
Cutting the Mix

Jürgen Christ1,2(B) and Jochen Hoenicke1

1 Department of Computer Science, University of Freiburg,
Freiburg im Breisgau, Germany

{christj,hoenicke}@informatik.uni-freiburg.de
2 Max Planck Institute for Software Systems (MPI-SWS),

Kaiserslautern, Germany

Abstract. While linear arithmetic has been studied in the context of
SMT individually for reals and integers, mixed linear arithmetic allowing
comparisons between integer and real variables has not received much
attention. For linear integer arithmetic, the cuts from proofs algorithm
has proven to have superior performance on many benchmarks. In this
paper we extend this algorithm to the mixed case where real and integer
variables occur in the same linear constraint. Our algorithm allows for
an easy integration into existing SMT solvers. Experimental evaluation
of our prototype implementation inside the SMT solver SMTInterpol
shows that this algorithm is successful on benchmarks that are hard for
all existing solvers.

1 Introduction

The theory of linear arithmetic is fundamental in system modelling and verifi-
cation. SMT solvers supported this theory from the beginning. In recent years,
lots of work has been devoted to improve the support and performance for this
theory [9,12,13,17]. Usually, two theories are supported for linear arithmetic: lin-
ear arithmetic over the rational/real numbers (LRA), and linear arithmetic over
integers (LIA). While the first theory can be solved by the Simplex algorithm
the latter needs more techniques to ensure that the solution has integer values.
While each of the two theories has many applications for itself, some appli-
cations require both theories. An example for this is the verification of timed
automata or hybrid systems where continuous variables are used for physical
entities and integer variables for control. Also planning and scheduling problems
require mixed integer and real arithmetic. While there exists some support for
this theory, there is still room for improvement.

Boosting performance on satisfiability modulo mixed linear arithmetic broad-
ens the applicability of SMT solvers. For linear integer arithmetic, the cuts from
proofs algorithm [7] greatly improved the state of the art. On SMTLIB bench-
marks with many real but few or no integer solutions, the algorithm significantly

This work is supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR14 AVACS).

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part II, LNCS 9207, pp. 37–52, 2015.
DOI: 10.1007/978-3-319-21668-3 3

38 J. Christ and J. Hoenicke

outperforms traditional techniques like the Omega test [18] or cutting plane
techniques based on Gomory cuts. Improving the performance on mixed linear
arithmetic is a next logical step to increase applicability of modern SMT solvers.

In this paper, we lift the cuts from proof algorithm from linear arithmetic over
the integers to mixed linear arithmetic. We give a new technique to derive cuts in
mixed linear arithmetic based on a basis transformation of the constraint system.
We experimentally compare our implementation with other SMT solvers that
support mixed linear arithmetic. This evaluation shows that our new technique
is able to solve problems that cannot be solved by existing techniques.

Related Work. Only very few publications address mixed linear arithmetic in
the context of SMT. Berezin et al. [3] present an extension of the Omega test
to mixed arithmetic. The decision procedure splits the variables into real-valued
variables and integer-valued variables. Then, it uses Fourier-Motzkin elimination
for the real-valued variables and the Omega-test to eliminate the integer vari-
ables. The Fourier-Motzkin elimination usually produces an exponential blow-up
of the input problem. The technique is therefore more memory intensive than
our technique.

Dutertre and de Moura [9] present a way to compute mixed Gomory cuts
in the context of the state of the art Simplex-based theory solver for linear
arithmetic. The derivation is based on the current assignment, a row in the
Simplex tableau, and non-trivial reasoning. Since Gomory cuts are used as theory
lemmas in the proof of unsatisfiability, they have to be justified. This is especially
important for proof producing or interpolating solvers. The derivation of Gomory
cuts is much more involved than the simple technique presented here based on
extended branches.

A lot of research exists in the context of MILP solvers. These solvers use a
variety of different cuts (see [14,19] for details). MILP solvers use floating-point
arithmetic making them imprecise and unstable [16]. Our technique is designed
for integration into SMT solvers that typically use arbitrary precision arithmetic
to ensure soundness. In the evaluation section, we do not compare against MILP
solvers since these can be unsound due to rounding problems.

There are several techniques for solving linear integer arithmetic [4,10,11],
some of which can be extended to mixed arithmetic, although we are not aware of
any publications. A variation of the algorithm from [10] is used in MathSAT and
CVC4. This is similar to ours but use a diophantine equation solver to generate
the branch instead of the Hermite normal form.

2 Notation and Preliminaries

The algorithms in this paper are used to solve a system of linear inequalities.
We use x to denote a vector of variables x1, . . . , xn. Given a matrix A ∈ Qm×n

and a vector b ∈ Qm we solve the problem Ax ≤ b. Here ≤ on vectors is defined
component-wise. Strict inequalities can be expressed by allowing infinitesimal
numbers in b. However, we ignore strict inequalities in this paper to keep the
presentation simple.

