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Abstract. In recent years, string solvers have become an essential com-
ponent in many formal-verification, security-analysis and bug-finding
tools. Such solvers typically support a theory of string equations, the
length function as well as the regular-expression membership predicate.
These enable considerable expressive power, which comes at the cost of
slow solving time, and in some cases even nontermination. We present
two techniques, designed for word-based SMT string solvers, to mitigate
these problems: (i) sound and complete detection of overlapping vari-
ables, which is essential to avoiding common cases of nontermination;
and (ii) pruning of the search space via bi-directional integration between
the string and integer theories, enabling new cross-domain heuristics. We
have implemented both techniques atop the Z3-str solver, resulting in
a significantly more robust and efficient solver, dubbed Z3str2, for the
quantifier-free theory of string equations, the regular-expression member-
ship predicate and linear arithmetic over the length function. We report
on a series of experiments over four sets of challenging real-world bench-
marks, where we compared Z3str2 with five different string solvers: S3,
CVC4, Kaluza, PISA and Stranger. Each of these tools utilizes a differ-
ent solving strategy and/or string representation (based e.g. on words,
bit vectors or automata). The results point to the efficacy of our pro-
posed techniques, which yield dramatic performance improvement. We
argue that the techniques presented here are of broad applicability, and
can be integrated into other SMT-backed string solvers to improve their
performance.

1 Introduction

Reasoning over strings is gaining increasing importance due to the security
threats imposed by improper handling of untrusted string values [7,19,27]. In
response, different powerful string solvers have been developed, including, e.g.,
HAMPI [19], Kaluza [28], PISA [30], Stranger [32], CVC4 [22], S3 [31], Norn [6]
and Z3-str [35]. These tools primarily solve the satisfiability problem over string
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(aka word) equations, with some of them also providing support for regular-
expression (RE) membership predicates and linear arithmetic over the length
function. While these tools have improved dramatically in recent years, the
demand for even more efficient solvers continues to grow unabated.

Motivated by this need for efficient string solvers, we present two new tech-
niques to solve combined string, regular-expression and integer constraints.
These techniques are applicable primarily to SMT solvers that treat strings with-
out abstractions or representation conversions, which we refer to collectively as
word-based string solvers. Examples of such solvers include the Z3-str, CVC4
and S3 string solvers.

For the sake of completeness, we compare and contrast our techniques against
solvers that use automata (e.g., PISA and Stranger) and bit-vector (e.g., Kaluza)
string representations. Word-based string solvers have several important advan-
tages: First, unlike bit-vector-based solvers, they can precisely model unbounded
strings and string equalities without over-approximation, a feature that is crucial
to string analysis of web applications. Second, by modeling strings and length
in native domains, word-based string solvers can leverage the state of the art
in integer constraint solving, and further enable hybrid techniques via power-
ful SMT engines. Finally, such solvers can take advantage of well-developed
application-specific rewrite rules.

At the same time, a fundamental problem of word-based string solvers (unlike
those based on bit vectors, which impose a finite domain) is that it is unclear,
at present, whether the satisfiability problem for the quantifier-free theory of
word equations, regular-expression membership predicate and length function is
decidable [24]. All current practical string solvers suffer from incompleteness and
nontermination. Addressing these problems is of primary importance, calling for
new techniques to effectively explore the solution space. In light of this motiva-
tion, we have developed two techniques that address the respective problems of
nontermination and search-space explosion.

First, a well-known reason for nontermination is overlapping variables
[6,11,35], as we illustrate with the equation a ·X = X ·b, where a, b are constant
strings and X is a string variable. Stated intuitively, the solution for X has to be
in the form of a ·X1 · b, where X1 is a string variable. The reduction step results
in a · X1 = X1 · b, which is in the same form as the original equation, and thus
leads to nontermination. However, this equation is obviously unsatisfiable. We
revisit this example in Sect. 3, which highlights the need for a robust procedure
to detect overlapping variables.

The second technique, given the tight interplay between string and integer val-
ues (in index-sensitive string operations), is bi-directional solver-level integration
between the string and integer theories. This can be leveraged to drastically reduce
the search space for typical constraints obtained from practical applications.

We have implemented both of these techniques atop the Z3-str solver as
the Z3str2 solver for the satisfiability problem over a quantifier-free theory of
word equations, regular-expression membership predicate as well as the length
function. We report on a comprehensive set of experiments that validate the
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efficacy of our proposed techniques by comparing Z3str2 with Kaluza, PISA,
Stranger, S3 and CVC4 over four sets of benchmarks derived from the real
world.1 We emphasize that our techniques are applicable also to other word-
based string solvers such as S3 and CVC4.

Contributions. To summarize, this paper makes the following principal
contributions:

1. Guided Search: We present two techniques designed for string solvers that
treat strings as primitive types. The first is a sound and complete method to
detect overlapping variables, which optimizes performance and avoids explo-
ration of certain paths that may lead to nontermination. The second technique
is a two-way integration between the string and integer theories, which enables
effective pruning based on cross-domain heuristics.

2. Z3-str Integration: We have integrated both of the aforementioned tech-
niques into the core solving algorithm of Z3-str. We describe the architecture of
the resulting tool, Z3str2, and prove its soundness.

3. Experimental Study: To validate the efficacy of our techniques, we have
conducted a comprehensive set of experiments where we compare Z3str2 against
five solvers — namely, S3, CVC4, Kaluza, PISA and Stranger — on four bench-
mark suites. The results show that Z3str2 is significantly faster than competing
solvers (often by orders of magnitude) in all but few cases.

