Modular Deductive Verification
of Multiprocessor Hardware Designs

Muralidaran Vijayaraghavan'®™) Adam Chlipala', Arvind!,
and Nirav Dave?

1 MIT, Cambridge, USA
{vmurali,adamc,arvind}@csail.mit.edu
2 SRI International, Menlo Park, USA
ndave@csl.sri.com

Abstract. We present a new framework for modular verification of
hardware designs in the style of the Bluespec language. That is, we for-
malize the idea of components in a hardware design, with well-defined
input and output channels; and we show how to specify and verify com-
ponents individually, with machine-checked proofs in the Coq proof assis-
tant. As a demonstration, we verify a fairly realistic implementation of a
multicore shared-memory system with two types of components: memory
system and processor. Both components include nontrivial optimizations,
with the memory system employing an arbitrary hierarchy of cache nodes
that communicate with each other concurrently, and with the proces-
sor doing speculative execution of many concurrent read operations.
Nonetheless, we prove that the combined system implements sequen-
tial consistency. To our knowledge, our memory-system proof is the first
machine verification of a cache-coherence protocol parameterized over an
arbitrary cache hierarchy, and our full-system proof is the first machine
verification of sequential consistency for a multicore hardware design that
includes caches and speculative processors.

1 Introduction

A modern high-performance, cache-coherent, distributed-memory hardware sys-
tem is inherently complex. Such systems by their nature are highly concurrent
and nondeterministic. The goal of this work is to provide a framework for full
verification of complex hardware systems.

Modularity has long been understood as a key property for effective design
and verification in this domain, decomposing systems into pieces that can be
specified and verified independently. In our design, processors and memory sys-
tems independently employ intricate optimizations that exploit opportunities for
parallelism. We are able to prove that each of these two main components still
provides strong guarantees to support sequential consistency (SC) [25], and then
compose those proofs into a result for the full system. Either component may be
optimized further without requiring any changes to the implementation, specifi-
cation, or proof of the other. Our concrete optimizations include speculation in
processors and using a hierarchy of caches in memory.

© Springer International Publishing Switzerland 2015
D. Kroening and C.S. P&sareanu (Eds.): CAV 2015, Part II, LNCS 9207, pp. 109-127, 2015.
DOI: 10.1007/978-3-319-21668-3_7

110 M. Vijayaraghavan et al.

We thus present the first mechanized proof of correctness of a realis-
tic multiprocessor, shared-memory hardware system, including the first
mechanized correctness proof of a directory-based cache-coherence
protocol for arbitrary cache hierarchies, i.e., the proof is parameterized
over an unknown number of processors connected to an unknown number of
caches in an unknown number of levels (e.g., L1, L2). Our proof has been carried
out in the Coq proof assistant and is available at http://github.com/vmurali/
SeqConsistency. Since our technique is based on proof assistants, the computa-
tional complexity of verification remains constant for any choice of parameters.
In the process, we introduce a methodology for modular verification of
hardware designs, based on the theory of labeled transition systems (LTSes).

LTSes as hardware descriptions are an established idea [2,17,18], for which
there are compilers that convert LTSes into efficient hardware. Our work is
based on the Bluespec language [3,6], whose semantics match the formalism of
this paper. Bluespec specifies hardware components as atomic rules of a transi-
tion system over state elements, and its commercial compiler synthesizes these
specs into circuits (i.e., Verilog code) with competitive performance. The model
that we verify is close to literally transliterated from real Bluespec designs that
have been compiled to hardware. Our cache-coherent memory system is based
on a Bluespec implementation [13] used to implement an FPGA-based simu-
lator for a cache-coherent multiprocessor PowerPC system [23]. The hardware
synthesized from that implementation is rather efficient: an 8-core system with
a 2-level cache hierarchy can run 55 million instructions per second on the BEE
FPGA board [10]. Within Coq we adopt a semantics style very close to Bluespec,
using inductive definitions of state transition systems, where each transition rule
corresponds to an atomic Bluespec rule.

Our high-level agenda here is to import to the hardware-verification domain
good ideas from the worlds of programming-language semantics and formal soft-
ware verification, and to demonstrate some advantages of human-guided deductive
techniques over model-checking techniques that less readily support modularity
and generalization over infinite families of systems, and which may provide less
insight to hardware designers (e.g., by not yielding human-understandable invari-
ants about systems).

Paper Organization: We begin with a discussion of related work in Sect. 2.
Section 3 introduces our flavor of the labeled transition systems formalism, includ-
ing a definition of trace refinement. Section 4 shows a generic decomposition of
any multiprocessor system, independently of the memory model that it imple-
ments, and discusses the store atomicity property of the memory subcomponent.
Section 5 gives a simple formal model of sequential consistency. The following sec-
tions refine the two main subcomponents of our multiprocessor system. Section 7
discusses definition and verification of a speculative processor model, and Sect. 8
defines and proves our hierarchical cache-coherence protocol. Finally, Sect.9
shows the whole-system modular proof of our complex system and ends with
some conclusions in Sect. 10.

http://github.com/vmurali/SeqConsistency
http://github.com/vmurali/SeqConsistency

Modular Deductive Verification of Multiprocessor Hardware Designs 111

2 Related Work

Hardware verification is dominated by model checking — for example, processor
verification [8,29] and (more recently) Intel’s execution cluster verification [22].
Many abstraction techniques are used to reduce designs to finite state spaces,
which can be explored exhaustively. There are limits to the construction of sound
abstractions, so verifications of protocols such as cache-coherence have mostly
treated systems with concrete topologies, involving particular finite numbers
of caches and processors. For instance, explicit-state model checking tools like
Murphi [15] or TLC [21,26] are able to handle only single-level cache hierar-
chies with fewer than ten addresses and ten CPUs, as opposed to the billions of
addresses in a real system, or the ever-growing number of CPUs. Symbolic model-
checking techniques have fared better: McMillan et al. have verified a two-level
MSI protocol based on the Gigamax distributed multiprocessor using SMV [31].
Optimizations on these techniques (e.g., partial-order reduction [4], symmetry
reduction [5,11,12,16,19,37], compositional reasoning [20,28,30], extended-
FSM [14]) also scale the approach, verifying up to two levels of cache hierar-
chy, but are unable to handle multi-level hierarchical protocols. In fact, related
work by Zhang et al. [37] insists that parameterization should be restricted to
single dimensions for the state-of-the-art tools to scale practically. In all these
cases, finding invariants automatically is actually hard. Chou et al. [12] require
manual insertion of extra invariants, called “non-interference lemmas”, to elimi-
nate counterexamples that violate the required property. Flow-based methodol-
ogy [35] gives yet another way of manually specifying invariants. In general, we
believe that the level of complexity of the manually specified invariants between
those approaches and ours is similar. Moreover, we might hope to achieve higher
assurance and understanding of design ideas by verifying infinite families of
hardware designs, which resist reduction to finite-state models. Past work by
Zhang et al. [37] has involved model-checking hierarchical cache-coherence pro-
tocols [38], with a restriction to binary trees of caches only, relying on paper-
and-pencil proofs about the behavior of fractal-like systems. Those authors agree
that, as a result, the protocol suffers from a serious performance handicap. Our
cache protocol in this paper is chosen to support more realistic performance
scaling.