Cutting the Mix 39

The variables x1, . . . , xn can be (depending on the problem) real or integer
valued, i. e., we are interested in integer or real solutions of the above system. It
is easy to see that for every real solution there is also a rational solution, so it
is enough to distinguish between solutions in Q and Z. We note that Ax ≤ b is
equivalent to λAx ≤ λb for λ > 0. Therefore we can w.l.o.g. assume that A is
an integer matrix.

In the case of mixed arithmetic, we distinguish between rational-valued vari-
ables x1, . . . , xn1 and integer-valued variables xn1+1, . . . , xn. The goal is to find a
rational solution for the first n1 variables and an integer solution for the second
n2 = n − n1 variables. Thus, the vector x is a vector consisting of real-valued
variables and integer-valued variables.

In this paper we need the notion of nonsingular and unimodular matrices
and the Hermite normal form. A matrix U ∈ Qn×n is nonsingular if det(U) �= 0.
A matrix U ∈ Zn×n is unimodular if |det(U)| = 1. We remind the reader that a
matrix is nonsingular if and only if it has an inverse U−1 ∈ Qn×n with UU−1 =
U−1U = Id , where Id denote the identity matrix. Moreover, a matrix U ∈ Zn×n

is unimodular if and only if it has an inverse U−1 that is also an integer matrix.
A matrix H ∈ Qn×n is in Hermite normal form1 if (i) H is lower triangular,

(ii) hii > 0 for 1 ≤ i ≤ n, and (iii) hij ≤ 0 and |hij | < hii for j < i ≤ n. For
every nonsingular integer matrix A there is a unique unimodular matrix U and
a unique matrix H in Hermite normal form with H = AU . This also holds for
rational matrices: If a nonsingular A ∈ Qn×n is given we can multiply it with
λ > 0 such that λA ∈ Zn×n. Then the unique H ′, U with H ′ = λAU results
in a unique H = (1/λ)H ′ with H = AU . Note that since U is unimodular, the
matrix H is an integer matrix if and only if A is an integer matrix.

3 Solving Linear Integer Arithmetic and Mixed Linear
Arithmetic

We first review the state of the art in satisfiability solving modulo the theory of
linear integer arithmetic. Let A ∈ Zn×m and b ∈ Zm. To find an integer solution
of Ax ≤ b, SMT solvers first compute a rational solution of Ax ≤ b, which is
called the LP relaxation. If the relaxation is unsatisfiable, the original formula
is unsatisfiable, too. Otherwise let x 0 = (x01, . . . , x0n) be the values assigned
to the variables in the solutions to the relaxation. If all x0i are integral, the
original formula is satisfiable. Otherwise the relaxation is refined by means of
branches xi ≤ �x0i� ∨ xi ≥ 	x0i
 in a branch-and-bound solver or by cuts in a
branch-and-cut solver. Both techniques remove the current non-integral solution
from the relaxation. For a detailed overview and derivations of different cuts we
refer to [19].

1 We follow [7] and use column-style Hermite normal form with negative coefficients
in the lower left triangle for nonsingular square matrices.

40 J. Christ and J. Hoenicke

Instead of branches, modern solvers introduce extended branches. These are
defined by a vector r ∈ Zn and branch on r ·x ≤ �r ·x 0�∨r ·x ≥ 	r ·x 0
. Thus,
an extended branch does not have to be along one of the variables. Most SMT
solvers come with a DPLL engine, that can be used to decide on the branch.
In this case the theory solver can ask the DPLL engine to decide on the new
literal and add it to the constraint system. This procedure is repeated until
the LP relaxation becomes unsatisfiable or an assignment satisfies both, the LP
relaxation and the integer constraints of the variables. When the LP relaxation
becomes unsatisfiable a conflict is produced and the DPLL engine will explore
the other branch. When all branches have been explored the original system is
known to be unsatisfiable. This is the technique used in our solver SMTInterpol.

Another technique introduces cuts. These are constraints of the form r ·x ≤ c
that are implied by the current constraint system Ax ≤ b and exclude the cur-
rent rational solution in the LP relaxation. An example are Gomory cuts [9].
Cuts have the advantage that they can be propagated and no backtracking is
necessary. While they exclude only non-integer solutions, their negation can still
be satisfiable in conjunction with the LP relaxation. Thus, cut constraints need
a specialised proof rule. An interpolating SMT solver also needs a specialised
procedure to interpolate these cuts. Branches on the other hand are simple
case splits. A way to achieve the best of both worlds is the cuts from proofs
algorithm [7]. This algorithm computes extended branches. But as we will see in
the next section, one of the two cases is trivially unsatisfiable. Thus, the other
case can be propagated by the theory and no backtracking is necessary. This
algorithm combines the strength of cuts with the simplicity of branches.

4 Cuts from Proofs

We will now give a short overview of the cuts from proofs algorithm. We focus
on the main ideas needed for our adaptation to mixed arithmetic. In this chapter
we assume that x only contains integer variables.

