Meeting a Powertrain Verification Challenge

Parasara Sridhar Duggirala®?), Chuchu Fan, Sayan Mitra,
and Mahesh Viswanathan

University of Illinois, Urbana-champaign, USA
{duggira3,cfanl0,mitras,vmahesh}@illinois.edu

Abstract. We present the verification of a benchmark powertrain con-
trol system using the hybrid system verification tool C2E2. This model
comes from a suite of benchmarks that were posed as a challenge problem
for the hybrid systems community, and to our knowledge, we are report-
ing its first verification. For this work, we implemented the algorithm
reported in [10] in C2E2, to automatically compute local discrepancy
(rate of convergence or divergence of trajectories) of the model. We ver-
ify the key requirements of the model, specified in signal temporal logic
(STL), for a set of driver behaviors.

1 A Challenge Problem

As the targets for fuel efficiency, emissions, and drivability become more demand-
ing, automakers are becoming interested in pushing the design automation and
verification technologies for automotive control systems. The benchmark suite
of powertrain control systems were published in [11,12] as challenge problems
that capture some of the difficulties that arise in verification of realistic systems.
It consists of a sequence of Simulink™ /Stateflow ™ models of the engine with
increasing levels of sophistication and fidelity. At a high-level, the models take
inputs from a driver (throttle angle) and the environment (sensor failures), and
define the dynamics of the engine. The key controlled quantity is the air to fuel
ratio which in turn influences the emissions, the fuel efficiency, and torque gener-
ated. The requirements for the system are stated in signal temporal logic (STL).
A typical property, for example, O(z € [Teq — €,Teq + €]), states that after ¢
units of time, the continuous variable x is within the range z., & €. Breach [4]
and STaliro [2] have been used for finding counterexamples (or falsifying) models
in [5,12-14]. These techniques can show the presence of executions that violate
a requirement, but not their absence. The technique used in this paper proves
that all the executions from a given set of initial states and a set of switching
signals satisfies (or violates) the requirement. To the best of our knowledge, this
is the first time a model in the powertrain control benchmark is verified.

The model we consider in this paper is polynomial hybrid automata model
(Model 3, Sect. 3.3) of [12]. Although this model is given as a Simulink™ dia-
gram with switch blocks, it can be transformed to a hybrid automaton with
4 locations and 5 continuous variables. The dynamics of the system is given
by highly nonlinear polynomial differential equations. The mode transitions are

© Springer International Publishing Switzerland 2015
D. Kroening and C.S. P&sareanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 536-543, 2015.
DOI: 10.1007/978-3-319-21690-4_37

Meeting a Powertrain Verification Challenge 537

brought about by the input signal from the driver and there are uncertainties in
the initial set owing to measurement inaccuracies. Using an improved version of
the C2E2 tool [6,7] we are able to perform reachability analysis of this model and
we verify the requirements with respect to a set of relevant driver behaviors. In
principle, Flow™* [3] is designed to handle polynomial hybrid automata models,
however, it was unable to verify the models considered in this paper, owing to
the complexity of nonlinear dynamics.

C2E2 is a verification tool for a general class of nonlinear hybrid systems.
The previous version of C2E2 [6,7] required the user to provide a special type
of annotation for the model, called discrepancy function, which essentially cap-
tures the rate of convergence (or divergence) of neighboring trajectories. Finding
discrepancy functions for nonlinear models can be challenging. One of the main
developments that enabled this verification, is the implementation of a new algo-
rithm in C2E2 (presented in detail in [10]) for automatic computation of local
discrepancy along trajectories of the system. Using this improved C2E2, we were
not only able to find counterexamples, but also verify the key STL requirements
of the powertrain benchmark in the order of minutes.

2 Nonlinear Hybrid Powertrain Model
Simulink™ model for the powertrain control system is shown in Fig. 1(a). The
system has four continuous variables p, A\, p., i (see Fig.1(b)), and four modes
of operation: startup, normal, power, and sensor_fail. The mode switches (also
called transitions) are brought about by changes in the input throttle angle 0,
or failure events.

startup
&= fy(x)

timer =Ty

sensor_fail Variable|Description

x=fo(x)

p |Intake manifold pressure
pe |Intake manifold pressure estimate

A Air-fuel ratio

) Integrator state, control variable

0in |Throttle angle

(a) Hybrid automata model of pow- (b) Table with state variables and their descrip-
ertrain control system. tion.

