-
cle filter framework. The observation model should be robust against the main
challenges in the PTZ camera tracking: abrupt motion, background clutters and
appearance changes which are caused by occlusion, illumination variations and
motion blur. To overcome these challenges, we propose a robust observation
model. Firstly we use the category detector [19] to detect all the targets which
belong to the same category. The category detector is trained offline, so it is
more robust against background clutters, illumination variations and motion
blur. Then an online classifier is trained to distinguish the interesting target
from the other detections. If a detection is near the particles and is classified as
positive by the classifier, we call this detection a strong observation. For each
detection D; in the PTZ camera, the matching score between a detection D; and
the interesting target T, is measured as follows:

N
S(DT) = (D) SN (Poii P £0) G
k=1

where ¢(D;) is the classifier score; Pp, and Py are the positions of the detection
D; and the particle pg; N is the number of particles. The detection with the
maximum matching score among all the detections and the score of which is
above a threshold 6, is considered as a strong observation D,. The weight wy
for each particle py is computed as:

wy = c(Py) +a-Z(Dy) - N(Py; Pp,, X)) (6)

where ¢(Py) is the classifier score of py, « is the parameter which controls the
weight of the distance between the the particle p, and the strong observation
D,, and Z(D,) is an indicator function that returns 1 if the strong observation
is observed and 0 otherwise. If the strong observation is observed, it robustly
guides the particles.
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Classifier. In our implementation, we use online linear SVM as our classifier.
The classifier score is measured as:

1

P = T oW F ) ™

where Ip is the image patch at the particle or detection location P with the
corresponding size; F'(Ip) is the feature vector and W is the weights on features
learned by linear SVM.

For efficiency, the same features (normalized gradient magnitude, histogram
of oriented gradients, and LUV color) as the detector [19] are used by the classi-
fier. When the same target is detected in the PTZ camera, positive samples are
sampled near the detection, and negative samples are sampled from the other
detections and background. In order to make the classifier robust against the
detection noise, six image patches are sampled around the detection as positive
samples with translations +0.05w in horizontal, translations £0.05h in vertical
and scale changes 41/ 25. w and h are the width and height of the detection
bounding box. A linear SVM is trained using these samples. During tracking,
to adapt to the appearance changes of the target, W is online updated using a
passive-aggressive algorithm [10]. We only update the classifier when the strong
observation is observed to prevent the tracking noise from being introduced into
the classifier. The same sampling strategy is adopted to generate positive and
negative samples for online updating.

4.3 Information Fusion

In situations with moderate crowd, in order to make the tracker robust against
occlusions and target interactions, we use information fusion to improve the
tracking accuracy.

We first define the tracking confidences in two cameras which are useful for
information fusion. We denote the interesting target in the static camera as T,
and in the PTZ camera as T,. The multi-target tracking confidence for T, at
frame t is defined as:

1 t

confi=1r D Ask) (®)

k=t—M+1

where M is the length of the time window to compute the confidence, and
As(k) is the affinity score between T and the associated detection at frame k.
Aq(k) equals 0, if no detection is associated with T at that time. conf! is the
average affinity score within the time window. The tracking confidence in the
PTZ camera at frame ¢ is defined as:

confl =

9)

c'(Pp,) if strong observation is observed
0 otherwise

where c!(Pp,) is the classifier score of the strong observation D, at frame ¢.
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In the association stage of multi-target tracking in the static camera, the
affinity A{-i s between T and the detection D; with information fusion at frame
t is measured as:

Al = AL (DiIT) Agize(Di|Ty) Auppr (DI T) (10)

pos

The only difference between Eqs. (2) and (10) is the motion affinity Af . (D;|Ts)
for the interesting target T,. For other targets, the affinities are computed by
Eq. (2). Let Pr, and Pr, represent the bottom centers of the target bounding
boxes of T and T}, in corresponding camera images respectively, and Pp, denotes
the bottom center of the detection D;. Af _(D;|T,) is calculated as:

pos

Al (D;|Ts) = N(Pr, 4+ Vi, At; Pp,, X) + 3 - confi™1 - N(P,_; Pp,, Xs) (11)

pos

where P, = (Hﬁ;la)_lP}:l is the target position in the static camera image
which is projected from the position of the target in the PTZ camera image at
frame ¢ — 1 , using the homography H!=! computed by Eq. (1), and 3 controls
the importance of the transferred position P, ;. Compared with the motion
affinity defined in Eq. (3), AI{OS(DZ-\TS) incorporates the target position in the
PTZ camera image. After long occlusion, the predicted position Pr, + Vp, At
is unreliable, and may cause the association to fail. At this time, the tracking

result in the PTZ camera can help the target find the correct association.