The algorithm is based on the Simplex algorithm. The solution space forms
a polyhedron in Qn. If the solution space is non-empty, the Simplex algorithm
returns a solution of Ax ≤ b. We further assume that the returned solution x 0 is
a vertex of the polyhedron, i. e., there is a nonsingular square submatrix A′ and
a corresponding vector b′, such that A′x0 = b’ . We call A′x ≤ b ′ the defining
constraints of the vertex. If the returned solution is not on a vertex we introduce
artificial branches on input variables into A and use these branches as defining
constraints. These branches are rarely needed in practise.

The main idea is to bring the constraint system A′x ≤ b ′ into a Hermite
normal form H and to compute the unimodular matrix U with A′U = H. The
Hermite normal form is uniquely defined. The constraint system A′x ≤ b ′ is
equivalent to Hy ≤ b ′ with y := U−1x . Since the solution x 0 of A′x 0 = b ′ is
not integral, the corresponding vector y0 = U−1x 0 is not integral, either. The
cuts from proofs algorithm creates an extended branch on one of the components
yi of y , i. e., yi ≤ �y0i� or yi ≥ 	y0i
.

Cutting the Mix 41

Although the description in Dillig et al. [7] looks different, they really do the
same. They introduce the notion of proof of unsatisfiability, which they define as
an equation dr ·x = n where r is an integer vector, n, d are integers, and d does
not divide n. It is clear that this equation cannot have integer solutions for x .
In particular, they define r as the i-th row of H−1A′ and n/d as the i-th entry
of H−1b. From this proof of unsatisfiability they generate the extended branch

1/g(dir i · x) ≤ �ni/g� ∨ 1/g(dir i · x) ≥ 	ni/g

where g is the greatest common divisor of the components of dir i. However,
g = di since r i is a row of the unimodular matrix U−1. Thus, they branch on
yi ≤ �y0i� or yi ≥ 	y0i
.

Due to the special shape of the Hermite normal form used here and in [7],
the constraint Hy ≤ b ′ implies that y ≤ y0. This means that the second branch
can be omitted, i. e., one can introduce the cut yi ≤ �y0i�. This is shown in the
following lemma.

Lemma 1. Let Ax0 = b and H = AU the Hermite normal form of A. Let
y0 = U−1x0. Then

Ax ≤ b implies that U−1x ≤ y0

Proof. We assume Ax ≤ b and show for every row i that (U−1x)i ≤ y0i by
induction over i. Let i ≥ 1. Since (HU−1x)i = (Ax)i ≤ bi,

n∑

j=1

hij(U−1x)j = (HU−1x)i ≤ bi = (Ax 0)i = (Hy0)i =
n∑

j=1

hijy0j .

Isolating hii(U−1x)i on the left hand side, we get (note that hij = 0 for j > i)

hii(U−1x)i ≤ hiiy0i +
i−1∑

j=1

hij(y0j − (U−1x)j).

From the induction hypothesis (U−1x)j ≤ y0j and hij ≤ 0 for j < i we derive
hii(U−1x)i ≤ hiiy0i. Now (U−1x)i ≤ y0i follows, since hii > 0. ��
Example 1. The following example stems from Pugh [18]. Given the constraint
system 27 ≤ 11x + 13y ≤ 45 and −10 ≤ 7x − 9y ≤ 4. Figure 1 shows that these
constraints form a parallelogram that does not contain any integer solution. The
Simplex algorithm may choose as defining constraints the upper bounds (which
are the thick lines in the diagram):

[
11 13
7 −9

] [
x
y

]
=

[
45
4

]

This gives a non-integer solution for x and y. The algorithm then proceeds by
computing the Hermite normal form as

H =
[

1 0
−103 190

]
=

[
11 13
7 −9

] [−7 13
6 −11

]
= AU.

42 J. Christ and J. Hoenicke

From this it computes the cuts as

U−1

[
x
y

]
≤ H−1b ⇔

[
11x + 13y
6x + 7y

]
≤

[
45

� 4639
190 �

]
=

[
45
24

]
.

The second cut 6x + 7y ≤ 24 is now added to the system. It follows from the
original constraints because

103
190

· (11x + 13y ≤ 45) +
1

190
(7x − 9y ≤ 4) gives 6x + 7y ≤ 4639

190
.