1.1 Related Work

The theory considered in this paper – namely the quantifier-free (QF) theory
Twlr over word equations, membership predicate over REs, and length function –
is a multi-sorted theory with string (str) and numeric (num) sorts. Makanin was
the first to show, in 1977, that the QF theory of word equations is decidable [23].
Since, many have improved upon this seminal result [15,16,25,26,29]. In partic-
ular, Plandowski proved that this problem is in PSPACE [26]. Despite decades of
effort, the satisfiability problem for Twlr remains open [11,15,23,26]. Still, many
practical solvers have been proposed.

Automata-Based Solvers. Regular languages (or automata), as well as
context-free grammars (CFGs), can be used to represent strings and handling
regex-related operations. JSA [8] computes CFGs for string variables in Java
programs. Hooimeijer et al. [13] suggest an optimization whereby automata are
built lazily. A primary challenge faced by automata-based approaches, which
we do not suffer from, is to capture the connections between strings and other
domains, e.g., integers. To overcome this limitation, refinements have been pro-
posed. JST [12] extends JSA. It asserts length constraints in each automaton,
and handles numeric constraints after conversion. PISA [30] encodes Java pro-
grams into M2L formulas that it discharges to the MONA solver to obtain
1 The Z3str2 code, as well as the data pertaining to our experiments, are all available

at [1].
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path- and index-sensitive string approximations. PASS [20,21] combines
automata and parametrized arrays for efficient treatment of unsat cases. Stranger
is a powerful extension of string automata with arithmetic automata [32,33].

Bit-Vector Based Solvers. Another group of solvers converts string con-
straints to constraints into other domains such as integers or bit-vectors.
HAMPI [19] is an efficient solver that represents strings as bit-vectors, though
it requires the user to provide an upper bound on string lengths. Early versions
of Kaluza [28] extended both STP [10] and HAMPI to support mixed string
and numeric constraints represented as bit-vector. A similar approach powers
Pex [7], though strings are reduced to integer abstractions.

Word-Based String Solvers. CVC4 [22] handles constraints over the the-
ory of unbounded strings with length and RE membership. Solving is based
on multi-theory reasoning backed by the DPLL(T ) architecture combined with
existing SMT theories. The Kleene star operator in RE formulas is dealt with
via unrolling as in Z3str2. S3 [31] is another word-based solver, and it can be
viewed as an extension of an early version of Z3-str. Roughly speaking, CVC4,
S3 and Z3str2 embody similar approaches, and hence CVC4 and S3 can also
benefit from the techniques proposed in this paper.

1.2 Formal Preliminaries

Syntax of Word Equations, RE Membership, and Length. We fix a dis-
joint two-sorted set of variables var = varstr ∪ varint; varstr consists of string
variables, denoted X,Y, S, . . . and varint consists of integer variables, denoted
m,n, . . .. We also fix a two-sorted set of constants Con = Constr ∪ Conint.
Moreover, Constr ⊂ Σ∗ for some finite alphabet, Σ, whose elements are denoted
f, g, . . .. Elements of Constr will be referred to as string constants or strings. Ele-
ments of Conint are nonnegative integers. The empty string is represented by ε,
and length 0. Terms may be string terms or integer terms. A string term is either
an element of varstr, an element of Constr, or a concatenation of string terms
(denoted by the function concat or interchangeably by ·). An integer term is an
element of varint, an element of Conint, the length function applied to a string
term, a constant integer multiple of a integer term, or a sum of integer terms. The
theory contains three types of atomic formulas, namely, word equations, length
constraints, and RE membership predicates. REs are defined inductively, where
constants and the empty string form the base case, and the operations of con-
catenation, alternation, and Kleene star are used to build up more complicated
expressions (see details in [14]). REs may not contain variables. Z3str2 supports
a list of common string-related operators such as charAt, containts, startswith,
endswith, indexof, lastindexof, substring and etc. They are desugared to word
equations with length functions. Formulas are defined inductively over atomic
formulas and are quantifier-free.

Semantics of Word Equations, RE Membership, and Length. For a
word, w, len(w) denotes the length of w. The universe of discourse for the str
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sort is the set of strings Σ∗, and for the int sort is the set of natural numbers.
For a word equation t1 = t2, we refer to t1 as the left hand side (LHS), and t2
as the right hand side (RHS). We fix a string alphabet, Σ. Given a formula θ,
an assignment for θ (with respect to Σ) is a map from the set of variables in θ
to Σ∗ ∪ N (where string variables are mapped to strings and integer variables
are mapped to numbers). Given such an assignment, θ can be interpreted as an
assertion about Σ∗ and N. If this assertion is true, then θ is satisfiable or SAT.
A formula with no satisfying assignment is unsatisfiable or UNSAT. Two
formulas θ, φ are equisatisfiable if θ is SAT iff φ is SAT. The satisfiability problem
for a set S of formulas is to decide whether any given formula in S is SAT or
not. The satisfiability problem for a set of formulas is decidable if there exists an
algorithm (or satisfiability procedure) that solves its satisfiability problem. Sat-
isfiability procedures must have three properties: soundness, completeness, and
termination. Soundness and completeness guarantee that the procedure returns
SAT if and only if the input formula is indeed SAT. More precisely, the proce-
dure is sound if the procedure says UNSAT then the input is indeed unsatisfiable.
Completeness is the converse of soundness.

2 Overview of the Design Z3str2 String Solver

The Z3str2 solver is essentially a string plug-in built into the Z3 SMT Solver [9],
with an efficient integration between the string plug-in and Z3’s integer solver.
As can be seen from the architectural schematic of the Z3str2 string solver given
in Fig. 1 (and an algorithmic description is given in Algorithm 1), the first step
is to purify the input into two, namely, string constraints (word equations and
RE membership) on the one hand, and integer linear arithmetic constraints over
the length function on the other. Next, the word equations and RE constraints
are input to the string plug-in. The plug-in may consult the Z3 core to detect
equivalent terms. The word equations are solved using an algorithm described
in detail in the Sect. 3 below. The RE constraints are solved by unrolling as
described also in Sect. 3. The length constraints are converted into a system of
pure integer linear arithmetic inequations and solved using Z3’s integer solver.
During the solving process, the string plug-in may generate length constraints
that are incrementally added on demand to Z3’s integer solver, that are regularly
checked for consistency with both the input length constraints and previously
added ones.