In the PTZ camera, incorporating the tracking result in the static camera as
an extra cue, the matching score between a detection D; and the target T, is
measured as:

N
S¥(D;, Ts) = c(D;) (11; > N(Pp,; Py, $a) +7 - confi™t- N(PDi;PS_)mEa)) (12)

k=1

where Py is the bottom center of particle pi. Since the PTZ camera has changed
its parameters at frame ¢, we use H'_ , rather than H'Z! to map the target

sS—a sS—a
position P}:l in the static camera image to the position P;_,, in the PTZ camera
image, i.e. Py, = H;_,GP}g_l. The weight of the transferred position Ps_,, is
controlled by 7. The difference between Egs. (5) and (12) is that the transferred
position Ps_,, is added into Eq. (12) as a motion cue. Since the particles may
deviate from the true target position after long occlusion, the transferred position
can help the target to be matched with the correct detection.

The weight of each particle & with information fusion is computed as:
wy, = c(Py) +n-Z(D.) -N(Py; Pp., Xa) + ¢ - confi™ - N(Py; Ps—a, Xa) (13)

where the parameters 1 and ¢ balance the weights of the corresponding items.
Compared with Eq. (6), the transferred position Ps_,, is fused into Eq. (13) which
can help to guide the particles and make them surround the true position when
occlusion occurs.
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5 Experiments

Due to the difficulty in repeating the experiments with PTZ cameras, so far now,
there is no unique real video benchmark which allows a genuine global testing.
Most existing works only provide qualitative experiments in real scenarios. In
the experiments, we firstly compare our algorithm with some popular tracking
algorithms which are popularly used in the PTZ camera tracking, on a realistic
data set quantitatively. Then, our algorithm is implemented on a real Dual-
Camera system to show its effectiveness qualitatively, as in the other literatures.

5.1 Parameter Setting

All the parameters are set experimentally and kept fixed for all experiments. The
covariance matrix X in Eqgs. (3) and (11) is set to diag[10%,20%]. The variances
of the 1 in Eq. (4) are set proportionally to the width w of the tracking target,
i.e. (0.01w?,0.01w?). The variances of the 5 in Eq. (4) are set to (22,42,0.01%).
The covariance Y, in Egs. (5, 6, 12 and 13) is set to diag[0.04w?, 0.04w?]. The
parameter « in Eq. (6), 8 in Eq. (11), v in Eq. (12), n and ¢ in Eq. (13) are set to
10, 2, 0.5, 10, 1 respectively. The number of particles N in Eq. (5) is set to 100.
The threshold @ which is used to determinate the strong observation is set to 0.4.
The length of the time window M in Eq. (8) is set to 10. For all the algorithms
which use color histogram, the histogram is calculated in the HSV color space
using 10x10x5 bins.

5.2 Realistic Experiments

Data Set. We captured two synchronized videos at a shopping plaza using two
cameras from different view points. The resolution of both videos is 1920x1080.
One is served as the static camera video, and the other is served as the PTZ
camera panorama video. For the static camera video, the resolution is reduced
to 480270 to simulate the static camera which monitors a large area. The static
camera video is further cropped to 480x221 to ensure that all the pedestrians
can be seen in the PTZ camera panorama video. For the PTZ camera panorama
video, we generate the virtual PTZ camera view according to pan, tilt and zoom
parameters using the method similar to [12]. The virtual view resolution of PTZ
camera is set to 640x480. Some frames are shown in Fig. 3. The tracking results
in the PTZ camera panorama video are labeled by us as ground truth (GT).