The figure depicts this cut graphically. Although this cut removes only a
small part of the solution space, it replaces the constraint 11x + 13y ≤ 45 by
a constraint with smaller coefficients. Continuing with this constraint, the same
algorithm will produce the second cut x + y ≤ � 388

103� = 3. This cut then replaces
the previous cut in the defining constraints and the third cut is x ≤ � 31

16� = 1.
For the fourth and last cut the Simplex algorithm chooses another constraint,
e. g., −10 ≤ 7x − 9y, since the lower right constraint is not inside the solution
space anymore. This produces the cut y ≤ � 17

9 � = 1. The solution space is now
empty, which means the system is unsatisfiable. ��

1st cut

2nd cut

3rd cut
4th cut

0.5 1 1.5 2 2.5
0.5

1

1.5

2

2.5

x

y

Fig. 1. Run of the cuts from proofs algorithm on Example 1. The black lines are the
constraints, which form a parallelogram without integer solutions. The thick lines on
the right denote the defining constraints for the first cut. The second cut is computed
from the first cut and the lower right constraint and so on. The fourth cut shows that
there are no integer solutions.

Why is yi ≤ �y0i� a good cut? It is not clear how to answer this question. One
can argue that one replaces the variables x with new variables y and solves a
very simple constraint system Hy ≤ b by doing cuts on the y variables. Also, it
can be seen that if the constraint yi ≤ �y0i� replaces the corresponding i-th row
in the defining constraint for every cut (which is what under certain condition

Cutting the Mix 43

the Bland heuristic [19] would do), the resulting constraint system has an integer
solution. But the best answer is that it empirically works.

Although the Hermite normal form is unique there is still an important
way the produced cuts can be influenced. The order of the defining constraints
directly determines the quality of the produced cuts. As a heuristic, the con-
straints that are most unlikely to change should come first. For this reason we
put equality constraints first in the matrix A′. Other than this, we put the rows
in the reverse order in which they would be chosen by the Bland heuristic.

Our view of the algorithm is that it transforms the basis x using a unimodular
matrix U to a basis y , such that the constraint system Ax ≤ b has a much
simpler representation Hy ≤ b in the new constraint system. Then it creates
cuts on the coordinates of the new basis y that are not yet integral. In the next
section we want to extend this idea to mixed problems where some variables are
real variables and some variables are integer variables.

5 Mixed Cuts from Proofs

As mentioned in the previous section, the basic idea of the cuts from proof
algorithm can be described by a transformation of the basis x to a new basis
y where the current constraint system is simpler. In this section we extend this
idea to mixed real/integer arithmetic.

For mixed arithmetic the basis x = (x1 . . . , xn1 , xn1+1, . . . , xn) is split into n1

real variables and n2 = n − n1 integer variables. The transformed basis y = Ux
should have the same number of real and integer variables. To achieve this the
matrix must have the form

U =
[
U(r) V
0 U(i)

]

where all coefficients of U(i) are integral.
We further require that every valid solution of y should correspond to a valid

solution of x . Therefore, the matrix U must be invertible and its inverse should
have again this form. The inverse of U is

U−1 =

[
U−1
(r) −U−1

(r)V U−1
(i)

0 U−1
(i)

]

We require that U−1
(i) ∈ Zn2×n2 (hence U(i) must be unimodular) and that U(r)

is nonsingular. We call a matrix of this form a mixed transformation matrix.

Definition 1. Given a mixed problem with n1 real and n2 integer variables and
n = n1 + n2. A matrix U ∈ Qn×n is a mixed transformation matrix if there are
a nonsingular U(r) ∈ Qn1×n1 , a unimodular U(i) ∈ Zn2×n2 , and V ∈ Qn1×n2 ,
such that

U =
[
U(r) V
0 U(i)

]
.

44 J. Christ and J. Hoenicke

By the above observation the mixed transformation matrices form a subgroup
of Qn×n, i. e., the inverse of a mixed transformation matrix is again a mixed
transformation matrix. Thus, we have the following lemma stating that a valid
solution for the original system corresponds to a valid solution of the transformed
coordinate system.

Lemma 2. Let U be a mixed transformation matrix. Then

x ∈ (Qn1 × Zn2) if and only if Ux ∈ (Qn1 × Zn2).

Proof. Follows directly from the shape of U and U−1. ��
Again we bring the matrix A of defining constraints into a normal form H with
H = AU where U is a mixed transformation matrix. We call this the mixed
normal form. A matrix H is in mixed normal form if

H =
[
Id 0
∗ H(i)

]

where Id ∈ Qn1×n1 is the identity matrix, ∗ is an arbitrary Qn2×n1 matrix, and
H(i) ∈ Qn2×n2 is in Hermite normal form.

A matrix has a normal form if and only if the first n1 constraints are linear
independent on the real variables. Thus we may have to reorder the matrix A to
put these rows first. Since the matrix A is nonsingular, it is always possible to
reorder the rows of A such that the top-left n1 × n1 submatrix is nonsingular.

Lemma 3. Let A ∈ Qn×n, such that the upper left n1 × n1 submatrix is non-
singular. Then A has a unique mixed normal form H = AU , such that U is a
mixed transformation matrix.

Proof. Existence. We subdivide A into
[
A11 A12

A21 A22

]

and note that A11 is invertible in Qn1×n1 . We set U(r) = A−1
11 . Then we transform

the matrix A22 − A21U(r)A12 into Hermite Normal Form H(i) with

H(i) = (A22 − A21U(r)A12)U(i).