On any well-formed input as described in Sect. 1.2, Z3str2 may return SAT,
UNSAT or UNKNOWN. Note that while Z3str2 can handle a boolean combi-
nation of atomic formulas, we refer only to conjunction of literals in the rest of
paper without loss of generality. If either Z3’s integer solver or our string plug-
in determines that their respective purified inputs are UNSAT, Z3str2 reports
UNSAT. If the string plug-in detects that the input equations have complicated
overlaps that its heuristics cannot handle, it reports UNKNOWN. This is a
source of incompleteness in name’s implementation. Note that Z3str2, like other
competing solvers such as CVC4, is sound but not complete.
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Fig. 1. Architecture of Z3str2.

The third and only remaining possibility is that both Z3’s integer solver
and the string plug-in determine that their respective purified inputs are SAT.
However, this does not necessarily mean that the input is SAT. It could be
that the solution produced by the integer solver is inconsistent with the solution
produced by the string solver, or vice-versa. For example, the integer solver
may say that a particular string variable, say X, has length equal to 1, while
the string plug-in might produce a specific assignment for X that is of length
equal to 2. One way to overcome this problem is to iterate through all possible
solutions until a consistent one is found, assuming one exists. However, given
that the domain of strings and natural numbers is infinite, it is possible that
such an iterative procedure may loop forever in the event there are no consistent
solutions to be found. In other words, if the input is indeed SAT, the procedure
discussed here will correctly establish consistency and determine that the input
is SAT. Unfortunately, it is possible that, when the input is in fact UNSAT, both
the integer solver and string plug-in may determine that their respective purified
inputs are SAT and may then loop forever searching for a combined consistent
solution. They are obviously not going to find a combined consistent solution
in such cases given that the input is in fact UNSAT, and hence the iterative
procedure may not terminate.

The above-described problem of non-termination due to the interaction
between the integer and string parts of the theory is not specific to Z3str2.
In fact, the problem of deciding the satisfiability problem for the quantifier-free
theory of word equations and length function remains open after decades of
research and is a major open problem in mathematical logic [24]. In conclusion,
if Z3str2 reports that the input is UNSAT, then indeed the input is UNSAT
(soundness). However, the converse is not necessarily true, i.e., just like all other
competing practical solvers, Z3str2 is not complete.

3 Word Equation Sub-solver in Z3str2

In this section, we focus on the word equation solving component of Z3str2. Start-
ing with the work of Makanin [23], many decision procedures [15,26,29] have
been proposed. While most procedures are not accompanied by practical imple-
mentations, they are a rich source of ideas for all the solvers that have recently
been implemented. For example, the Z3str2 solver follows ideas, namely, bound-
ary labels, generalized word equations and arrangements (discussed in greater
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Algorithm 1. A high-level description of Z3str2’s Algorithm
Input: Word equations Qw, and the corresponding integer linear arithmetic constraints Ql over
the length function
Output: SAT / UNSAT / UNKNOWN

1: procedure solveStringConstraint(Qw, Ql)
2: if equations in Qw are all in solved form and Qw is UNSAT or Ql is UNSAT then
3: return UNSAT
4: if equations in Qw are all in solved form and Qw and Ql can be consistently determined as

SAT together then
5: return SAT
6: Convert Qw equisatisfiably in disjunctive normal form (DNF) formula Qa

7: for each disjunct D in Qa do
8: Convert each equation in D to an arrangement consistent with the length constraints from

the integer theory
9: for each string variable x do

10: Merge per-equation arrangements to a set of possible global arrangements, denoted as G(x)
11: Detect arrangements with overlaps in G(x)
12: if there is any overlap then
13: Prune the global arrangements with the overlap from G(x)

14: for each global arrangement combination selected from G(x), G(y)..., for all variables x,
y,... do

15: Split each variable to sub-variables according to the selected global arrangement
16: Convert Qw equisatisfiably to a system Q′

w of simpler equation based on the new variables
17: Q′

l is the corresponding new set of length constraints
18: r = solveStringConstraint(Q′

w,Q′
l)

19: if r ≡ SAT then
20: return SAT
21: if overlapping variables have ever been detected then
22: return UNKNOWN
23: else
24: return UNSAT

detail in Subsect. 4.1), that have their roots in the very first decision procedure
for word equations by Makanin.

The key technique used by Z3str2 to solve a word equation W is to recursively
convert W equisatisfiably into disjunction of conjunctions of simpler equations
we call arrangements. These arrangements are computed by aligning the concate-
nation function on the LHS and RHS of a given equation such that an occurrence
of concatenation function in the LHS (resp. RHS) may “split” or “cut” variables
on the RHS (resp. LHS).

As an illustration, consider the following formula composed of three equa-
tions: Z = X · Y ∧ Z = W · c ∧ c · Y = c · b · c, where X, Y , Z and W are
string variables, and b and c are characters. A simple rewriting is the following:

Z = X · Y =⇒ Z1 = X ∧ Z2 = Y [1.1]

Z = W · c =⇒ Z1 = W ∧ Z2 = c [1.2]

c · Y = c · b · c =⇒ Y = b · c [1.3]

Observe that Z is split into Z1 and Z2, which are constrained differently.
However, this rewriting is not satisfiable because Y = c from equations [1.1] and
[1.2], and Y = b·c from equation [1.3]. Now observe that the alignment described
above is not the only one we can consider. Below is a different alignment that
leads to a new splitting and in fact yields a satisfying assignment:
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Z = W · c =⇒ Z1 = W
[1.4]

1 ∧ Z2 = W2 · c [1.5]

The difference now is that W is also split (into W1 and W2), and hence this
splitting yields a satisfying assignment. In particular, from [1.1], [1.3] and [1.5],
we have W2 = b. Also note that X, Z1 and W1 become free variables as they are
all equivalent but not constrained by any other variable.