Theorem provers have also been used to verify microprocessors, e.g., HOL to
verify an academic microprocessor AVI-1 [36]. Cache-coherence proofs have also
used mechanized theorem provers, though all previous work has verified only
single-level hierarchies. Examples include using ACL2 for verifying a bus-based
snoop protocol [32], using a combination of model-checking and PVS [33] to
verify the FLASH protocol [24], and using PVS to mechanize some portions of a
paper-and-pencil proof verifying that the Cachet cache-coherence protocol [34]
does not violate the CRF memory model. The first two of these works do not
provide insights that can be used to design and verify other protocols. The last
falls short of proving a “full functional correctness” property of a memory system.
In this paper, we verify that property for a complex cache protocol, based on
human-meaningful invariants that generalize to related protocols.

112 M. Vijayaraghavan et al.

3 Labeled Transition Systems

We make extensive use of the general theory of labeled transition systems, a
semantics approach especially relevant to communicating concurrent systems. As
we are formalizing processors for Turing-complete machine languages, it is chal-
lenging to prove that a system preserves almost any aspect of processor behav-
ior from a model such as SC. To focus our theorems, we pick the time-honored
property of termination. An optimized system should terminate or diverge iff
the reference system could also terminate or diverge, respectively. All sorts of
other interesting program properties are reducible to this one, in the style of
computability theory. Our basic definitions of transition systems build in special
treatment of halting, so that we need not mention it explicitly in most of the
following contexts.

Definition 1. A labeled transition system (LTS) is a ternary relation, over
SH x £¢ x SH, for some sets S of states and L of labels. We usually do not
mention these sets explicitly, as they tend to be clear from context. We write X ¢
for lifting of a set X to have an extra “empty” element ¢ (like an option type
in ML). We write X* for lifting of a set X to have an extra “halt” element H.
We also implicitly consider each LTS to be associated with an initial state in S.

For LTS A, we write (s) % (s") as shorthand for (s,¢,s’) € A, and we write Ag

for A’s initial state. The intuition is that A is one process within a concurrent
system. The label £ from set £ of labels is produced when A participates in some
IO exchange with another process; otherwise it is an empty or “silent” label e.
For brevity, we may omit labels for € steps.

3.1 Basic Constructions on LTSes

From an LTS representing single-step system evolution, we can build an LTS
capturing arbitrary-length evolutions.

Definition 2. The transitive-reflexive closure of A, written A*, is a derived
LTS. Where A’s states and labels are S and L, the states of A* are S, and the
labels are L*, or sequences of labels from the original system. A* steps from s
to s’ when there exist zero or more transitions in A that move from s to s'. The
label of this transition is the concatenation of all labels generated in A, where
the empty or “silent” label € is treated as an identity element for concatenation.

We also want to compose n copies of an LTS together, with no explicit com-
munication between them. We apply this construction later to lift a single-CPU
system to a multi-CPU system.

Definition 3. The n-repetition of A, written A™, is a derived LTS. Where
A’s states and labels are S and L, the states of A™ are 8™, and the labels are
[1,n] x L, or pairs that tag labels with which component system generated them.
These labels are generated only when the component system generates a label.
The whole system halts whenever one of the components halts.

Modular Deductive Verification of Multiprocessor Hardware Designs 113

Eventually, we need processes to be able to communicate with each other, which
we formalize via the + composition operator that connects same-label transitions
in the two systems, treating the label as a cooperative communication event that
may now be hidden from the outside world, as an ¢ label.

Definition 4. Where A and B are two LTSes sharing labels set L, and with
state sets Sa and Sp respectively, the communicating composition A+ B is
a new LTS with states So x Sp and an empty label set, defined as follows:

(@ @) o #H)=) v AH . (@) 7 (1)
@) o @) (@.0) S (@) (@) 4 D)
(b) = (H) () %» @) ;% ®) oV EH
A=) - T b Ty
ab) — 5 (a,b) A+—B’ (a’,b")

3.2 Refinement Between LT Ses

We need a notion of when one LTS “implements” another. Intuitively, transition
labels and halting are all that the outside world can observe. Two systems that
produce identical labels and termination behavior under all circumstances can
be considered as safe substitutes for one another. We need only an asymmetrical
notion of compatibility:

Definition 5. For some label domain L, let f : L — L be a function that is
able to replace labels with alternative labels, or erase them altogether. Let LTSes
A and B have the same label set L. We say that A trace-refines B w.r.t. f,
or AC; B, if:

f(n)

Vsa,1. (Ao) % (sa) = Jsp. (Bo) =L (sp) A(sa=H < sg = H)

*

Each label in the trace is replaced by the mapping of f on it, and labels
mapped to € by f are dropped. f is overloaded to denote the multilabel version
when applied to 7.

For brevity, we write A C B for A Ciy B, for identity function id, forcing traces
in the two systems to match exactly. Under this notion of identical traces, we
say that A is sound w.r.t. B. That case matches traditional notions of trace
refinement, often proved with simulation arguments, which we also adopt.

3.3 A Few Useful Lemmas

We need the following theorems in our proof.

Theorem 1. C is reflezive and transitive.

Theorem 2. If A T; B, then A™ Ty B™, where f" is f lifted appropriately
to deal with indices (f"(i,€) = (i,£') when f(£) = ¢, and f™(i,£) = € when
fi)=e).

Theorem 3. If ATy A" and BCy B', then A+ BLCiqg A'+ B'.

All these theorems can be proved using standard techniques.

114 M. Vijayaraghavan et al.

4 Decomposing a Shared-Memory Multiprocessor System

Any conventional multiprocessor system can be divided logically into three com-
ponents, as shown in Fig. 1. The top-level system design is shown in the mid-
dle, while the details of its components, the memory system and the processor
(P;), are shown in the magnified boxes. The processor component P; can be
implemented in a variety of ways, from one executing instructions one-by-one
in program order, to a complex one speculatively executing many instructions
concurrently to exploit parallelism. The memory component is normally imple-
mented using a hierarchy of caches, in order to increase the performance of the
overall system, because the latency of accessing memory directly is large com-
pared to that of accessing a much smaller cache. Between each processor and
the global memory subsystem appears some local buffer, LB;, each specific to
processor P;.