Evaluation Metrics. GT is projected to the PTZ camera view according to
the camera pose and compared with the tracking result of the tracker in the
PTZ camera image at the same time. The metrics proposed by [11] are used to
compare different tracking algorithms:

— rX: the mean overlap ratio between the bounding boxes of tracking results

Bicr and the GT Bgr. The overlap ratio is computed as: r, = %,
r

where || - || is the area of the bounding box.
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(b) (c) (d)

Fig. 3. (a) is the frame from the PTZ camera panorama view; (b) is the frame from the
static camera view; (c) is the view generated from (a) with the virtual PTZ camera at
parameters (pan:7.62, tilt:—2.17, focal length:4500); (d) is the view generated from (a)
with the virtual PTZ camera at parameters (pan:—1.68, tilt:—4.37, focal length:5000)

— dg: the mean distance between the centers of By, and Bar

— r¢: the percentage of correctly tracked frames (if r, > 0.5)

— r': the mean overlap ratio between Bgr and the image bounding box B;
— d¢;: the mean distance between the GT and the image center.

The first three criteria evaluate the accuracy of the algorithms, while the last
two evaluate the ability of the system to keep the target in the center of the field
of view and at the desirable resolution.

Compared Algorithms. According to which camera’s tracking results are used
to guide the PTZ camera, the tracking algorithms in Dual-Camera systems can
be divided into two classes, static camera guided (SG) and PTZ camera guided
(AG). Based on the information fusion strategy, the tracking algorithms can be
categorized into four categories: with bidirectional fusion (BF), only with fusion
from the static camera to the PTZ camera (AF), only with fusion from the
PTZ camera to the static camera (SF), and without fusion (NF). Four popular
tracking algorithms are compared: color-based particle filter(PF), KLT, Mean-
shift (MS) and TLD [22] which is a real time and effective tracker shown by
[23]. In addition to these algorithms, we also compare our cooperative tracking
algorithm (TD) with different fusion and camera guiding strategies: TD-NF-SG,
TD-NF-AG, TD-SF-SG, TD-AF-AG and TD-BF-AG, where NF, SF, AF and
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Fig. 4. (a) and (b) are the frame-by-frame tracking results in terms of the distance (in
pixels) between the tracking result and the GT, and the distance (in pixels) between the
GT and the image center, respectively. Best viewed in color (Color figure online).

Table 1. Comparison of different trackers. Bold font indicates best performance.

Methods ry det Te Y dei
KLT 0.215 |264.4120.191 |0.023 |254.231
MS 0.163 |337.003|0.170 |0.021 |326.09
PF 0.184 |335.261|0.189 |0.022 |323.581
TLD 0.172 |139.861 | 0.191 |0.023 |151.084

TD-SF-SG |0.415 | 104.334|0.299 | 0.035 | 152.855
TD-NF-SG | 0.415 | 104.334|0.299 |0.035 | 152.855
TD-AF-AG | 0.508 |76.725 |0.756 |0.041 | 80.662
TD-NF-AG | 0.508 |76.725 |0.756 |0.041 |80.662
TD-BF-AG | 0.618 | 14.243 | 0.883 | 0.051 | 27.882

BF indicate the information fusion strategies; SG and AG represent the camera
guiding strategies. For example, TD-BF-AG represent our cooperative tracking
algorithm with bidirectional information fusion, and using the tracking results
in the PTZ camera to guide the movement of the PTZ camera. If not otherwise
specified, in the tracking algorithms, the tracking result in the PTZ camera is
used to guide the movement of the PTZ camera, due to its accuracy, and no
information fusion is used as in the other literatures.