What the above example highlights is that there are many different align-
ments of variable boundaries in the LHS (resp. RHS) that can split variables
in the RHS (resp. LHS). We call every such alignment an arrangement. Here
is the crucial fact about word equations: every equation can be equisatisfiably
rewritten into a finite set of arrangements, where each arrangement is a finite set
of word equations obtained from the splitting procedure described above. The
Z3str2 solver exploits this fact, and solves word equations by converting them
into finite sets of arrangements and inspecting each one individually to see if
they are satisfiable. The input word equation is SAT if and only if at least one
arrangement is SAT. This in a nutshell is how the word equations are solved
by the Z3str2 solver, i.e., by recursively converting equations into a disjunction
of arrangements (where each arrangement is a simpler set of equations) until a
set of arrangements is derived where the satisfiability can determined purely via
inspection.

Supporting Regular Expression Membership Predicates: A RE member-
ship predicate X ∈ R is reduced to word equations by a transformation function
ρ(X,R), where X is a string variable and R is a regular expression. The function
is defined as follows:

ρ(X, s) ::= X = s, where s is a constant string
ρ(X,R1|R2) ::= ρ(X,R1) ∨ ρ(X,R2)
ρ(X,R1 · R2) ::= X = T1 · T2 ∧ ρ(T1,R1) ∧ ρ(T2,R2)
ρ(X,R∗) ::= X = unroll(R, n) ∧ n ≥ 0

where n is a fresh integer variable for each Kleene star operation; T1 and T2

are fresh string variables; unroll(R, n) represents the expression obtained by
unrolling R n times. After the RE membership predicates are replaced by word
equations, the string solver proceeds as usual. When the solver explores various
arrangements, the unroll() functions are further simplified by the following rules.

X = unroll(R, n1) ::= if (n1 = 0) then {X = ε} else {X = T3 · unroll(R, n1 − 1) ∧ ρ(T3, R)}
X · Y = unroll(R, n1) ::= if (n1 = 0) then {X = ε ∧ Y = ε} else {X = unroll(R, n2) · T3

∧ Y = T4 · unroll(R, n3) ∧ n1 = n2 + n3 + 1 ∧ ρ(T3 · T4, R)}

Note that R is essentially unrolled once in the else branch of both rules. Just
like in other existing solvers that support RE, the unrolling process may not
terminate, especially when there are no length constraints associated with the
involved variables. We hence rely on a timeout mechanism.

While simple, elegant and efficient for typical equations obtained from program
analysis, the word equation solver described here may fall into infinite loops under
certain circumstances. This problem and our approach are described at length
below. In fact, the problem of “overlapping” variables described below is recog-
nized by logicians as the crucial source of complexity in solving word equations.
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X

X

a

X1

b

Fig. 2. Graphical representation of an arrangement of a · X = X · b, where the two
occurrences of X overlap represented by X1.

A Word Equation that Highlights the Crucial Overlap Detection
Problem: To illustrate the problem, consider the example: a · X = X · b, where
X is a string variable. X appears both as the LHS suffix and as the RHS pre-
fix. This equation is not satisfiable. However, if we solve it analogously, then
the solving procedure will not terminate. In particular, the equation has three
arrangements: The first arrangement is where X = ε, resulting in the equation
a = b which is unsatisfiable. The second arrangement is where the concatenation
function in the LHS and RHS align exactly such that we get X = a∧X = b. The
third arrangement is where the LHS occurrence of X cuts the RHS occurrence
in the RHS illustrated in Fig. 2.

Note that the suffix of X in the RHS (bottom part of Fig. 2) of the equation
overlaps with the prefix of X in the LHS (top part of Fig. 2). We represent this
overlapping part with a new variable X1. By applying some simple rewrites we
derive the following:

a · X = X · b =⇒ X = a · X
[2.1]

1 ∧ X = X1 · b [2.2]

From [2.1] and [2.2], we can infer a · X1 = X1 · b. Note this derived equation
has the same form as the input formula. As a result, the above-mentioned deci-
sion procedure will not terminate, unless some steps are taken to detect such
“overlaps” and determine their satisfiability without computing arrangements
ad infinitum.

One could imagine heuristics to detect and handle relatively simple overlaps
described above. However, in general, when many equations are involved with
variables overlapping indirectly, the problem is not easy to detect or decide.
In fact, overlapping variables get to the crux of the difficulty of solving word
equations, for otherwise simple rewrites can solve such equations. Hence, any
solution to detecting overlaps is of universal value, and can be used as subroutine
by many different types of string solvers.

4 New Techniques for Improving Efficiency
of String Solvers

In this section, we present two search space pruning techniques to improve per-
formance of word-based string solvers.

4.1 Subroutine for Detecting Overlapping Variables
in Word Equations

Here we provide details about detecting overlapping variables in word equations.
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Definition 1 (Boundary Labels, Generalized Word Equations, Label
Sets). We define boundary labels (aka labels) using special symbols ��

n (left)
and ��

n (right), where 	 is either a character c or a variable X, and n denotes
its n-th occurrence in the equation. A left/right pair of labels on either side of a
variable or character uniquely identifies the boundaries of that occurrence of that
character or variable. A set of labels is simply called a label set. A word equation
E annotated with label sets, where these sets replace every (implicit) occurrence
of the concatenation function in the words of E, is called a generalized word
equation.