T T T e O 4= =< 1
' ~—_ / Memory \ / N
/ N\ N subsystem J ,’I ROB RegFile \
/ \ <= —= ! '[: State | %
[| A PC !
) Local] i
\\ / Buffer, L B, 5 @ Branch |
i X ran y
N il [Processor, | | P, | oy T s
~ ~ P -~ N o e -

Fig. 1. Components of a multiprocessor system

Popular ISAs, such as Intel x86, ARM, and PowerPC, do not guarantee
sequential consistency. However, we want to emphasize that, in every weak-
memory system we are aware of, the main memory still exposes atomic loads
and stores! Weaker semantics in a core P; arise only because of (1) reordering
of memory instructions by the core and/or (2) the properties of the local buffers
LB; connected to P;.

Consequently, we focus on this opportunity to simplify proof decomposition.
We prove that our main memory component satisfies an intuitive store atom-
icity property — which is an appropriate specification of the memory compo-
nent even for implementations of weaker memory models. Store atomicity can
be understood via the operational semantics of Fig. 2, describing an LTS that
receives load and store requests (Ld and St) from processors and sends back load
responses (LdRp). The transfer happens via input buffers ins(p) from processor
p and output buffers outs(p) to processor p. Note that this model allows the
memory system to answer pending memory requests in any order (as indicated
by the bag union operator W), even potentially reordering requests from a single
processor, so long as, whenever it does process a request, that action appears to
take place atomically.

Modular Deductive Verification of Multiprocessor Hardware Designs 115

outs(p) = rs W {r}

Rm
ins, p, ToM(q) in‘s[p = {q}W¥ ins, p, ToP(r) (ins, outs|
outs, m M, ins(p)], outs, m outs, m M,, p:=rs],m

ins(p) = gs W {t,Ld, a}

(ins, outs, m) D (ins[p = gs], outs[p := (t,Ld, m(a)) W outs(p)], m)
m

Ins

Ld

5 ins(p) = gs @ {St,a, v}
(ins, outs, m) T (inslp := gs], outs[p := (St) W outs(p)], m[a = v])

Fig. 2. LTS for a simple memory

Figure 2 provides our first example of a hardware component specified as an
LTS via a set of inference rules. Such notation may seem far from the domain
of synthesizable hardware, but it is actually extremely close to Bluespec nota-
tion, and the Bluespec compiler translates automatically to hardware circuits
in Verilog [1].

The memory component is composed of a hierarchy of caches, with cache
nodes labeled like “L1,” “L2,)” etc., to avoid the latency of round trips with
main memory. Therefore, it is the responsibility of the hierarchy of caches (which
forms the memory subcomponent) to implement the store atomicity property.
In fact, as we prove in Sect. 8, the purpose of the cache-coherence protocol is
to establish this invariant for the memory subcomponent. Concretely, we have
verified a directory-based protocol for coordinating an arbitrary tree of caches,
where each node stores a conservative approximation of its children’s states.

As an instance of the above decomposition, we prove that a multiprocessor
system with no local buffering in between the processor and the memory compo-
nents indeed implements SC. We implement a highly speculative processor that
executes instructions and issues loads out of order, but commits instructions
(once some “verification” is done) in order.

The processor itself can be decomposed into several components. In the
zoomed-in version of Fig.1, we show a highly speculative out-of-order-issue
processor. We have the normal architectural state, such as values of registers.
Our proofs are generic over a family of instruction set architectures, with para-
meters for opcode sets and functions for executing opcodes and decoding them
from memory. Other key components are a branch predictor, which guesses at
the control-flow path that a processor will follow, to facilitate speculation; and
a reorder buffer (ROB), which decides which instructions along that path to try
executing ahead of schedule. Our proofs apply to an arbitrary branch predictor
and any reorder buffer satisfying a simple semantic condition.

Our framework establishes theorems of the form “if system A has a run with
some particular observable behavior, then system B also has a run with the
same behavior.” In this sense, we say that A correctly implements B. Other
important properties, such as deadlock freedom for A (which might get stuck
without producing any useful behavior), are left for future work.

116 M. Vijayaraghavan et al.

5 Specifying Sequential Consistency

Our final theorem in this paper establishes that a particular complex hardware
system implements sequential consistency (SC) properly. We state the theorem
in terms of the trace refinement relation C developed in Sect. 3. Therefore, we
need to define an LTS embodying SC. The simpler this system, the better. We
need not worry about its performance, since we prove that an optimized system
remains faithful to it.

Figure 3 defines an LTS for an n-processor system that is sequentially consis-
tent, parameterized over details of the ISA. In particular, the ISA gives us some
domains of architectural states s (e.g., register files) and of program counters
pe. A function dec(s, pe) figures out which instruction pe references in the cur-
rent state, returning the instruction’s “decoded” form. A companion function
exec(s, pc,d) actually executes the instruction, returning a new state s’ and the
next program counter pc’.

0(i) = (s, pc) 0(i) = (s,pc) dec(s, pc) = (Nm,)
Halt dec(s,pc) = H NonMem exec(s, pc, (Nm, z)) = (s’, pc’)
@.m) — () (0.m) — (0l = (5 pe) m)

Load 0(i) = (s,pc) dec(s,pc) = (Ld,z,a) exec(s, pc, (Ld,z,m(a))) = (s’, pc’)
(0,m) <o (0fi = (s”,pc")],m)

0(i) = (s,pc) dec(s,pc) = (St,a,v) exec(s,pc, (St)) = (s’, pc’)
(6, m) ? (0[i == (5", pc’)], m[a = v])

Store

Fig. 3. LTS for SC with n simple processors

The legal instruction forms, which are outputs of dec, are (Nm,z), for an
operation not accessing memory; (Ld,z,a), for a memory load from address
a; (St,a,v), for a memory store of value v to address a; and H, for a “halt”
instruction that moves the LTS to state H. The parameter x above represents
the rest of the instruction, including the opcode, registers, constants, etc.

The legal inputs to exec encode both a decoded instruction and any relevant
responses from the memory system. These inputs are (Nm, z) and St, which need
no extra input from the memory; and (Ld,z,v), where v gives the contents of
the requested memory cell.

We define the initial state of SC as (6p, mo), where my is some initial memory
fixed throughout our development, mapping every address to value vg; and 6y
maps every processor ID to (sg, pcy), using architecture-specific default values
s0 and pcg.

This LTS encodes Lamport’s notion of SC, where processors take turns exe-
cuting nondeterministically in a simple interleaving. Note that, in this setting,
an operational specification such as the LTS for SC is precisely the proper
characterization of full functional correctness for a hardware design, much as
a precondition-postcondition pair does that in a partial-correctness Hoare logic.