Results. Figure4 illustrates the tracking results frame by frame in terms of the
distance between the tracking result and the GT, and the distance between the
GT and the image center. Table1 shows the quantitative comparison results.
From the tracking results, we can see that: due to the robust tracking algorithm
in the PTZ camera, without information fusion, our method TD-NF-AG outper-
forms the other tracking algorithms; the tracking performance of the algorithm
with one-directional information fusion is the same as the algorithm without
information fusion; with bidirectional information fusion, our method TD-BF-
AG achieves the best performance. Since the tracking results of TD-NF-SG and
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Fig. 5. (a) shows the tracking results in the static camera using methods excluding
TD-BF-AG. (b) shows the tracking results in the static camera using TD-BF-AG. The
interesting target in the static camera is indicated by the yellow bounding box. (c¢)~(i)
show tracking results in the PTZ camera, where (c¢)~(f) use KLT, MS, PF and TLD
trackers respectively; (g) shows the tracking results of TD-SF-SG and TD-NF-SG; (h)
shows the results of TD-AF-AG and TD-NF-AG; (i) shows results using TD-BF-AG.
Tracking results of the interesting target are represented by the red bounding boxes in
the PTZ camera, and the ground truth is shown by white bounding boxes.

TD-SF-SG exceed the view of the PTZ camera panorama video after frame 263,
their tracking results in Table 1 only consider frames from 52 to 263. This shows
that static camera guided tracking is less accurate than PTZ camera guided
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Fig. 6. An illustration of our cooperative tracking system. The left images in (a)~(f)
are the images in the static camera, and the right images in (a)~(f) are the correspond-
ing images in the PTZ camera. The tracking results in the static camera and the PTZ
camera are indicated by the yellow bounding box and red bounding box respectively.
(a) shows the interesting target is tracked by our algorithm. In (b), due to occlusion,
the tracker fails in the static camera. The information fused from the PTZ camera
helps the static camera find the correct association as shown in (c). In (d), due to
occlusion in the PTZ camera, the tracker deviates from the true position of the tar-
get. The information fused from the static camera helps the tracker track the target
correctly again when the target reappears, as shown in (e). Our cooperative tracking
system keeps following the target at high resolution until the target exits from the view
of the static camera as shown in (f).

tracking. The reason is that tracking in the static camera is difficult since the
targets are small in the static camera images.

We try to give a qualitative comparison by showing in Fig. 5 some key frames.
Due to targets with similar color, MS and PF trackers drift at about frame 263.
The KLT tracker also drifts at about frame 263 due to occlusion. The TLD
tracker fails at about frame 263, because the scale change is not estimated by
the TLD tracker accurately, and makes the TLD detector fail. TD-SF-SG and
TD-NF-SG fail at about frame 185, due to the target interactions. Although
TD-SF-SG fuses information from the PTZ camera, it uses the results in the
static camera to guide the PTZ camera which makes the target exit from the
view of the PTZ camera before the information fusion helps it find the correct
association. TD-AF-AG and TD-NF-AG fail at about frame 386 due to long
occlusion. Although TD-AF-AG fuses information from the static camera, but
the tracker has already failed in the static camera at about frame 185. The TD-
BF-AG tracker can follow the target correctly through the whole sequence. The
tracker fails in the static camera at about frame 185, but due to bidirectional
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information fusion, the tracker correctly tracks the target again. At frame 386,
due to long occlusion, the online classifier fails in the PTZ camera, but the
particles are guided by the transferred position from the static camera. The
target is correctly tracked again when the target reappears.

5.3 Real Trials

We apply the proposed robust cooperative tracking algorithm with bidirectional
information fusion in a Dual-Camera system. Our Dual-Camera system is con-
sist of two off-the-shelf AXIS PTZ Network Cameras Q6032-E. One is fixed to
serve as the static camera to monitor a wide area, and the other is used as the
PTZ camera. Our algorithm is implemented in C++ using OpenCV on an Intel
Core 17-4700MQ 2.40 GHz with 8 GB RAM. Duo to the multithreaded imple-
mentation, our algorithm can run in real time at 20 fps. Some key frames are
shown in Fig. 6 with a detailed description.

6 Conclusion

In this paper, we have proposed a robust tracking algorithm within the particle
filter framework in the PTZ camera, which combines a category detector and
an online classifier to make the algorithm robust against background clutters.
Furthermore a bidirectional information fusion method is proposed to enhance
the performance of cooperative tracking in crowded scenes. Finally, we compare
different tracking algorithms which are frequently used by other researchers in
realistic experiments, and also show the efficiency of our method in real trials.
To the best of our knowledge, this is the first time different tracking algorithms
in Dual-Camera systems are evaluated, and the results show our method out-
perform the others.
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