Below is an example of the word equation a · X = X · b annotated with
boundary labels. Note that the right label of the character “a” and the left label
of the variable X are grouped into the set {�a

1 , �
X
1 }:

{�a
1}a{�a

1 ,�X
1 }X{�X

1 } = {�X
2 }X{�X

2 ,�b
1}b{�b

1}

Definition 2 (Label Arrangements and Merging of Label Sets). Given
a word equation E, a label arrangement or simply arrangement A of E is an
ordered sequence of label sets, where each label set in A is obtained by taking the
union (aka “merging”) of sequences of label sets from the LHS and RHS of E.
We define the merge of two sequences S1 ≡ {l1, · · · , lk} and S2 ≡ {r1, · · · , rk}
as some sequence S3 whose elements are either simply elements of S1 or S2 or
the union of some elements of S1 and S2.

The intuition behind the construction of an arrangement A of given equation
l = r is very straightforward, namely, that we align the natural boundaries of
the LHS l and RHS r by appropriately merging the label sets of the LHS and
the RHS of E to obtain arrangements. The reason we construct arrangement is
that it allows us to recursively derive simpler equations from a given equation
E, until they are so simple that their satisfiability can be trivially determined.

By construction, a word equation can be equisatisfiably reduced to a finite
disjunction of arrangements (The satisfiability of an arrangement is defined in
terms of the word equations it implies). To better understand how arrangements
are derived from an equation (or more precisely a generalized word equation)
consider the following:

{�a
1}a{�a

1 ,�Y
1 }Y {�Y

1 } = {�X
1 }X{�X

1 ,�b
1}b{�b

1}

A possible arrangement of its two words is the following:

{�a
1 , �

X
1 } · {�a

1 , �
X
1 , �Y

1 , �b
1} · {�Y

1 , �b
1}

From this arrangement, we can easily derive two smaller equations, X = a and
Y = b, which directly yield a solution. In our tech report (TR) [34] we describe, in
much greater detail, several operations for label set manipulation and of “merg-
ing” label sets to obtain arrangements, and merging arrangements from multiple
word equations. These operations are key for detecting complex overlapping vari-
ables that occur over multiple equations, and are not immediately obvious as is
the case in a · X = X · b.
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Detecting Overlapping Variables by Merging Arrangements: Just as we
can construct arrangements by merging the ordered sequence of labels over words
from a single equation, we can merge the arrangements obtained from multiple
word equations, when these equations contain occurrences of the same variable.
Intuitively, the arrangements from multiple equations may imply a variable being
cut/split differently (e.g., X is cut by the boundary of Y in one equation and by
the boundary of Z in another). Our algorithm explores all the possible orders of
the cuts from different arrangements, denoted as label sets, for the same variable.
Each order yields a global arrangement for the variable. As such, each variable is
divided into a set of sub-variables guided by the global arrangement; the previous
system of equations is hence reduced to a new system of equations with shorter
and simpler words. More details can be found in our TR.

Detection of overlapping variable can be done by checking the following con-
dition in any global arrangement: in the ordered sequence of label sets of a
global arrangement, there exists a left label of an occurrence of a variable X
that occurs in a label set in between two label sets where the first contains the
left label and the second contains the right label of another occurrence of X. We
say that X is an overlapping variable in the given system of word equations. As
an example, consider the arrangement in Fig. 2 that has overlapping variables.
This arrangement written per the formal definition as a sequence of label sets
we have:

{�a
1 , �

X
2 } · {�a

1 , �
X
1 } · {�X

2 , �b
1} · {�X

1 , �b
1}

Theorem 1. The subroutine for detecting overlapping variables is sound, com-
plete and terminating, i.e., it correctly detects all overlapping variables and
terminates.

4.2 String and Integer Theory Integration

Basic Length Rules. For strings X and Y , we assert the following: (1) |X| ≥ 0
(2) |X| = 0 ↔ X = ε (3) X = Y → |X| = |Y | (4) |X · ... · Y | = |X| + ... + |Y |.
String and Integer Theory Integration: As discussed in Sect. 2, finding a
consistent solution for both strings and numbers can be expensive due to the
infinite search space. The goal of string and integer theory integration is to
achieve synergy from the two such that the procedure can converge faster. In
particular, one theory will generate new assertions in the domain of the other
theory, and vice versa. Inside the string theory, the set of arrangements that is
explored is constrained by the assertions on string lengths, which are provided
by the integer theory. On the other hand, the string theory will derive new
length assertions when it makes progress in exploring new arrangements. These
assertions are provided to the integer theory so that the search space is pruned.

Consider X ·Y = M ·N , where X,Y,M and N are nonempty string variables.
It has three possible arrangements: [a1] X = M · T1 ∧ N = T1 · Y ; [a2] X =
M ∧N = Y ; [a3] M = X ·T2 ∧Y = T2 ·N . Assume the integer theory infers that
|X| > |M | or |Y | < |N |. Thus, only [a1] is consistent with the length conditions.
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The string solver only needs to explore one arrangement instead of three. On the
other hand, assume the string solver is exploring arrangement [a1]. It generates
a new assertion [a1] → |X| = |M · T1| ∧ |N | = |T1 · Y | ∧ |X| > |M | ∧ |N | > |Y |,
which in turn triggers the Z3 core to add an integer assertion.

Note that different string solvers implement string and integer integrations in
vastly different ways [7,22,31,33]. [7] focuses on integration in a staged manner.
[33] focuses on integration via automata manipulations. [22,31] and Z3str2 are
integrations within the DPLL(T) architecture, where the algorithm only solves
parts of the formula on demand and learns new constraints as it solves such
that these implied constraints often cut the search dramatically. Compared to
[22,31], our integration is tighter, powered by the bi-directional heuristics.

