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Abstract. Program synthesis tools work by searching for an implemen-
tation that satisfies a given specification. Two popular search strategies
are symbolic search, which reduces synthesis to a formula passed to a
SAT solver, and explicit search, which uses brute force or random search
to find a solution. In this paper, we propose adaptive concretization, a
novel synthesis algorithm that combines the best of symbolic and explicit
search. Our algorithm works by partially concretizing a randomly chosen,
but likely highly influential, subset of the unknowns to be synthesized.
Adaptive concretization uses an online search process to find the opti-
mal size of the concretized subset using a combination of exponential
hill climbing and binary search, employing a statistical test to determine
when one degree of concretization is sufficiently better than another.
Moreover, our algorithm lends itself to a highly parallel implementation,
further speeding up search. We implemented adaptive concretization for
Sketch and evaluated it on a range of benchmarks. We found adaptive
concretization is very effective, outperforming Sketch in many cases,
sometimes significantly, and has good parallel scalability.

1 Introduction

Program synthesis aims to construct a program satisfying a given specification.
One popular style of program synthesis is syntax-guided synthesis, which starts
with a structural hypothesis describing the shape of possible programs, and then
searches through the space of candidates until it finds a solution. Recent years
have seen a number of successful applications of syntax-guided synthesis, ranging
from automated grading [18], to programming by example [8], to synthesis of
cache coherence protocols [22], among many others [6,14,20].

Despite their common conceptual framework, each of these systems relies on
different synthesis procedures. One key algorithmic distinction is that some use
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explicit search—either stochastically or systematically enumerating the candi-
date program space—and others use symbolic search—encoding the search space
as constraints that are solved using a SAT solver. The SyGuS competition has
recently revealed that neither approach is strictly better than the other [1].

In this paper, we propose adaptive concretization, a new approach to syn-
thesis that combines many of the benefits of explicit and symbolic search while
also parallelizing very naturally, allowing us to leverage large-scale, multi-core
machines. Adaptive concretization is based on the observation that in synthesis
via symbolic search, the unknowns that parameterize the search space are not all
equally important in terms of solving time. In Sect. 2, we show that while sym-
bolic methods can efficiently solve for some unknowns, others—which we call
highly influential unknowns—cause synthesis time to grow dramatically. Adap-
tive concretization uses explicit search to concretize influential unknowns with
randomly chosen values and searches symbolically for the remaining unknowns.
We have explored adaptive concretization in the context of the Sketch synthe-
sis system [19], although we believe the technique can be readily applied to other
symbolic synthesis systems such as Brahma [12] or Rosette [21].

Combining symbolic and explicit search requires solving two challenges. First,
there is no practical way to compute the precise influence of an unknown. Instead,
our algorithm estimates that an unknown is highly influential if concretizing it
will likely shrink the constraint representation of the problem. Second, because
influence computations are estimates, even the highest influence unknown may
not affect the solving time for some problems. Thus, our algorithm uses a series
of trials, each of which makes an independent decision of what to randomly
concretize. This decision is parameterized by a degree of concretization, which
adjusts the probability of concretizing a high influence unknown. At degree 1,
unknowns are concretized with high probability; at degree ∞, the probability
drops to zero. The degree of concretization poses its own challenge: a preliminary
experiment showed that across seven benchmarks and six degrees, there is a
different optimal degree for almost every benchmark. (Section 3 describes the
influence calculation, the degree of concretization, and this experiment.)

Since there is no fixed optimal degree, the crux of adaptive concretization
is to estimate the optimal degree online. Our algorithm begins with a very low
degree (i.e., a large amount of concretization), since trials are extremely fast. It
then exponentially increases the degree (i.e., reduces the amount of concretiza-
tion) until removing more concretization is estimated to no longer be worthwhile.
Since there is randomness across the trials, we use a statistical test to determine
when a difference is meaningful. Once the exponential climb stops, our algo-
rithm does binary search between the last two exponents to find the optimal
degree, and it finishes by running with that degree. At any time during this
process, the algorithm exits if it finds a solution. Adaptive concretization natu-
rally parallelizes by using different cores to run the many different trials of the
algorithm. Thus a key benefit of our technique is that, by exploiting parallelism
on big machines, it can solve otherwise intractable synthesis problems. (Section 4
discusses pseudocode for the adaptive concretization algorithm.)
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We implemented our algorithm for Sketch and evaluated it against 26
benchmarks from a number of synthesis applications including automated tutor-
ing [18], automated query synthesis [6], and high-performance computing, as well
as benchmarks from the Sketch performance benchmark suite [19] and from
the SyGuS’14 competition [1]. By running our algorithm over twelve thousand
times across all benchmarks, we are able to present a detailed assessment of its
performance characteristics. We found our algorithm outperforms Sketch on 23
of 26 benchmarks, sometimes achieving significant speedups of 3× up to 14×. In
one case, adaptive concretization succeeds where Sketch runs out of memory.
We also ran adaptive concretization on 1, 4, and 32 cores, and found it generally
has reasonable parallel scalability. Finally, we compared adaptive concretiza-
tion to the winner of the SyGuS’14 competition on a subset of the SyGuS’14
benchmarks and found that our approach is competitive with or outperforms
the winner. (Section 5 presents our results in detail.)