Modular Deductive Verification of Multiprocessor Hardware Designs 117

Our SC LTS fully constrains observable behavior of a system to remain consis-
tent with simple interleaving. Similar operational models are possible as top-level
specifications for systems following weaker memory models, by giving the LTS for
the local buffer component and composing the three components simultaneously.

Our final, optimized system is parameterized over an ISA in the same way
as SC is. In the course of the rest of this paper, we define an optimized system
O and prove O C SC. To support a modular proof decomposition, however, we
need to introduce a few intermediate systems first.

Halt dec(s,pc) = H NM dec(s, pc) = (Nm,z) exec(s, pc, (Nm,z)) = (s’, pc’)
(s, pc, L) P_) (H) (s, pc, 1) P—> (s',pc’, L)
ref ref
LdRq dec(s, pc) = (Ld, z, a) StRq dec(s, pc) = (St, a,v)
ToM(e, Ld, a) ToM(St, a, v)
(5,9, 1) S0, (s pe,) (5,9, L) 2020, (e,)
ref ref
dec(s, pc) = (Ld, z,a) dec(s, pc) = (St, a, v)
LdRp exec(s, pe, (Ld, z,v)) = (s', pc’) StRp exec(s, pe, (St)) = (s, pc’)
ToP(e, Ld, v) ., ToP(St) .,
(s,pc, T) P—> (s",pc’, L) (s,pc, T) —— (', pc’, L)
ref ref

Fig. 4. LTS for a simple decoupled processor (Pref)

6 Respecifying Sequential Consistency with
Communication

Realistic hardware systems do not implement the monolithic SC of Fig. 3 directly.
Instead, there is usually a split between processors and memory. Here we for-
malize that split using LT'Ses that compose to produce a system refining the SC
model.

Figure4 defines an LTS for a simple decoupled processor (P,ef). Memory
does not appear within a processor’s state. Instead, to load from or store to
an address, requests are sent to the memory system and responses are received.
Both kinds of messages are encoded as labels: ToM for requests to memory and
ToP for responses from memory back to the processor.

A state of Py is a triple (s, pe, wait), giving the current architectural state
s and program counter pc, as well as a Boolean flag wait indicating whether the
processor is blocked waiting for a response from the memory system. As in the
SC model, the state of the processor is changed to H whenever dec returns H.

As initial state for system Pef, we use (so, pcg, L).

The simple memory defined earlier in Fig. 2 is meant to be composed with P,e¢
processors. A request to memory like (¢, Ld, a) asks for the value of memory cell
a, associating a tag t that the processor can use to match responses to requests.
Those responses take the form (¢,Ld,v), giving the value v of the requested
memory address.

118 M. Vijayaraghavan et al.

A memory state is a triple (ins, outs, m), giving not just the memory m itself,
but also buffers ins and outs for receiving processor requests and batching up
responses to processors, respectively. We define the initial state of the M, LTS
as (0,0, mg), with empty queues.

Now we can compose these LTSes to produce an implementation of SC.

For a system of n processors, our decoupled SC implementation is Py;+ M,,.

Theorem 4. P;Lef + M,, C SC

Proof. By induction on traces of the decoupled system, relating them to those
of the SC reference (similar to the technique in WEB refinement [27]). We
need to choose an abstraction function f from states of the complex system
to states of the simple system. This function must be inductive in the appro-
priate sense: a step from s to s’ on the left of the simulation relation must be
matched by sequences of steps on the right from f(s) to f(s’). We choose f that
just preserves state components in states with no pending memory-to-processor
responses. When such responses exist, f first executes them on the appropriate
processors. O

7 Speculative Out-of-Order Processor

We implement a speculative processor, which may create many simultaneous out-
standing requests to the memory — as an optimization to increase parallelism.
Our processor proof is in some sense generic over correct speculation strategies.
We parameterize over two key components of a processor design: a branch pre-
dictor (which makes guesses about processor-local control flow in advance of
resolving conditional jumps) and a reorder buffer (which decides what specula-
tive instructions — such as memory loads — are worth issuing at which moments,
in effect reordering later instructions to happen before earlier instructions have
finished).

The branch predictor is the simpler of the two components, whose state is
indicated with metavariable bp. The operations on such state are curPpc(bp)
(to extract the current program-counter prediction); nextPpc(bp) (to advance
to predicting the next instruction); and setNextPpc(bp, pc) (to reset prediction
to begin at a known-accurate position pc). We need not impose any explicit
correctness criterion on branch predictors; the processor uses predictions only
as hints, and it always resets the predictor using setNextPpc after detecting an
inaccurate hint.

The interface and formal contract of a reorder buffer are more involved. We
write rob as a metavariable for reorder-buffer state, and ¢ denotes the state of
an empty buffer. The operations associated with rob are:

— insert(pe, rob), which appends the program instruction at location pc to the
list of instructions that the buffer is allowed to consider executing.

— compute(rob), which models a step of computation inside the buffer, returning
both an updated state and an optional speculative load to issue. For instance,

Modular Deductive Verification of Multiprocessor Hardware Designs 119

Fetch

('s, pc, wait, Tob, bp) P—» (s, pe, wait, insert(curPpc(bp), Tob), nextPpc(bp))
s

compute(rob) = (}"{)b'7 €) compute(rob) = (rob’, (Specld, t, a))

Comp - - SpLdRq

s, pc, wait, s7pf;7/wa2t7 s, pc, wait, ToM(t, Ld, a) s, pc, wait,

— _—
rob, bp P, \ rob’,bp rob, bp Pe rob’, bp
t
SpLdRp — rald
ToP(t, Ld, .
(s, pc, wait, rob, bp) M (s, pc, wait, updLd(rob, t,v), bp)
5o

Abort commit(rob) = (pc’,-,-) pc’ # pe

(s, pc, watt, rob, bp) p—> (s, pc, wait, ¢, setNextPpc(bp, pc))
o

Halt commit(rob) = H Nm commit(rob) = (pc, pc’, (Nm, s"))
(s, pc, L, rob, bp) r) (H) (s, pc, L, rob, bp) ? (s', pc’, L, retire(rob), bp)
s o
SRq commit(rob) = (pc, pc’, (St, a,v,s")) LdR commit(rob) = (pc, pc’, (Ld, z, a, v, s"))
s,pc, L, ToM(St,a,v) (s pe, T, s, pe, L,\ ToM(e,Ld,a) (s, pe, T,
— ——
rob, bp Py rob, bp rob, bp Py rob, bp
StRp commit(rob) = (pc, pc’, (St,a,v,s’)) LdRpGd commit(rob) = (pc, pc’, (Ld, z, a,v,s"))
s,pe, T, ToP(St) (s’ pc’, L, s,pe, T,\ ToP(e, Ld,v) (s pe’, L,
— : —_— .
rob, bp P retire(rob), bp rob, bp Py retire(rob), bp
LdRpBad commit(rob) = (pc, pc’, (Ld, z,a,v’,s")) v #v exec(s,pc, (Ld,z,v)) = (5", pc”)

ToP(e, Ld,
(s7 pe, T, rob, bp) %

(s",pc”’, L, ¢, setNextPpc(bp, pc’))

Fig. 5. Speculating, out-of-order issue processor

it invokes the dec and exec functions (as defined for SC) internally to obtain
the next program counter, state, etc. (but the actual states are not updated).