5 Soundness of the Z3str2 Algorithm

In this section we sketch the soundness proof of name’s algorithm given in Algo-
rithm 1. For a detailed formal analysis we refer the reader to the associated
tech-report. The soundness property of any decision procedure in an SMT solving
context can be stated as “If the procedure returns UNSAT, then input formula
is indeed UNSAT”.

Theorem 2. Algorithm 1 is sound, i.e., when Algorithm 1 reports UNSAT, the
input constraint is indeed UNSAT.

Proof. To see that Z3str2 is sound, we show that the UNSAT returned at line
3 and line 24 are both sound. First observe that line 3 returns an UNSAT if
either string or integer constraints are determined to be UNSAT. For string
constraints, we use the algorithms described in [11] to decide the satisfiability
of word (dis)equations in the solved form. The soundness of line 3 relies on the
soundness of the procedure [11] and the integer solver (here Z3).

For the UNSAT returned at line 24, we show transformations impacting it
are all satisfiability-preserving. If a transformation is satisfiability-preserving, it
means its output formula is satisfiable if and only if its input formula is satisfi-
able. In particular, transformations at (i) line 6 (ii) line 8 (iii) line 10 and (iv)
lines 15–16 are satisfiability-preserving: (i) The disjunctive normal form conver-
sion at line 6 is obviously satisfiability-preserving. (ii) The conversion in line 8
is probably the most involved in terms of establishing soundness. This step is a
variant of the idea of sound transformation of word equations to arrangements
mentioned in Makanin’s paper [23]. We can show that arrangement generation
is satisfiability-preserving because each arrangement is a finite set of equations
implied by the input system of equations. In addition, we extract length con-
straints from arrangements and they may conflict with the existing integer con-
straints. If so, we drop inconsistent arrangements based on the UNSAT results
determined by the integer theory. Similarly, since we assume the integer theory
is sound, this step is also satisfiability-preserving. (iii) At line 10, we system-
atically enumerate all feasible orders among boundary labels according to the
Definition 2. This step is satisfiability-preserving. (iv) In lines 15 and 16, this
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step derives simpler equations by a satisfiability-preserving rewriting. Please see
the technical report for proof details. Note the REs are reduced to word equa-
tions so that they can be handled by this same procedure. In addition, although
we prune arrangements at line 13, the answer can only be SAT or UNKNOWN
once this happens. The algorithm is still sound. Therefore, we return UNSAT
exactly when we can prove this to be the case.

6 Experimental Results

In this section, we describe the implementation of Z3str2, as well as experi-
ments to validate the efficacy of the new techniques proposed in this paper,
namely, overlapping-variable detection and deeper string/integer theory inte-
gration. Both techniques improve solver efficiency in isolation, as well as when
switched on simultaneously. However, in the interest of space we only report
their combined contributions.

1. Detection of Overlapping Variables. During solving, Z3str2 prunes away
arrangements with overlapping variables, leading to a smaller search space. Thus,
if the technique is effective, we would be able to observe that other solvers time
out on the cases reported as UNKNOWN by Z3str2. In Z3str2, an UNKNOWN
result is returned when no SAT can be established in all arrangements with
non-overlapping variables.

2. Evaluating String and Integer Theory Integration. The contribution
of the string and integer integration will be illustrated by the improvement on
the performance in resolving both the SAT and UNSAT cases, in comparison
with other solvers.

We compare Z3str2 against five state-of-the-art string solvers, namely, CVC4
[22], S3 [31], Kaluza [28], PISA [30], and Stranger [32] across four different suites
of benchmarks obtained from Kudzu/Kaluza [28], PISA [30], AppScan Source [2]

Fig. 3. Cactus plots for the Kaluza benchmark suite (incorrect results excluded)
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and Kausler’s [18] projects. Given the rich and diversified landscape of string
problems, we chose to validate our approach using benchmarks from real-world
applications with different characteristics. Additionally, the total number of tests
on which we compared Z3str2 with other solvers is approximately 69,000.

Kaluza Benchmark Suite. The Kaluza constraints were generated by a
JavaScript symbolic execution engine [28], where length, concatenation and
(finite) RE membership queries occur frequently. Both CVC4 and S3 were origi-
nally evaluated only on this suite, which consists of approximately 50 K problems
in the Kaluza format. The CVC4 team selected 47, 284 of them, and translated
them into the CVC4 format. The S3 team did the translation to S3 format. We
wrote translators from CVC4 to Z3str2, and from Z3str2 to CVC4. The time-
out threshold for comparison over this suite was set at 20 seconds per problem,
which was the threshold used in CVC4 [22].

PISA Benchmark Suite. While the Kaluza suite is large and diverse, and
includes string problems of varying sizes, it only contains a small subset of
string operations. To make the comparison more comprehensive, we included
constraints from real-world Java sanitizer methods that were used in the evalua-
tion of the PISA system [30]. Sanitizers cleanse user input to remove the threat
of an injection attack. They are usually complex and utilize various primitive
string operations. We generated two groups of constraints: First, as in the PISA
paper, we encode the semantics of the sanitizers and check the return value(s)
against predefined attack patterns (such as cross-site scripting (XSS)). In the
second group, we also encode input constraints per the application defining the
sanitizer. For the PISA suite, we set a timeout value of 200 seconds due to its
higher complexity.

AppScan Benchmark Suite. The third suite of benchmarks is derived from
security warnings output by IBM Security AppScan Source Edition [2], an appli-
cation sold commercially by IBM. These reflect potentially vulnerable infor-
mation flows, represented as traces of program statements, which yield more
representative real-world constraints than focusing on sanitizers only. We ran
AppScan on popular websites to obtain traces. Similar to the PISA benchmarks,
the AppScan constraints also utilize a rich set of string operators. As with PISA,
timeout here too was set at 200 seconds per benchmark.