Fig. 1. Figure showing the model in (a) and the model variables in (b).
The rest of the Simulink™ diagram defines polynomial differential equa-

tions that govern the evolution of the continuous variables in the four different
modes. As an example, we reproduce the differential equation for normal mode

538 P.S. Duggirala et al.

of operation.

D =c1(20in(c20p® + c21p + c22) — c12(c2 + c3wp + cawp® + csw?p))
A =cog(c1s + crecos Fn + c17C3s F2 + cigmie + cromiccas F. — \)
Pe =c1(2¢230in (c20p” + c21p + Ca2) — (2 + c3wpe + cawp? + csw?pe))

’Z 1614(024)\ — C1 1)

Here F, = i(l + 1 + c13(caa) — c11))(c2 + c3wpe + cawp? + csw?pe), Mo =
c12(ca + c3wp + cqwp? + csw?p), and all the ¢;’s are constant parameters of the
model.

This model is translated to a hybrid automaton form that is accepted by
C2E2. The operating modes correspond to the locations of the automaton, the
variables correspond to the above continuous variables, the differential equations
define the trajectories, and the discrete transitions among the locations is defined
by a piecewise constant input signal ;,, from the driver behavior. C2E2 currently
handles only closed automaton models. Therefore, for every driver behavior of
interest, we explicitly construct a family of switching signals that determine the
timing of the mode switches. The initial set of the automaton is a ball in the state
space which corresponds to the measurement uncertainty in state components.

The goal of the powertrain control system is to maintain the air-fuel ratio
at a desired value for optimal functioning of internal combustion engine under
different driving behaviors and conditions. These control objectives or require-
ments are stated in [12] using STL formulas. An example requirement for the
normal mode of operation is the following:

rise = D(m() (0.98)\mf <AL 1~02>\ref)7 (1)

which can be read as “If the throttle angle 6;,, changes from 0 to 60, denoted by
the event rise, then the air-fuel ratio A should be in the range [0.98)\mf7 1.02)\Tef]
after 7 time units and stay in that region until ¢ time units”. Here A,y is the
reference (desired) air-fuel ratio and n and (are parameters of the property.
We note that this type of requirements can also be expressed as bounded time
invariants— the class of properties currently handled by C2E2. We simply need
to introduce a timer variable that keeps track of time elapsed since the last
occurrence of the relevant events like rise in the above example.

3 Verification Using C2E2 with Local Discrepancy

C2E2 implements a generic, simulation-based, algorithm for bounded time ver-
ification of invariant and temporal precedence properties of nonlinear hybrid
models (see [6-8] for details). The algorithm iteratively computes more pre-
cise over-approximations of the reachable states of the system until it either
proves the property (the requirement) or finds a counter-example. These over-
approximations are computed for each location and for the duration that the

Meeting a Powertrain Verification Challenge 539

system is in that location. The set of reachable states at the end of that inter-
val serves as the starting set for the next location and so on. Thus, the key
step in the algorithm is to compute and refine reach set over-approximations for
ODEs for a given location. This step uses validated simulations and discrepancy
functions [6].

A walidated simulation of an ordinary differential equation (ODE) & = f(x)
from an initial state xy with error bound € is a sequence of time-stamped regions
¥ = (Ro,t0), ..., (R, tr) such that for each time interval [¢;_1,t;] the solution
&(xo, .) resides in the region R; and dia(R;) < e. A uniformly continuous function
B :R"xR" x R>g — R is a discrepancy function of the above ODE if (a) for
any pair of states z, 2’ € R™, and any time ¢t > 0, ||{(x,t) —&(2/,¢)|| < Bz, 2, t),
and (b) for any ¢, as x — a/, 8(.,.,t) — 0. Thus, 8 gives an upper bound on
the rate of divergence of two neighboring trajectories and this bound vanishes
as their initial states approach each other.

In order to check whether the system satisfies an invariant I over a time
horizon T', the C2E2 algorithm starts with a d-cover of the initial set and proceeds
as follows: from each point z(in the cover C' a validated simulation is generated
and then bloated by a factor given by the discrepancy function. This bloated set
is an over-approximation of the reachset from the d-neighborhood (Bs(zp)) of
xo. If this set is disjoint from (or contained in) I¢ then the algorithm infers that
the initial set Bjs(zq) satisfies (or violates, respectively) I. Otherwise, a finer
cover of Bj(xg) is created and added to C for computing a more precise over-
approximation of the reach set from Bg(xz¢). The first property of the discrepancy
function gives the soundness of this algorithm, and the second property gives
relative completeness (see, Theorem 13 from [6]).