The mixed normal form is

H =
[

Id 0
A21U(r) H(i)

]
=

[
A11 A12

A21 A22

] [
U(r) −U(r)A12U(i)

0 U(i)

]
.

Uniqueness. Assume that H = AU with

H =
[
Id 0

H21 H22

]
, A =

[
A11 A12

A21 A22

]
, U =

[
U11 U12

0 U22

]

Cutting the Mix 45

where H22 is in Hermite normal form and U22 is unimodular. The top left corner
of H gives Id = A11U11, thus U11 = A−1

11 is unique. The top right corner of H
gives 0 = A11U12 + A12U22, thus U12 = −A−1

11 A12U22. Inserting this into the
equation for the bottom right corner of H gives

H22 = (−A21A
−1
11 A12 + A22)U22

Thus, H22 is the unique Hermite normal form of −A21A
−1
11 A12 + A22 and U22 is

also unique. This shows that U is unique and therefore also H = AU . ��
Example 2. We change the constraint system of Example 1 and make the vari-
able x real-valued. Secondly, we require that x − �x� ≤ 0.2. To express this we
introduce an integer variable z representing �x�. The constraint system is

27 ≤ 11x + 13y ≤ 45
−10 ≤ 7x − 9y ≤ 4

0 ≤ x − z ≤ 0.2

Figure 2 depicts the solution space. The integer points are denoted by crosses;
x, y must lie in one of the horizontal thick lines for z, y to be integer and the last
constraint to be satisfied. Also x, y must lie in the parallelogram. As can be seen
from the figure, there is a solution, e. g., x = 1.2, y = 2, z = 1. Our algorithm
uses the Simplex algorithm to find a vertex in the solution space. We assume it
uses as defining constraints

11x + 13y ≤ 45
−7x + 9y ≤ 10

z − x ≤ 0

with the solution x = z = 55
38 , y = 85

38 . The mixed normal form is

H =

⎡

⎣
1 0 0

−7/11 100/11 0
−1/11 −9/11 1

⎤

⎦ =

⎡

⎣
11 13 0
−7 9 0
−1 0 1

⎤

⎦

⎡

⎣
1/11 −13/11 0

0 1 0
0 −2 1

⎤

⎦ = AU

From this it computes the cuts as

U−1

⎡

⎣
x
y
z

⎤

⎦ ≤ H−1b ⇔
⎡

⎣
11x + 13y

y
2y + z

⎤

⎦ ≤
⎡

⎣
45

�85/38�
�225/38�

⎤

⎦ =

⎡

⎣
45
2
5

⎤

⎦ .

The figure visualises the cuts. Note that the cut 2y + z ≤ 5 is for the z variable,
so x may still be in the differently shaded area right of this cut. When the two
cuts y ≤ 2 and 2y + z ≤ 5 are introduced, the Simplex algorithm will search for
a new vertex, e. g., x = 8

7 , y = 2, z = 1 with the defining constraints

−7x + 9y ≤ 10,

y ≤ 2,

2y + z ≤ 5.

This solution has integer values for y and z and the algorithm terminates with
this solution.

46 J. Christ and J. Hoenicke

y ≤ 2

2y + z ≤ 5

0.5 1 1.5 2 2.5
0.5

1

1.5

2

2.5

x and z

y

Fig. 2. Run of our algorithm on Example 2. The thick lines on the top denote the
defining constraints. From the constraints two cuts are computed. These cuts meet at
the vertex y = 2, z = 1, which can be extended to a feasible solution with x = 8/7.

Our algorithm introduces extended branches yi ≤ �y0i� ∨ yi ≥ 	y0i
. As in
Lemma 1, one can see that these branches are cuts if the matrix H contains
only nonpositive values in the lower left triangle. However, Lemma 3 shows that
H21 = A21A

−1
11 and there are examples where the coefficients of this matrix are

positive. Moreover, since the mixed normal form is unique, there is no simple fix.
In the above example we had to carefully choose the defining constraints to get
cuts instead of branches. In our implementation of the algorithm we usually get
several extended branches until the defining constraints contain enough integer
constraints, which means that there are only few non-zero entries in H21. Then
usually cuts are generated.

6 Implementation and Evaluation

We implemented the technique presented in this paper in the SMT solver SMT-
Interpol [5]. When experimenting, we discovered that most of the time spent by
SMTInterpol was not in the cut engine, but in trying to find a solution to the
LP relaxation and deciding on already created extended branches. In the runs
we investigated further, SMTInterpol quickly creates several extended branches
and cuts and then spends hours in the DPLL engine and the Simplex algorithm
to solve the LP relaxation. In the end, the benchmark is solved without adding
a new branch or cut. The main problem is that our implementation keeps all
branches and cuts generated by the technique proposed here and even decides
on them. To rectify this problem, we created a second version of SMTInterpol
that removes cuts and branches that did not help to close the current branch in
the decision tree of the DPLL engine. This version is still experimental and part
of ongoing work.