2 Combining Symbolic and Explicit Search

To illustrate the idea of influence, consider the following Sketch example:

bit [32] foo(bit [32] x) implements spec{
if (??){

return x & ??; // unknown m1

}else{
return x | ??; // unknown m2

} }

bit [32] spec(bit [32] x){
return minus(x, mod(x, 8));

}

Here the symbol ?? represents an unknown constant whose type is automatically
inferred. Thus, the ?? in the branch condition is a boolean, and the other ??’s,
labeled as unknowns m1 and m2, are 32-bit integers. The specification on the
right asserts that the synthesized code must compute (x − (x mod 8)).

The sketch above has 65 unknown bits and 233 unique solutions, which is too
large for a naive enumerative search. However, the problem is easy to solve with
symbolic search. Symbolic search works by symbolically executing the template
to generate constraints among those unknowns, and then generating a series of
SAT problems that solve the unknowns for well-chosen test inputs. Using this
approach, Sketch solves this problem in about 50 ms, which is certainly fast.

However, not all unknowns in this problem are equal. While the bit-vector
unknowns are well-suited to symbolic search, the unknown in the branch is much
better suited to explicit search. In fact, if we incorrectly concretize that unknown
to false, it takes only 2 ms to discover the problem is unsatisfiable. If we concretize
it correctly to true, it takes 30 ms to find a correct answer. Thus, enumerating
concrete values lets us solve the problem in 32 ms (or 30 ms if in parallel), which
is 35 % faster than pure symbolic search. For larger benchmarks this can make
the difference between solving a problem in seconds and not solving it at all.

The benefit of concretization may seem counterintuitive since SAT solvers also
make random guesses, using sophisticated heuristics to decide which variables to
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guess first. To understand why explicit search for this unknown is beneficial, we
need to first explain how Sketch solves for these unknowns. First, symbolic exe-
cution in Sketch produces a predicate of the form Q(x, c), where x is the 32-bit
input bit-vector and c is a 65-bit control bit-vector encoding the unknowns.Q(x, c)
is true if and only if foo(x) = x − (x mod 8) for the function foo described by c.
Thus, Sketch’s goal is to solve the formula ∃c.∀x.Q(x, c). This is a doubly quan-
tified problem, so it cannot be solved directly with SAT.

Sketch reduces this problem to a series of problems of the form ∧xi∈EQ(xi, c),
i.e., rather than solving for all x, Sketch solves for all xi in a carefully chosen
set E. After solving one of these problems, the candidate solution c is checked
symbolically against all possible inputs. If a counterexample input is discovered,
that counterexample is added to the set E and the process is repeated. This is
the Counter-Example Guided Inductive Synthesis (CEGIS) algorithm, and it is
used by most published synthesizers (e.g., [12,21,22]).

Sketch’s solver represents constraints as a graph, similar to SMT solvers,
and then iteratively solves SAT problems generated from this graph. The graph
is essentially an AST of the formula, where each node corresponds to an unknown
or an operation in the theory of booleans, integer arithmetic, or arrays, and where
common sub-trees are shared (see [19] for more details). For the simple example
above, the formula Q(x, c) has 488 nodes and CEGIS takes 12 iterations. On each
iteration, the algorithm concretizes xi and simplifies the formula to 195 nodes.
In contrast, when we concretize the condition, Q(x, c) shrinks from 488 to 391
nodes, which simplify to 82 nodes per CEGIS iteration. Over 12 iterations, this
factor of two in the size of the problem adds up. Moreover, when we concretize
the condition to the wrong value, Sketch discovers the problem is unsatisfiable
after only one counterexample, which is why that case takes only 2 ms to solve.