Kausler Benchmark Suite. The final suite is extracted from 8 Java programs
by Scott Kausler [18]. They represent path conditions obtained from dynamic
symbolic execution, and are pure string constraints [17]. Unlike other bench-
marks, Kausler’s suite does not dump string constraints to file but instead calls
the solvers via an API. The suite contains 174 path condition encoding files,
and the resulting constraints are input to the solvers in-memory via their APIs.
The comparison [18] was originally done using a driver interface [3]. However,
we observed bugs ranging from JNI issues for Stranger to generating invalid con-
straints for Z3str2. We made our best attempt to compare Z3str2 with Stranger
using modified interfaces [1] patched by both the Stranger team and us.
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Table 1. Results on Kaluza suite [28].

6.1 Performance Results

The results we obtained are summarized in Tables 1–3 and Fig. 3 with appropri-
ate references to the various benchmark suites2.

Kaluza Suite. In Table 1, “tool reports error” counts the number of inputs on
which the solver reports an error. “crash”, instead, refers to runtime errors such
as segfaults. For “sat” and “unsat”, × denotes the number of provably incorrect
results (either an “unsat” response where the problem has a verified solution or
a “sat” response with an infeasible solution, as defined in [22]), and

√
the rest.

The comparison involves Z3str2 without bi-directional integration, CVC4 and
S3, but not PISA, as PISA cannot model string lengths or symbolic arithmetic
operations that are intensive in the suite.

According to Table 1, neither Z3str2 nor CVC4 report any provably incorrect
result, though Z3str2 is more effective and can solve more cases (46658 compared
to 44815) without timeouts. Though Z3str2 additionally has 626 unknown cases,
CVC4 times out on all these cases. Z3str2 without bi-directional integration
solves 2593 fewer cases and timeouts more often. S3 has errors in both directions,
as well as an overall of 989 timeouts, while Kaluza suffers less from timeouts
(340) but has many sat-as-unsat errors (10909). Kaluza therefore is unsound.
Since Kaluza only provides assignments for variables matching the query, sat
answers are not verifiable. Both S3 and Kaluza also have tool errors (2 and 2285,
respectively). In addition, S3 crashes on 1539 cases. To compare performance on
the sat and unsat Kaluza cases across the different solvers, we created the cactus
plots in Figs. 3a (sat) and 3b (unsat). Incorrect results are excluded. In both
categories, Z3str2 and CVC4 have comparable performance, while Z3str2 solves
more cases and is faster on complex cases. S3 and Z3str2 without string-integer
integration are slower. Kaluza has the worst performance.

2 All experiments were performed on a workstation running Ubuntu 12.04 with an i7-
3770 CPU and 8GB of RAM memory. For reproducibility, we have made the Z3str2
source code publicly available [1]. We used V1.5-prerelease of CVC4; the version of
S3 from the original paper [31]; the Kaluza version from the CVC4 paper with “var”
as the query string; and Stranger from [4].
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PISA Suite. Table 2 presents the results on the PISA benchmarks. The “string
operators stats” column lists the involved operations and their number of occur-
rences. In addition, we also count the number of variables and predicates for
each format. In this comparison, we included CVC4 and PISA, but not S3 and
Kaluza, as we were not able to model popular string operations such as indexof
using their language. Besides, for PISA, while one group of constraints is equiva-
lent to the MONA program generated by PISA, enabling proper comparison, the
other group requires changes to the PISA translation algorithm (to fix the input
constraints as well as the negative output constraints), and thus the respective
comparisons were not possible. From Table 2, we have the following observa-
tions. First, Z3str2 reports 8 sat cases compared to 6 by CVC4 and 2 timeouts.
For the 6 sats in common, Z3str2 solves them in 1.069s while CVC4 requires
51.394s. Second, MONA and Z3str2 are in agreement. MONA runs faster on
the sat cases, though it cannot generate satisfying string assignments, and has
comparable performance to Z3str2 on the unsat cases.

AppScan Suite. The results of the third comparison over the AppScan suite
appear in Table 3. Z3str2 reports sat on 8 cases while CVC4 agrees on 4 and
times out on the rest. The performance gap between the solvers on sat cases in
agreement is significant: Z3str2 completes in 0.707s, whereas the CVC4 solving
time is 154.852s.

Kausler Suite. We were able to run the Stranger tool on 5 sets in this suite —
namely, beasties, jerichoHTMLParser, mathParser, mathQuizGame and natural-
CLI — without crashing or hanging. Across these 5 sets, we found that the aver-
age solving time per constraint instance for Z3str2 are 6.4ms, 10.7ms, 39.9ms,
7.1ms and 23.4ms respectively, and for Stranger are 51.8ms, 5.9ms, 1.4ms,
9.4ms and 3.0ms. Z3str2 is faster than Stranger on two of these sets, Stranger
is faster than Z3str2 on the remaining three.

However, these findings should be qualified. First, Stranger crashes or hangs
on 98 files. Z3str2 neither crashes nor hangs nor times out on any of the gen-

Table 2. Results on constraints generated from sanitizers detected by PISA [30].

input
string operators stats

(omitting eq and dis-eq)
Z3str2 CVC4 PISA-MONA

var pred result time (s) var pred result time (s) var pred result time (s)
pisa-000.smt2 contains (3), indexof (1), substring (1) 4 12 sat (

√
) 0.164 4 12 sat (

√
) 0.264 9 301 sat (?+) 0.029

pisa-001.smt2 contains (1), indexof (1), substring (1) 4 9 sat (
√
) 0.114 4 9 sat (

√
) 0.032 —+ — + — + — +

pisa-002.smt2 contains (4) 2 10 sat (
√
) 0.114 2 10 sat (

√
) 50.871 — — — —

pisa-003.smt2 contains (3), concat (1) 3 11 unsat (
√
) 0.064 3 11 timeout 200.00 — — — —

pisa-004.smt2 contains (2), indexof (1), length (1), 7 22 unsat (
√
) 0.038 10 32 timeout 200.00 9 331 unsat 0.041

lastIndexof† (1), substring (2) (
√
)

pisa-005.smt2 indexof (1), lastIndexof† (1), length (1), 7 23 sat (
√
) 0.115 10 33 sat (