Cutting the Mix 47

We evaluated the technique on a number of benchmarks. We used hard con-
junctive benchmarks, since we aimed at evaluating the cut engine and not the
DPLL engine. Since SMTLIB [2] currently does not contain a logic for mixed
linear arithmetic without arrays or quantifiers, we created the logic QF LIRA.
This logic is also supported by CVC4 [1], MathSAT 5 [6], yices 2 [8], and Z3 [15]2.

In the evaluation we include a virtual solver that combines yices 2 and both
versions of SMTInterpol. We do not report times on this solver, but only the
number of benchmarks that would be solved by a portfolio of the combined
solvers. We chose yices 2 since it is the best performing solver on our benchmark
set (closely followed by MathSAT).

The evaluation was performed on StarExec3 using a timeout of 600 seconds
for both CPU and wall time. Memory was limited to 8 GB. We created some
benchmarks based on existing benchmarks for linear integer arithmetic, espe-
cially those that test the cut generation engine. In the following, we will discuss
the benchmarks and the results.

Family Cut Lemmas Biased. To generate this set of benchmarks, we used all
benchmarks from the cut lemmas family from QF LIA that are flagged as unsat-
isfiable. We systematically switched the sort of the variables in the order of their
declaration. After we switched one variable, we ran SMTInterpol for five minutes
to check if the benchmark was still unsatisfiable. If it was we kept the modifica-
tion. Otherwise we reverted to the last unsatisfiable modification. The goal is to
create a hard unsatisfiable and a few hard satisfiable benchmarks by finding the
limit where the satisfiability of the benchmarks changes. Since the modification
was guided by SMTInterpol, we call this family biased. The chosen modifications
depend on which solver we initially used to solve the benchmark. We created
a total of 1575 benchmarks. Even though we could know the status of most of
these benchmarks, we did not include it in the file4. But we checked that if two
or more solvers solved the same benchmark, they agreed on the status.

The results are shown in Table 1. The difference between wall time and CPU
time for SMTInterpol is caused by the Java virtual machine. SMTInterpol itself
is single threaded, but, e. g., the garbage collection runs in parallel. We remark
that the virtual solver (combination of yices 2 and both variants of SMTInterpol)
solves all but 22 benchmarks. One of the remaining benchmarks can be solved by
both CVC4 and MathSAT 5 which additionally solves three more benchmarks.
The remaining 18 cannot be solved by any of the solvers used in the evaluation.
Furthermore, both versions of SMTInterpol could solve benchmarks that no
competing solver (CVC4, MathSAT 5, yices 2, or Z3) could solve.

Figure 3 shows scatter plots that compare yices 2 resp. MathSAT 5 and the
version of SMTInterpol that forgets literals. The white area at the bottom of each
2 Z3 actually warns the user that it does not know this logic. The solver works never-

theless and interprets the logic as expected.
3 See https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=62799 using

username public and password public.
4 This causes StarExec to report both results sat and unsat as wrong.

https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=62799

48 J. Christ and J. Hoenicke

Table 1. Results of the evaluation on the benchmarks from the biased family. For
each solver we report the number of solved benchmarks, the number of satisfiable resp.
unsatisfiable benchmarks, the wall and CPU time and the number of benchmarks that
could not be solved by any competing solver.

Solver # solved # sat # unsat wall time CPU time # only

SMTInterpol 1107/1575 447 660 64079 68397 42

SMTInterpol forget 1226/1575 465 761 94262 99743 57

CVC4 1309/1575 483 826 63338 63359 0

MathSAT 5 1404/1575 521 883 59959 60000 3

yices 2 1427/1575 509 918 29272 29289 10

Z3 1147/1575 511 636 71688 71736 0

virtual 1553/1575 539 1014

plot is caused by the startup overhead of the Java virtual machine. Both plots show
that there are several problems on which yices 2 and MathSAT 5 time out while
SMTInterpol solves them in less than a second. Overall the difficulty of a problem
for yices 2 and MathSAT 5 is quite unrelated to the difficulty for SMTInterpol.
This undermines the thesis that these solver complement each other well. It is also
reflected in the number of benchmarks solved by the virtual solver.

0.1 1 10 100

0.1

1

10

100

yices 2

S
M

T
In

te
rp

o
l
fo

rg
et

0.1 1 10 100

0.1

1

10

100

MathSAT 5

S
M

T
In

te
rp

o
l
fo

rg
et

Fig. 3. Scatter plot comparing yices 2 resp. MathSAT 5 and the version of SMTInterpol
that forgets literals on the biased family.