— updLd(rob, t,v), which informs the buffer that the memory has returned result
value v for the speculative load with tag t # e.

— commit(rob), which returns the next instruction in serial program order, if
we have accumulated enough memory responses to execute it accurately, or
returns € otherwise. When commit returns an instruction, it also returns the
associated program counter plus the next program counter to which it would
advance afterward. Furthermore, the instruction is extended with any relevant
response from memory (used only for load instructions, obtained through
updLd) and with the new architectural state (e.g., register file) after execution.

— retire(rob), which informs the buffer that its commit instruction was executed
successfully, so it is time to move on to the next instruction.

Figure 5 defines the speculative processor LTS Pg,. This processor may issue
arbitrary speculative loads, but it commits only the instruction that comes next
in serial program order. The processor will issue two kinds of loads, a specula-
tive load (whose tag is not €) and a commit or real load (whose tag is €). To
maintain SC, every speculative load must have a matching verification load later
on, and we maintain the illusion that the program depends only on the results
of verification loads, which, along with stores, must be issued in serial program
order.

When committing a previously issued speculative load instruction, the asso-
ciated speculative memory load response is verified against the new commit load

120 M. Vijayaraghavan et al.

response. If the resulting values do not match, the processor terminates all past
uncommitted speculation, by emptying the reorder buffer and resetting the next
predicted program counter in the branch predictor to the correct next value. In
common cases, performance of executing loads twice is good, because it is likely
that the verification load finds the address already in a local cache — thanks to
the recent processing of the speculative load. Moreover, 60 % to 90 % of verifica-
tion loads can be avoided by tracking speculative loads [9]; in the future we will
extend our proofs to include such optimizations.

A full processor state is (s, pe, wait, rob, bp), comprising architectural state,
the program counter, a Boolean flag indicating whether the processor is waiting
for a memory response about an instruction being committed, and the reorder-
buffer and branch-predictor states. Its initial state is given by (so, pcg, L, @, bpg)-
The interface of this processor with memory (i.e., communication labels with
ToM, ToP) is identical to that of the reference processor.

Finally, we impose a general correctness condition on reorder buffers (Fig. 6).
Intuitively, whenever the buffer claims (via a commit output) that a particular
instruction is next to execute (thus causing certain state changes), that instruc-
tion must really be next in line according to how the program runs in the SC
system, and its execution must really cause those state changes.

ROB-invariant: If Py, reaches a state (s, pc, wait, rob, bp),
commit(rob) = (pc, pc’, (Nm, s")) = Jz. dec(s, pc) = (Nm,) A exec(s, pc, (Nm, x)) = (s, pc’)
commit(rob) = (pc, pc’, (Ld, z, a, v, s")) = dec(s, pc) = (Ld, =, a) A exec(s, pc, (Ld, z,v)) = (s’, pc’)
commit(rob) = (pc, pc’, (St,a,v,s’)) = dec(s, pc) = (St, a,v) A exec(s, pc, (St)) = (s’, pc’)
commit(rob) = H = dec(s,pc) = H

Fig. 6. Correctness of reorder buffer

When this condition holds, we may conclude the correctness theorem for out-
of-order processors. We use a trace-transformation function noSpec that drops all
speculative-load requests and responses (i.e., those load requests and responses
whose tags are not €). See Definition5 for a review of how we use such func-
tions in framing trace refinement. Intuitively, we prove that any behavior by the
speculating processor can be matched by the simple processor, with speculative
messages erased.

Theorem 5. P, EnoSpec Pref

Proof. By induction on Py, traces, using an abstraction function that drops the
speculative messages and the rob and bp states to relate the two systems. The
reorder-buffer correctness condition is crucial to relate its behavior with the
simple in-order execution of Ps. O

Corollary 1. Pg, Chospecr Py ¢

S0 —

Proof. Direct consequence of Theorems 5 and 2 (the latter is about
n-repetition). O

Modular Deductive Verification of Multiprocessor Hardware Designs 121

8 Cache-Based Memory System

We now turn our attention to a more efficient implementation of memory. With
the cache hierarchy of Fig.1, we have concurrent interaction of many proces-
sors with many caches, and the relationship with the original M, system is far
from direct. However, this intricate concurrent execution is crucial to hiding the
latency of main-memory access. Figure 7 formalizes as an LTS M, the algorithm
we implemented (based on a published implementation [13]) for providing the
memory abstraction on top of a cache hierarchy. We have what is called an
inwvalidating directory-based hierarchical cache-coherence protocol.

We describe a state of the system using fields d, ch, cs, dir, w, dirw, ins, outs.
The ins and outs sets are the interfaces to the processors and are exactly the same
as in M,, (Fig.2). We use parent(c, p) to denote that p is the parent of c.

A coherence state is M, S, or I, broadly representing permissions to modify,
read, or do nothing with an address, respectively, the decreasing permissions
denoted by M > S > I. More precisely, if a node n is in coherence state M or S
for some address, then there might be some node in n’s subtree that has write
or read permissions, respectively, for that address. Coherence state of cache ¢
for address a is denoted by c¢s(c,a). d(c,a) represents the data in cache ¢ for
address a.

w(c, a) stores the permission an address a in cache c¢ is waiting for, if any.
That is, cache ¢ has decided to upgrade its coherence state for address a to
a more permissive value, but it is waiting for acknowledgment from its parent
before upgrading.

dir(p, ¢, a) represents the parent p’s notion of the coherence state of the child
c for address a. We later prove that this notion is always conservative, i.e., if
the parent assumes that a child does not have a particular permission, then
it is guaranteed in this system that the child will not have that permission.
dirw(p, ¢, a) denotes whether the parent p is waiting for any downgrade response
from its child ¢ for address a, and if so, the coherence state that the child must
downgrade to as well.