In short, unlike the random assignments the SAT solver uses for each individ-
ual sub-problem in the CEGIS loop, by assigning concrete values in the high-level
representation, our algorithm significantly reduces the sub-problem sizes across
all CEGIS loop iterations. It is worth emphasizing that the unknown controlling
the branch is special. For example, if we concretize one of the bits in m1, it
only reduces the formula from 488 to 486 nodes, and the solution time does not
improve. Worse, if we concretize incorrectly, it will take almost the full 50 ms to
discover the problem is unsatisfiable, and then we will have to flip to the correct
value and take another 50 ms to solve, thus doubling the solution time. Thus, it
is important to concretize only the most influential unknowns.

Putting this all together yields a simple, core algorithm for concretization.
Consider the original formula Q(x, c) produced by symbolic execution over the
sketch. The unknown c is actually a vector of unknowns ci, each corresponding
to a different hole in the sketch. First, rank-order the ci from most to least
influence, cj0, cj1, · · · . Then pick some threshold n smaller than the length of
c, and concretize cj0, · · · , cjn with randomly chosen values. Run the previously
described CEGIS algorithm over this partially concretized formula, and if a
solution cannot be found, repeat the process with a different random assignment.
Notice that this algorithm parallelizes trivially by running the same procedure
on different cores, stopping when one core finds a solution.
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This basic algorithm is straightforward, but three challenges remain: How to
estimate the influence of an unknown, how to estimate the threshold of influence
for concretization, and how to deal with uncertainty in those estimates. We
discuss these challenges in the next two sections.

3 Influence and Degree of Concretization

An ideal measure of an unknown’s influence would model its exact effect on
running time, but there is no practical way to compute this. As we saw in the
previous section, a reasonable alternative is to estimate how much we expect
the constraint graph to shrink if we concretize a given node. However, it is still
expensive to actually perform substitution and simplification.

Our solution is to use a more myopic measure of influence, focusing on the
immediate neighborhood of the unknown rather than the full graph. Following
the intuition from Sect. 2, our goal is to assign high influence to unknowns that
select among alternative program fragments (e.g., used as guards of conditions),
and to give low influence to unknowns in arithmetic operations. For an unknown
n, we define influence(n) =

∑
d∈children(n) benefit(d, n), where children(n) is the

set of all nodes that depend directly on n. Here benefit(d, n) is meant to be a
crude measure of how much the overall formula might shrink if we concretize
the parent node n of node d. The function is defined by case analysis on d:

– Choices. If d is an ite node,1 there are two possibilities. If n is d’s guard
(d = ite(n, a, b)) then benefit(d, n) = 1, since replacing a with a constant will
cause the formula to shrink by at least one node. On the other hand, if n
corresponds to one of the choices (d = ite(c, n, b) or d = ite(c, a, n)), then
benefit(d) = 0, since replacing n with a constant has no effect on the size of
the formula.

– Boolean nodes. If d is any boolean node except negation, it has benefit 0.5.
The intuition is that boolean nodes are often used in conditional guards, but
sometimes they are not, so they have a lower benefit contribution than ite
guards. If d = ¬(n), then benefit(d, n) equals influence(d), since the benefit in
terms of formula size of concretizing n and d is the same.

– Choices among constants. Sketch’s constraint graph includes nodes repre-
senting selection from a fixed sized array. If d corresponds to such a choice
that is among an array of constants, then benefit(d, n) = influence(d), i.e., the
benefit of concretizing the choice depends on how many nodes depend on d.

– Arithmetic nodes. If d is an arithmetic operation, benefit(d, n) = −∞. The
intuition is that these unknowns are best left to the solver. For example, given
??+in, replacing ?? with a constant will not affect the size of the formula.

Note that while the above definitions may involve recursive calls to influence, the
recursion depth will never be more than two due to prior simplifications. This
pass also eliminates nodes with no children, and thus any unknown not involved
in arithmetic will have at least one child and thus an influence of at least 0.5.
1 ite(a, b, c) corresponds to if (a) b else c, as in SMT-LIB.
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Before settling on this particular influence measure, we tried a simpler
approach that attempted to concretize holes that flow to conditional guards,
with a probability based on the degree of concretization. However, we found
that a small number of conditionals have a large impact on the size and com-
plexity of the formula. Thus, having more refined heuristics to identify high
influence holes is crucial to the success of the algorithm.