Family Cut Lemmas Unbiased. Again, we used all benchmarks from the
cut lemmas family that are flagged as unsatisfiable. This time, we created 10
new benchmarks from each of these benchmarks by randomly changing the sort
of 20 % of the variables from integer to real. We chose that percentage because it
creates roughly the same number of unsat and sat benchmarks. This family does
not use any solver in the creation and should thus not be biased to a specific
solver. We created a total of 930 benchmarks in this division. Since we do not
know the status of these benchmarks, no status information is recorded in the
generated files. But, again, whenever two solvers solved the same benchmark,
they agreed on the status.

Cutting the Mix 49

Table 2. Results of the evaluation on the benchmarks from the unbiased family. For
each solver we report the number of solved benchmarks, the number of satisfiable resp.
unsatisfiable benchmarks, the wall and CPU time, and the number of benchmarks that
could not be solved by any competing solver.

Solver # solved # sat # unsat wall time CPU time # only

SMTInterpol 697/930 218 479 33421 35936 27

SMTInterpol forget 751/930 236 515 43473 46340 29

CVC4 785/930 239 546 35037 35109 0

MathSAT 5 832/930 259 573 28686 28695 3

yices 2 831/930 250 581 22260 22267 7

Z3 708/930 239 469 38762 38779 0

virtual 915/930 270 645

The results are shown in Table 2. From the 15 benchmarks that could not
be solved by the virtual solver, three could only be solved by MathSAT 5. Both
versions of SMTInterpol solve several benchmarks that cannot be solved by
CVC4, MathSAT 5, yices 2, or Z3.

The scatter plots comparing yices 2 resp. MathSAT 5 to the forget version
of SMTInterpol look almost identical to the ones shown in Fig. 3.

Table 3. Results of the evaluation on the benchmarks from the dillig family. For each
solver we report the number of solved benchmarks, the number of satisfiable resp.
unsatisfiable benchmarks, the wall and CPU time and the number of benchmarks that
could not be solved by any competing solver.

Solver # solved # sat # unsat wall time CPU time # only

SMTInterpol 2204/2330 2187 17 10858 14710 0

SMTInterpol forget 2194/2330 2176 18 13303 17319 1

CVC4 1967/2330 1938 29 44360 44372 0

MathSAT 5 2317/2330 2288 29 17309 17333 0

yices 2 2302/2330 2273 29 17115 17132 0

Z3 2101/2330 2072 29 69255 69344 0

virtual 2330/2330 2301 29

Family Dillig. The benchmarks from the cuts from proofs paper [7] are available
in the SMTLIB in QF LIA in the dillig family. For each of these benchmarks,
we created 10 new benchmarks where we randomly changed the sort of 20 %
of the variables from integer to real. This lead to a total of 2330 benchmarks.
Since the benchmarks are randomly generated, we do not know the status. But
the solvers agreed on the status of those benchmarks that could be solved by
multiple solvers.

50 J. Christ and J. Hoenicke

The results for the dillig family are shown in Table 3. The virtual solver
solves all benchmarks in this family even though no single solver could solve all
benchmarks.

The scatter plots from Fig. 4 compare yices 2 resp. MathSAT 5 and the forget
version of SMTInterpol. This time there seems to be a strange line at slightly
more than one second. Either SMTInterpol solves a benchmark in this time or
it does not solve the benchmark at all.

0.1 1 10 100

0.1

1

10

100

yices 2

S
M

T
In

te
rp

o
l
fo

rg
et

0.1 1 10 100

0.1

1

10

100

MathSAT 5

S
M

T
In

te
rp

o
l
fo

rg
et

Fig. 4. Scatter plots comparing yices 2 resp. MathSAT 5 and the version of SMTIn-
terpol that forgets literals on the dillig family.

Family Tightrhombus. We created 44 benchmarks specifically designed to test
the cut engine. These benchmarks are inspired by the tightrhombus benchmarks
used to test the cut engine for QF LIA. They encode a tight rhombus in the
following way. Choose coefficients cx > 0, cy > 0 and scale s > 0. The rhombus
for QF LIA is created as

0 ≤ (cx · s)x − (cy · s + 1)y ≤ s − 1 ∧ 1 ≤ (cx · s + 1)x − (cy · s)y ≤ s

for integer variables x and y. For mixed arithmetic, we use a real-valued variable
y and bound the distance between y and the nearest integer point. The bound
can be computed for each rhombus. Since yices 2 does not support the to int
construct from SMTLIB, we encode it using a fresh integer variable z. We created
benchmarks for cx = 273, cy = 245 resp. cx = 283, cy = 245 for scales s = 10i+1,
0 ≤ i ≤ 10. We carefully chose the bound on the distance between y and z such
that the benchmark is barely satisfiable. To create unsatisfiable benchmarks, we
subtracted a small value from the bound. We chose 10−13 to not create trivially
unsatisfiable benchmarks since the minimal distance between y and z for scale
1011 is very small.