There are three types of communication channels in the system: (i) ch(p, ¢, RR)
(which carries both downgrade request and upgrade response messages from par-
ent p to its child ¢), (ii) ch(c, p, Rq) (which carries upgrade request messages from
child ¢ to its parent p) and (iii) ch(c, p, Rp) (which carries downgrade response
messages from child ¢ to its parent p). While the ch(c,p, Rp) and ch(p, ¢, RR)
channels deliver messages between the same pair of nodes in the same order in
which the messages were injected (i.e., they obey the FIFO property, indicated
by the use of :: in Fig.7), ch(c, p, Rq) need not obey such a property (indicated
by the use of W for unordered bags in Fig.7). This asymmetry arises because
only one downgrade request can be outstanding for one parent-child pair for an
address.

Here is an intuition on how the transitions work in the common case. A cache
can spontaneously decide to upgrade its coherence state, in which case it sends
an upgrade request to its parent. The parent then makes a local decision on
whether to send a response to the requesting child or not, based on its directory

122 M. Vijayaraghavan et al.

Processor/Memory Interface
outs(i) = rs W {r}

Rm
d, ch, cs, £ ToM(q) d, ch, cs, dir, w, d, ch, cs, £ ToP(r) d, ch, cs, dir,
dir, w, dirw, | ———25 | dirw, ins [i == {q} dir, w, dirw, | —— | w, dirw, ins,

ins, outs Me W ins(i)], outs ins, outs Me outs[i = rs)
ins(c) = {(t,Ld,a)} Wrs cs(c,a) > S

d, ch, cs, dir, w, d, ch, cs, dir, w, dirw, ins[c == rs],
dirw, ins, outs M. outs[c = outs(c) W {(t,Ld, d(c,a))}]

ins(c) = {(St,a,v)} Wwrs cs(c,a) > M

d, ch, cs, dir, w, d[(c,a) =], ch, cs, dir, w, dirw, ins[c := rs],
dirw, ins, outs M outs[c := outs(c) W {(St)}]

Child Upgrade
ChildSendReq parent(c,p) cs(c,a) <z w(c,a) =¢€
d, ch, cs, dir, w, d, ch[(c, p, Rq) = (a, cs(c, a), z) W ch(c, p, Rq)],
dirw, ins, outs M. cs, dir, w[(c, a) == z|, dirw, ins, outs
parent(c,p) ch(c,p,Ra) = {(a,y,)} Wrs cs(p,a) >z
ParentRecvReq dirCompat(p, ¢, z,a) dirw(p,c,a) =€ dir(p,c,a) <y
d, ch, cs, d, ch[(c, p,Ra) = rs][(p, ¢, RR) := (Rp, (a, dir(p, ¢, a), z,
dir, w, dirw, | — if(dir(p, c,a) = I) then d(p, a) else .)) :: ch(p, ¢, RR)],
ins, outs e cs, dir[(p, ¢, a) == z], w, dirw, ins, outs
ChildRecvRsp parent(c,p) ch(p, ¢, RR) = rs : (Rp, (a, 9,7, v))

cs[(e, a) == z], dir, w[(c, a) = if(w(c, a) < x) then €

Le ,a)], dirw, ins, outs

d, ch, cs, d[(c,a) = if(y = I) then v else d(c, a)], ch[(p, ¢, RR) := rs],
dir, w, dirw, | —

ins, outs
Parent Downgrade
parent(c,p) dir(p,c,a) > x dirw(p,c,a) =€

ParentSendReq
d, ch, cs, dir, w, d, ch[(p, c,RR) := (Rq, (a, dir(p, ¢, a), x)) :: ch(p, ¢, RR)],
dirw, ins, outs M cs, dir, w, dirw[(p, ¢, a) ==], ins, outs
parent(c,p) ch(p, e, RR) = 75 55 (Ra, (a,y, 7))
ChildRecvReq (Vi. parent(i,c) = dir(c,i,a) < x) cs(c,a) >
d, ch, cs, d, ch[(p, c,RR) = rs][(c, p, Rp) := (a, cs(c,a), z,
dir, w, dirw, | — if(dir(c,a) = M) then d(c, a) else _) :: ch(c, p, Rp)],
ins, outs M. cs[(c, a) == x|, dir, w, dirw, ins, outs
ParentRecvRsp parent(c,p) ch(c,p,Rp) = {(a,y,®,v)} i rs dir(p,c,a) =y

d, ch, cs, d[(p,a) == if(y = M) then v else d(p, a)], ch[(c,p,Rp) =
dir, w, dirw, | — rs), s, dir[(p, ¢, a) = z], w, dirw[(p, ¢, a) =
ins, outs M. if(dirw(p, ¢, a) > x) then € else dirw(p, ¢, a)], ins, outs

Voluntary downgrade for replacement
arent(c, Vi. parent(i, c) = dir(c,i,a) < x cs(c,a) > x
VolResp parent(c,p) _(¥i. parent(i,c) = dir(c.i,0) <a) _cs(c,a)

d, ch, cs, d, ch[(c, p,Rp) := (a, cs(c,a), z,
dir, w, dirw, | — if(cs(c,a) = M) then d(c, a) else _) :: ch(c, p, Rp)],

ins, outs M. csl(e, a) == x], dir, w, dirw, ins, outs
Dropping request because of voluntary downgrade
parent(c,p) ch(p,c,RR) = 75 = (R, (a,y,2)) es(c,a) <z

DropReq

(d, ch, cs, dir, w, dirw, ins, outs) 7 (d, ch[(p, ¢, RR) = rs], ¢cs, dir, w, dirw, ins, outs)
c

Fig. 7. LTS for cache-coherent shared-memory system

approximation and its own coherence state cs. If ¢s is lower than the requested
upgrade, then it cannot handle the request, and instead must decide to upgrade
cs. Once the parent’s cs is not lower than the requested upgrade, it makes sure
that the rest of its children are “compatible” with the requested upgrade (given
by the dirCompat definition below). If not, the parent must send requests to
the incompatible children to downgrade. Finally, when the cs’s upgrade and
children’s downgrade responses are all received, the original request can be

Modular Deductive Verification of Multiprocessor Hardware Designs 123

responded to. A request in ins can be processed by an L1 cache only if it is
in the appropriate state, otherwise it has to request an upgrade for that address.

x=M =V #c. dir(p,c’,a) =1

Definition 6. dirCompat(p, ¢, z,a) = {:c ZS SV b dir(p e a)< S

A complication arises because a cache can voluntarily decide to downgrade its
state. This transition is used to model invalidation of cache lines to make room
for a different location. As a result, the parent’s dir and the corresponding cs
of the child may go out of sync, leading to the parent requesting a child to
downgrade when it already has. To handle this situation, the child has to drop
the downgrade request when it has already downgraded to the required state
(Rule DropReq in Fig.7), to avoid deadlocks by not dequeuing the request.