This approach requires the user to provide discrepancy functions which can be
burdensome. Although Lipschitz constants, contraction metrics [15], and incre-
mental Lyapunov functions [1] can be used to get discrepancy for certain classes
of models, none of these approaches give an algorithm for computing 3 for gen-
eral nonlinear ODEs. In this paper, we use the algorithm presented in [10] for
computing local discrepancy functions on-the-fly along validated simulations.
This algorithm uses the Jacobian J; and a Lipschitz constant L of the ODE.
First it computes a coarse over-approximation S(x;) of the reach set from a sim-
ulation point for a short duration. Then it computes an exponential (possibly
negative) bound on the divergence rate of trajectories over S(zg) by finding a
bound on the maximum eigenvalue of the symmetric part of the Jacobian Jy
over the region S(xg). We refer the reader to the technical report [10] for the
details of this algorithm.

3.1 Tool Implementation and Engineering

Implementation. For verifying the powertrain system, we implemented the local
discrepancy algorithm in C2E2'. This modified implementation only requires

! The modified tool and related files are available from http://publish.illinois.edu/
c2e2-tool/powertrain-challenge/.

http://publish.illinois.edu/c2e2-tool/powertrain-challenge/
http://publish.illinois.edu/c2e2-tool/powertrain-challenge/

540 P.S. Duggirala et al.

the user to supply the Jacobian matrix of the system. The eigenvalues of the
symmetric parts of the Jacobian are computed using Eigen library [9]. For max-
imizing the norm of error matrices our implementation uses interval arithmetic.

Coordinate Transformation. An important technical detail that makes the
implementation scale is the coordinate transformation proposed in [10]. For Jaco-
bian matrices with complex eigenvalues the local discrepancy computed directly
using the above algorithm can be a positive exponential even though the actual
trajectories are not diverging. This problem can be avoided by first computing
a local coordinate transformation and then applying the algorithm. Coordinate
transformation provides better convergence, but comes with a multiplicative cost
in the error term. This trade-off between the exponential divergence rate and
the multiplicative error has be tuned by choosing the time horizon over which
the coordinate transformation is computed.

Model Reduction. In start up and power mode of the system, the differential
equation does not update the value of the integrator variable i, i.e., i = 0.
Moreover, i does not appear in the right hand side of the differential equations
for variables p, A, p.. We take advantage of these observations, and consider only
the dynamics of the variables p, A, and p, for computing local discrepancy.

4 Experimental Results on Powertrain Challenge

We have implemented the algorithm described in Sect. 3 as a prototype extension
of the tool C2E2. Verification of key properties of powertrain systems is typically
performed on a standard set of driver behaviors as the number of switching
signals corresponding to driver behaviors are infinite. In this paper, we pick two
sets of driver behaviors provided in [12] that visit all the modes of the system.
Further, to enable verification with C2E2, the STL properties were encoded
as bounded time safety properties. Hence, the properties in [12] which involved
integrals over paths, could not be verified. Table 1 provides the results of verifying
different STL properties.

The first six properties provided in Table1 are invariant properties. These
invariant properties can be global (i.e. correspond to all modes) or could be
restricted to a certain mode of operation provided in the Mode column. The
invariants assert that the air-fuel ratio should not go out of the specified bounds.
Observe that C2E2 could not only prove that the given specification is satisfied,
but also that a stricter version of invariants for startup and power modes is
violated. The next four properties are about the settling time requirements.
These requirements enforce that in a given mode, whenever an action is triggered,
the fuel air ratio should be in the given range provided after n (or n?*" for
power mode) time units. Similar to the invariant properties, C2E2 could also find
counterexample for a stricter version of the settling time requirement (n° settling
time instead of 1) in power mode. When C2E2 finds an overapproximation that
violates a given property, it immediately terminates and hence C2E2 takes less
time when it finds counterexamples. The parameters used for verification are

n=n""=1,7n" =05 T, =9, T = 20, \pey = 14.7, /\f:}; = 12.5, and

Meeting a Powertrain Verification Challenge 541

Table 1. Table showing the result and the time taken for verifying STL specification of
the powertrain control system. Sat: Satisfied, Sim: Number of simulations performed.
All the experiments are performed on Intel Quad-Core i7 processor, with 8 GB ram,
on Ubuntu 11.10.