The results for this family are shown in Table 4. We omit the virtual solvers
since both version of SMTInterpol solve all the benchmarks. While CVC4 only
solves benchmarks with scale up to 4, MathSAT solves all satisfiable benchmarks
with cx = 273, but has problems on the other set. Similarly, Z3 solves almost
all satisfiable benchmarks with cx = 283 (except for scale s = 1011) but has

Cutting the Mix 51

Table 4. Results of the evaluation on the benchmarks from the tightrhombus family.
For each solver we report the number of solved benchmarks, the number of satisfiable
resp. unsatisfiable benchmarks, the wall and CPU time and the number of benchmarks
that could not be solved by any competing solver.

Solver # solved # sat # unsat wall time CPU time # only

SMTInterpol 44/44 22 22 15 20 12

SMTInterpol forget 44/44 22 22 15 20 12

CVC4 20/44 10 10 585 585 0

MathSAT 5 21/44 15 6 326 326 0

yices 2 18/44 10 8 514 514 0

Z3 21/44 15 6 364 365 0

problems on the other set. Also note that 12 benchmarks were solved only by
either of the variants of SMTInterpol, but not by the other solvers.

This evaluation shows that the clear winner is a combination of the (to our
knowledge unpublished) technique used by yices 2 with the technique presented
in this paper. Such a combination advances the state of the art in mixed linear
arithmetic solving in the SMT context. Furthermore, the technique presented
in this paper is able to solve some benchmarks that no other technique can
solve. The comparison between the performances of the different versions of
SMTInterpol shows that removal of literals that do not contribute to closing of
a decision branch sometimes is beneficial.

7 Conclusion and Future Work

We presented a novel method to compute cuts in mixed linear arithmetic solving
in the context of SMT. The method is inspired by the cuts from proofs algorithm
used to solve integer linear arithmetic. It transforms the original constraint sys-
tem into a simpler one. This is achieved by transforming the basis of the original
constraint system into a new one. Cuts and branches are then created for the
new basis. We showed in some experiments that this new technique is able to
solve benchmarks that cannot be solved by state-of-the-art solvers.

The evaluation showed that the cut engine is not the bottleneck. Instead
SMTInterpol spends most time in the Simplex algorithm and the DPLL engine
deciding on the extended branches. An investigation when and which branches
and cuts should be removed from the solver is part of future work.

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

52 J. Christ and J. Hoenicke

2. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: 2.0. In: SMT (2010)
3. Berezin, S., Ganesh, V., Dill, D.L.: An online proof-producing decision procedure

for mixed-integer linear arithmetic. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003.
LNCS, vol. 2619, pp. 521–536. Springer, Heidelberg (2003)

4. Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Mahboubi, A., Mebsout,
A., Melquiond, G.: A simplex-based extension of fourier-motzkin for solving linear
integer arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012.
LNCS, vol. 7364, pp. 67–81. Springer, Heidelberg (2012)

5. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: an interpolating smt solver.
In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254.
Springer, Heidelberg (2012)

6. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

7. Dillig, I., Dillig, T., Aiken, A.: Cuts from proofs: a complete and practical technique
for solving linear inequalities over integers. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 233–247. Springer, Heidelberg (2009)

8. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Heidelberg (2014)

9. Dutertre, B., de Moura, L.: Integrating simplex with DPLL(T). Technical report,
CSL, SRI INTERNATIONAL (2006)

10. Griggio, A.: A practical approach to satisfiability modulo linear integer arithmetic.
JSAT 8(1/2), 1–27 (2012)

11. Jovanović, D., de Moura, L.: Cutting to the chase solving linear integer arithmetic.
In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp.
338–353. Springer, Heidelberg (2011)

12. King, T., Barrett, C., Dutertre, B.: Simplex with sum of infeasibilities for SMT.
In: FMCAD, pp. 189–196. IEEE (2013)

13. King, T., Barrett, C.W., Tinelli, C.: Leveraging linear and mixed integer program-
ming for SMT. In: FMCAD, pp. 139–146. IEEE (2014)

14. Martin, A.: General mixed integer programming: computational issues for branch-
and-cut algorithms. In: Jünger, M., Naddef, D. (eds.) Computational Combinato-
rial Optimization. LNCS, vol. 2241, p. 1. Springer, Heidelberg (2001)

15. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

16. Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer linear pro-
gramming. Math. Program. 92(2), 283–296 (2004)

17. de Oliveira, D.C.B., Monniaux, D.: Experiments on the feasibility of using a
floating-point simplex in an SMT solver. In: PAAR-2012, pp. 19–28. EasyChair
(2012)

18. Pugh, W.: The omega test: a fast and practical integer programming algorithm for
dependence analysis. Commun. ACM 8, 4–13 (1992)

19. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons,
Chichester (1986)

	Cutting the Mix
	1 Introduction
	2 Notation and Preliminaries
	3 Solving Linear Integer Arithmetic and Mixed Linear Arithmetic
	4 Cuts from Proofs
	5 Mixed Cuts from Proofs
	6 Implementation and Evaluation
	7 Conclusion and Future Work
	References