8.1 Proving M, is Store Atomic

We must prove the following theorem, i.e., the cache-based system is sound with
respect to the simple memory.

Theorem 6. M, C M,

We present the key theorem needed for this proof below. Throughout this section,
we say time to denote the number of transitions that occurred before reaching
the specified state.

Theorem 7. A is store atomic, i.e., A T M,, and M,, T A iff for any load
request ToM(t,Ld, a) received, the response ToP(t,Ld,v) sent at time T is such
that

1. v =g (the initial value of any memory address) and no store request ToM(St,
a,v") has been processed at any time T" such that T' < T or

2. There is a store request TOM(St, a,v) that was processed at time T, such that
T, < T and no other store request ToM(St, a,v") was processed at any time
T such that T, <T' < T.

The proof that M, obeys the properties in Theorem 7 is involved enough
that we state only key lemmas that we used.

Lemma 1. At any time T, if address a in cache ¢ obeys cs(c,a) > S and
Vi. dir(c,i,a) < S, then a will have the latest value, i.c.,

1. d(e,a) = vo and no store request TOM(St, a,v) has been processed at any time
T such that T < T or

2. There is a store request TOM(St, a,v) that was processed at time T, such that
T, <T Ad(c,a) =v and no other store request ToM(St, a,v’) was processed
at any time T' such that T, <T' < T.

It is relatively straightforward to prove the properties of Theorem 7, given
Lemma 1. To prove Lemma 1, it has to be decomposed further into the following,
each of which holds at any time.

124 M. Vijayaraghavan et al.

Lemma 2. If some response m for an address a is in transit (i.e., we are con-
sidering any time T such that Ty < T < T, where Ty is the time of sending m
and T, the time of receiving m), then no cache can process store requests for a,
and m must be sent from a cache ¢ where cs(c,a) > S and Vi. dir(c,i,a) < S.

Lemma 3. At any time, Vp,Vc,Va. parent(c,p) =
es(c,a) < dir(p, c,a) A dirCompat(p, ¢, dir(p, ¢, a),a) A dir(p, ¢,a) < cs(p,a)

The same proof structure can be used to prove other invalidation-based protocols
with inclusive caches (where any address present in a cache will also be present
in its parent) like MEST, MOSI, and MOEST; we omit the discussion of extending
this proof to these for space reasons. The MSI proof is about 12,000 lines of Coq
code, of which 80 % can be reused as-is for the other protocols.

9 The Final Result

With our two main results about optimized processors and memories, we can
complete the correctness proof of the composed optimized system.

First, we need to know that, whenever the simple memory can generate some
trace of messages, it could also generate the same trace with all speculative mes-
sages removed. We need this property to justify the introduction of speculation,
during our final series of refinements from the optimized system to SC.

Theorem 8. M,, Chospecr M,
Proof. By induction on traces, with an identity abstraction function. a

That theorem turns out to be the crucial ingredient to justify placing a specu-
lative processor in-context with simple memory.

Theorem 9. P, + M,, C ;Zf + M,,

Proof. Follows from Theorem 3 (our result about +), Corollary 1, and
Theorem 8. o

The last theorem kept the memory the same while refining the processor. The
next one does the opposite, switching out memory.

Theorem 10. P}, + M. C P + M,
Proof. Follows from Theorems 6 and 3 plus reflexivity of C (Theorem 1). O
Theorem 11. P, + M. C SC

Proof. We twice apply C transitivity (Theorem 1) to connect Theorems 10, 9,
and 4 O

Modular Deductive Verification of Multiprocessor Hardware Designs 125

10 Conclusions and Future Work

In this paper, we developed a mechanized modular proof of a parametric hierar-
chical cache-coherence protocol in Coq and use this proof modularly for a veri-
fication of sequential consistency for a complete system containing out-of-order
processors. Our proof modularization corresponds naturally to the modulariza-
tion seen in hardware implementations, allowing verification to be carried out
in tandem with the design. Our overall goal is to enable design of formally veri-
fied hardware systems. To this end, we have been working on a DSL in Coq for
translating to and from Bluespec, and we are developing appropriate libraries
and proof automation, extending the work of Braibant et al. [7] with support
for modular specification and verification, systematizing some elements of this
paper’s Coq development that are specialized to our particular proof.

While we provide a clean interface for an SC system, we are also working on
encompassing relaxed memory models commonly used in modern processors.

Acknowledgments. This work was supported in part by NSF grant CCF-1253229
and in part by the Defense Advanced Research Projects Agency (DARPA) and the
United States Air Force, under Contract No. FA8750-11-C-0249. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the Department of Defense or the U.S.
Government.

References

1. Arvind, Nikhil, R.S., Rosenband, D.L., Dave, N.: High-level synthesis: an essential
ingredient for designing complex ASICs. In: Proceedings of ICCAD 2004, San Jose,
CA (2004)

2. Arvind, Shen, X.: Using term rewriting systems to design and verify processors.
Micro, IEEE 19(3), 36-46 (1999)

3. Augustsson, L., Schwarz, J., Nikhil, R.S.: Bluespec Language definition, Sandburst
Corp (2001)

4. Bhattacharya, R., German, S.M., Gopalakrishnan, G.C.: Symbolic partial order
reduction for rule based transition systems. In: Borrione, D., Paul, W. (eds.)
CHARME 2005. LNCS, vol. 3725, pp. 332-335. Springer, Heidelberg (2005)

5. Bhattacharya, R., German, S.M., Gopalakrishnan, G.C.: Exploiting symmetry and
transactions for partial order reduction of rule based specifications. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 252-270. Springer, Heidelberg (2006)

6. Bluespec Inc, Waltham, M.A.: Bluespec SystemVerilog Version 3.8 Reference
Guide, November 2004

7. Braibant, T., Chlipala, A.: Formal verification of hardware synthesis. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 213-228. Springer, Heidelberg
(2013)

8. Burch, J.R., Dill, D.L.: Automatic verification of pipelined microprocessor con-
trol. In: Dill; D.L. (ed.) Computer Aided Verification. LNCS, pp. 68-80. Springer,
Heidelberg (1994)

126

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

M. Vijayaraghavan et al.

Cain, H.W., Lipasti, M.H.: Memory ordering: a value-based approach. In: Proceed-
ings of the 31st Annual International Symposium on Computer Architecture, 2004,
pp. 90-101, June 2004

Chang, C., Wawrzynek, J., Brodersen, R.W.: Bee2: a high-end reconfigurable com-
puting system. Des. Test Comput. IEEE 22(2), 114-125 (2005)

Xijaofang Chen, Y., Yang, G.G., Chou, C.-T.: Efficient methods for formally ver-
ifying safety properties of hierarchical cache coherence protocols. Form. Methods
Syst. Des. 36(1), 37-64 (2010)