Property Mode Sat | Sim | Time
Oz, 7 € [0.8Arer, 1.2X e] all modes | yes | 53 |11 m58s
Opo,7,A € [0.8Ares, 1.2Xc] startup | yes |50 |10m21s
Oz, 1A € [0.95A ¢y, 1.05A e] normal |yes |50 |10m28s
O, A € [0.8A757, 12275, power yes 53 |11ml2s
Ojo, 751X € [0.98 ey, 1.02Ac] startup |no | 2 | Om24s
Oz, mA € [0.9X7F, 1IN power no | 4 | 0m43s
rise = Ope)A € [0.9Aep, 1.1 vey] startup yes |50 | 10m40s
rise = Oy o)A € [0.98 e, 1.02X ¢ f] normal yes |50 |10ml5s
(£ = power) = Ogpur oA € [0.95X777, 1.05A7] | power yes |53 |11m35s
(£ = power) = O(,s o)A € [0.95X7 7, 1.05AYY] power no 4 | O0m4bs

Behavior of Air-Fuel ratio
16 . : ; ; . . ; ; .

15 L startup normal normal E

13 } _

power

12 .

air-fuel ratio

10 L L L 1 L L L 1 1
0 2 4 6 8 10 12 14 16 18

time

Fig. 2. Figure showing the reachable set of the powertrain control system for a given
user behavior that visits different modes.

¢ = 4. Set of reachable states of the powertrain control system for a given driver
behavior is provided in Fig. 2.

5 Conclusions and Future Work

In this paper, we have successfully applied the simulation based verification
technique with local discrepancy functions to find counterexamples and verify
the polynomial hybrid automata model of powertrain benchmark challenge. This
case study suggests that verification using on-the-fly discrepancy function along

542 P.S. Duggirala et al.

with the coordinate transformation can handle complex nonlinear dynamics. In
future, we wish to extend these techniques to handle higher fidelity models in
the powertrain verification challenge. These models contain delay differential
equations, actuation delays, and look up tables, which C2E2 cannot currently
handle.

Acknowledgment. We thank Jim Kapinski, Jyo Desmukh, and Xiaoqing Jin of Toy-
ota for several useful discussions on the powertrain models. This research is funded by
research grants from the National Science Foundation (grant: CAR 1054247 and NSF
CSR 1016791) and the Air Force Office of Scientific Research (AFOSR YIP FA9550-
12-1-0336).

References

1. Angeli, D.: A lyapunov approach to incremental stability properties. IEEE Trans.
Autom. Control 47(3), 410-421 (2000)

2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TALIRO: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254-257. Springer, Heidelberg (2011)

3. Chen, X, Abrahém, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 258-263. Springer, Heidelberg (2013)

4. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167-170. Springer, Heidelberg (2010)

5. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Effi-
cient guiding strategies for testing of temporal properties of hybrid systems. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp.
127-142. Springer, Heidelberg (2015)

6. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from
executions. In: Proceedings of the International Conference on Embedded Software,
EMSOFT 2013, pp. 1-10. IEEE (2013)

7. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool
for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 68-82. Springer, Heidelberg (2015)

8. Duggirala, P.S., Wang, L., Mitra, S., Viswanathan, M., Mufioz, C.: Temporal prece-
dence checking for switched models and its application to a parallel landing pro-
tocol. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp.
215-229. Springer, Heidelberg (2014)

9. Eigen, a C++ template library for linear algebra. http://eigen.tuxfamily.org
Accessed Feb 2015

10. Fan, C., Mitra, S.: Bounded verification using on-the-fly discrepancy computation.
Technical report UILU-ENG-15-2201, Coordinated Science Laboratory. University
of Illinois at Urbana-Champaign (2015)

11. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Benchmarks for model
transformations and conformance checking. In: 1st International Workshop on
Applied Verification for Continuous and Hybrid Systems (ARCH) (2014)

http://eigen.tuxfamily.org

12.

13.

14.

15.

Meeting a Powertrain Verification Challenge 543

Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: Proceedings of the 17th international conference on
Hybrid systems: computation and control, pp. 253-262. ACM (2014)

Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-
loop control models. In: Proceedings of the 16th international conference on Hybrid
systems: computation and control, pp. 43-52. ACM (2013)

Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-
loop control models. In: EEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems (2016, to appear)

Lohmiller, W., Slotine, J.J.E.: On contraction analysis for non-linear systems.
Automatica 36(4), 683-696 (1998)

	Meeting a Powertrain Verification Challenge
	1 A Challenge Problem
	2 Nonlinear Hybrid Powertrain Model
	3 Verification Using C2E2 with Local Discrepancy
	3.1 Tool Implementation and Engineering

	4 Experimental Results on Powertrain Challenge
	5 Conclusions and Future Work
	References