√
) 0.165 — — — —

substring (2),
pisa-006.smt2 indexof (1), lastIndexof† (1), length (1), 7 24 unsat (

√
) 0.039 11 36 timeout 200.00 9 331 unsat 0.038

substring (2), contains (1) (
√
)

pisa-007.smt2 indexof (2), lastIndexof† (1), length (1), 8 26 unsat (
√
) 0.042 11 36 timeout 200.00 9 324 unsat 0.039

substring (2), contains (1) (
√
)

pisa-008.smt2 replace∗ (5), contains (2) 6 13 sat (
√
) 0.214 6 13 timeout 200.00 9 283 sat (?+) 0.031

pisa-009.smt2 replace (2), concat (1), contains (2) 3 8 sat (
√
) 0.447 3 8 sat (

√
) 0.046 9 292 sat (?+) 0.054

pisa-010.smt2 replace (2), concat (1) 3 6 sat (
√
) 0.165 3 6 timeout 200.00 — — — —

pisa-011.smt2 replace (1), concat (2) 3 6 sat (
√
) 0.115 3 6 sat (

√
) 0.016 — — — —

+We could not generate constraints without changing PISA. No string solutions are generated so it’s not verifiable.
† CVC4 doesn’t provide operator ‘lastIndexof’. We encode it with operators “concat”, “length” and “contains”.
∗ replace applies to the first occurrence of the argument string for both Z3str2 and CVC4.
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Table 3. Results on constraints derived from AppScan traces [2].

input string operators stats (omitting eq and dis-eq)
Z3str2 CVC4

var pred result time (s) var pred result time (s)
t01.smt2 indexof (4), substring (3) 7 37 sat (

√
) 0.265 7 37 timeout 200.00

t02.smt2 concat (3), membership (1), regexConcat (2), 5 47 sat (
√
) 0.215 5 33 sat (

√
) 0.026

regexUnion (14), str2Regex (17), length (1)
t03.smt2 concat (3), membership (1), regexConcat (2), 5 46 sat (

√
) 2.519 5 32 timeout 200.00

regexUnion(14), str2Regex (17), length(1)
t04.smt2 concat (5), membership (1), regexConcat (2), 6 50 sat (

√
) 4.574 6 35 timeout 200.00

regexUnion (14), str2Regex (17), length(1)
t05.smt2 concat (3), membership (1), regexConcat (2), indexof (1) 8 56 sat (

√
) 2.770 8 42 timeout 200.00

regexUnion (14), str2Regex (17), length (2), substring (1)
t06.smt2 concat (1), indexof (3), endsWith (5) 5 33 sat (

√
) 0.214 5 33 sat (

√
) 3.021

t07.smt2 concat (6), regexStar (2), str2Regex (4), endsWith (2) 8 32 sat (
√
) 0.114 8 29 sat (

√
) 0.115

regexUnion (2), membership (2), startsWith (2)
t08.smt2 concat (2), regexStar (2), str2Regex (4), endsWith (2) 5 23 sat (

√
) 0.164 5 22 sat (

√
) 151.663

regexUnion (2), membership (2), startsWith (2)

erated instances. We have omitted these 98 files from our comparison. Addi-
tionally, Stranger over-approximates disequalities (
= operator) among variables
that can represent multiple strings [5]. We observe that such cases commonly
exist in all sets (the percentages of instances with 
= operators in each set are
83.4%, 61.7%, 79.0%, 96.0% and 95.0% respectively, and many fall into this
category of disequalities among variables that represent multiple strings). This
implies that Stranger produces unsound results. We believe that some of these
constraints are easy for Stranger thanks to this over-approximation. By contrast
Z3str2 correctly implements all operators and predicates in its input language.
Finally, Stranger requires that integers occurring as indices and length bounds
be constant, whereas Z3str2 and most other competing solvers support integers
symbolically thus providing expressive power that is essential in practice.

6.2 Interpretation of Results

The general trend, across all benchmark suites, is that CVC4 has comparable
performance to Z3str2 although CVC4 times out far more often than Z3str2,
whereas S3 is significantly slower. These results establish the efficacy of both
techniques presented in this paper.

Detection of Overlapping Variables. Z3str2 can decide either sat or unsat
on 98.7%, 100% and 100% of the instances in the Kaluza, PISA and AppScan
suites, respectively. CVC4, in comparison, achieves 94.8%, 50% and 50%. For
unknowns reported by Z3str2 on the Kaluza instances, which occur in merely
1.3% of the cases, CVC4 times out on all of them. This lends support to our
design choice of purposely pruning away parts of the solution space (those with
overlapping arrangements) to avoid nontermination.

String and Integer Theory Integration. As the comparisons between Z3str2
versions with and without the integration clearly demonstrate, there is significant
gain thanks to tightening the integer and string theory integration, which enables
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generation of implied constraints in both domains for more aggressive elimination
of assignments unsatisfying for combined string-integer constraints.

7 Conclusion

We have described two techniques that dramatically improve the efficiency of
word-based string solvers: (i) a sound and complete procedure to detect overlap-
ping variables, thereby automatically identifying and avoiding sources of nonter-
mination; and (ii) tight bi-directional integer/string theory integration, thereby
pruning a vast array of inconsistent search candidates. We have implemented
both of these techniques on top of Z3-str as Z3str2. We show the efficacy of
these techniques through an extensive set of experiments, comparing Z3str2 with
the CVC4, S3, Kaluza, PISA and Stranger solvers over four benchmark suites
derived from real-world applications.
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