Chou, C.-T., Mannava, P.K., Park, S.: A simple method for parameterized verifica-
tion of cache coherence protocols. In: Formal Methods in Computer Aided Design,
pp. 382-398. Springer (2004)

Dave, N., Ng, M.C., Arvind.: Automatic synthesis of cache-coherence protocol
processors using bluespec. In: Proceedings of Formal Methods and Models for
Codesign, MEMOCODE, Verona, Italy (2005)

Delzanno, G.: Automatic verification of parameterized cache coherence protocols.
In: Emerson, E.A., Sistla, A.P. (eds.) Computer Aided Verification. LNCS, vol.
1855, pp. 53-68. Springer, Heidelberg (2000)

Dill, D.L., Drexler, A.J., Hu, A.J., Yang, C.H.: Protocol verification as a hard-
ware design aid. In: Proceedings of the IEEE 1992 International Conference on
Computer Design: VLSI in Computers and Processors, ICCD 1992, pp. 522-525,
October 1992

Emerson, E.A., Kahlon, V.: Exact and efficient verification of parameterized cache
coherence protocols. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol.
2860, pp. 247-262. Springer, Heidelberg (2003)

Hoe, J.C., Arvind.: Synthesis of operation-centric hardware descriptions. In: Pro-
ceedings of ICCAD 2000, pp. 511-518, San Jose, CA (2000)

Hoe, J.C., Arvind.: Operation-centric hardware description and synthesis. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 23(9), 1277-1288 (2004)

Norris Ip, C., Dill, D.L., Mitchell, J.C.: State reduction methods for automatic
formal verification (1996)

Jhala, R., McMillan, K.L.: Microarchitecture verification by compositional model
checking. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102,
pp- 396-410. Springer, Heidelberg (2001)

Joshi, R., Lamport, L., Matthews, J., Tasiran, S., Tuttle, M.R., Yuan, Y.: Checking
cache-coherence protocols with TLA™. Formal Methods Syst. Des. 22(2), 125-131
(2003)

Kaivola, R., Ghughal, R., Narasimhan, N., Telfer, A., Whittemore, J., Pandav, S.,
Slobodové, A., Taylor, C., Frolov, V., Reeber, E., et al.: Replacing testing with
formal verification in Intel” Core™ i7 processor execution engine validation. In:
Bouajjani, A., Maler, O. (eds.) Computer Aided Verification, vol. 5643, pp. 414—
429. Springer, Heidelberg (2009)

Khan, A., Vijayaraghavan, M., Boyd-Wickizer, S., Arvind: Fast and cycle-accurate
modeling of a multicore processor. In: 2012 IEEE International Symposium on
Performance Analysis of Systems & Software, pp. 178-187, New Brunswick, NJ,
USA, April 1-3, 2012

Kuskin, J., Ofelt, D., Heinrich, M., Heinlein, J., Simoni, R., Gharachorloo, K.,
Chapin, J., Nakahira, D., Baxter, J., Horowitz, M.A., Gupta, A.M., Rosenblum,
M., Hennessy, J.: The stanford FLASH multiprocessor. In: Proceedings of the 21st
Annual International Symposium on Computer Architecture, pp. 302-313, April
1994

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Modular Deductive Verification of Multiprocessor Hardware Designs 127

Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 100(9), 690-691 (1979)

Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston
(2002)

Manolios, P., Srinivasan, S.K.: Automatic verification of safety and liveness for
pipelined machines using WEB refinement. ACM Trans. Des. Autom. Electron.
Syst. 45:1-45:19 (2008)

McMillan, K.L.: Parameterized verification of the FLASH cache coherence protocol
by compositional model checking. In: Margaria, T., Melham, T.F. (eds.) CHARME
2001. LNCS, vol. 2144, pp. 179-195. Springer, Heidelberg (2001)

McMillan, K.L.: Verification of an implementation of Tomasulo’s algorithm by
compositional model checking. In: Hu, A.J., Vardi, M.Y. (eds.) Computer Aided
Verification, pp. 110-121. Springer, Heidelberg (1998)

McMillan, K.L.: Verification of infinite state systems by compositional model check-
ing. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 219-237.
Springer, Heidelberg (1999)

McMillan, K.L., Schwalbe, J.: Formal verification of the Gigamax cache consistency
protocol. In: Proceedings of the International Symposium on Shared Memory Mul-
tiprocessing, pp. 111-134 (1992)

Moore, J.S.: An ACL2 proof of write invalidate cache coherence. In: Hu, A.J., Vardi,
M.Y. (eds.) Computer Aided Verification. LNCS, vol. 1427, pp. 29-38. Springer,
Heidelberg (1998)

Park, S., Dill, D.L.: Verification of FLASH cache coherence protocol by aggregation
of distributed transactions. In: Proceedings of the 8th Annual ACM Symposium
on Parallel Algorithms and Architectures, pp. 288-296. ACM Press (1996)

Shen, X., Arvind, Rudolph, L.: Commit-reconcile & fences (CRF): a new mem-
ory model for architects and compiler writers. In: Proceedings of the 26th annual
international symposium on Computer architecture, pp. 150-161. IEEE Computer
Society (1999)

Talupur, M., Tuttle, M.R.: Going with the flow: parameterized verification using
message flows. In: Formal Methods in Computer-Aided Design, FMCAD 2008, pp.
1-8, November 2008

Windley, P.J.: Formal modeling and verification of microprocessors. IEEE Trans.
Comput. 44(1), 54-72 (1995)

Zhang, M., Bingham, J.D., Erickson, J., Sorin, D.J.: Pvcoherence: designing flat
coherence protocols for scalable verification. In: 20th IEEE International Sym-
posium on High Performance Computer Architecture, HPCA 2014, pp. 392-403.
IEEE Computer Society, Orlando, FL, USA, February 15-19 (2014)

Zhang, M., Lebeck, A.R., Sorin. D.J.: Fractal coherence: scalably verifiable cache
coherence. In: Proceedings of the 2010 43rd Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO ’43, pp. 471-482. IEEE Computer Society,
Washington, DC, USA (2010)

	Modular Deductive Verification of Multiprocessor Hardware Designs
	1 Introduction
	2 Related Work
	3 Labeled Transition Systems
	3.1 Basic Constructions on LTSes
	3.2 Refinement Between LTSes
	3.3 A Few Useful Lemmas

	4 Decomposing a Shared-Memory Multiprocessor System
	5 Specifying Sequential Consistency
	6 Respecifying Sequential Consistency with Communication
	7 Speculative Out-of-Order Processor
	8 Cache-Based Memory System
	8.1 Proving Mc is Store Atomic

	9 The Final Result
	10 Conclusions and Future Work
	References