3.1 Degree of Concretization

The next step is to decide the threshold for concretization. We hypothesize the
best amount of concretization varies—we will test this hypothesis shortly. More-
over, since our influence computation is only an estimate, we opt to incorporate
some randomness, so that (estimated) highly influential unknowns might not be
concretized, and (estimated) non-influential unknowns might be.

Thus, we parameterize our algorithm by a degree of concretization (or just
degree). For each unknown n in the constraint graph, we calculate its estimated
influence N = influence(n). Then we concretize the node with probability

p =

⎧
⎨

⎩

0 if N < 0
1.0 if N > 1500
1/(max(2, degree/N)) otherwise

To understand this formula, ignore the first two cases, and consider what hap-
pens when degree is low, e.g., 10. Then any node for which N ≥ 5 will have a 1/2
chance of being concretized, and even if N is just 0.5—the minimum N for an
unknown not involved in arithmetic—there is still a 1/20 chance of concretiza-
tion. Thus, low degree means many nodes will be concretized. In the extreme,
if degree is 0 then all nodes have a 1/2 chance of concretization. On the other
hand, suppose degree is high, e.g., 2000. Then a node with N = 5 has just a
1/400 chance of concretization, and only nodes with N ≥ 1000 would have a 1/2
chance. Thus, a high degree means fewer nodes will be concretized, and at the
extreme of degree = ∞, no concretization will occur, just as in regular Sketch.

For nodes with influence above 1500, the effect on the size of the formula
is so large that we always find concretization profitable. Nodes with influence
below zero are those involved in arithmetic, which we never concretize.

Overall, there are four “magic numbers” in our algorithm so far: the degree
cutoff 1500 at which concretization stops being probabilistic, the ceiling of 0.5 on
the probability for all other nodes, and the benefit values of 1 and 0.5 for boolean
and choice unknowns, respectively. We determined these number in an ad hoc
way using a subset of our benchmarks. For example, the 0.5 probability ceiling
is the first thing we tried, and it worked well. On the other hand, we initially
tried probability 0 for boolean unknowns, but found that some booleans also
indirectly control choices; so we increased the benefit to 0.5, which seems to
work well. We leave a more systematic analysis to future work.
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Table 1. Expected running time (s) using empirical success rate. SIQR in small text.
Fastest time in dark grey, second-fastest in light grey.

3.2 Preliminary Experiment: Optimal Degree

We conducted a preliminary experiment to test whether the optimal degree
varies with subject program. We chose seven benchmarks across three different
synthesis domains. The left column of Table 1 lists the benchmarks, grouped by
domain. Section 5.1 describes the programs and experimental machine in more
detail. We ran each benchmark with degrees varying exponentially from 16 to
4096. For each degree, we ran each benchmark 256 times, with no timeout.

For each benchmark/degree pair, we wish to estimate the time to success if
we concretized the same benchmark many times at that degree. To form this
estimate, for each such pair we compute the fraction of runs p that succeeded;
this approximates the true probability of success. Then if a trial takes time t,
we compute the expected time to success as t/p. While this is a coarse estimate,
it provides a simple calculation we can also use in an algorithm (Sect. 4). If p is
0 (no trial succeeded), the expected time to success is ∞.

Results. Each cell in Table 1 contains the median expected run time in sec-
onds, as computed for each degree. Since variance is high, we also report the
semi-interquartile range (SIQR) of the running times, shown in small text. We
highlight the fastest and second-fastest times.

The table shows that the optimal degree varies across all benchmarks; indeed,
all degrees except 1024 were optimal for at least one benchmark. We also see a
lot of variance across runs. For example, for l min, degree 128, the SIQR is more
than 40× the median. Other benchmarks also have high SIQRs. Importantly, if
we visualize the median expected running times, they form a vee around the
fastest time—performance gets worse the farther away from optimal in either
direction. Thus, we can search for an optimal degree, as we discuss next.

4 Adaptive, Parallel Concretization

Figure 1 gives pseudocode for adaptive concretization. The core step of our algo-
rithm, encapsulated in the run trial function, is to run Sketch with the speci-
fied degree. If a solution is found, we exit the search. Otherwise, we return both
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run trial(degree)

run Sketch with specified degree

if solution found then

raise success

else

return (running time,

concretization space size )

compare(deg a, deg b)

dist a ← ∅
dist b ← ∅
while |dist a | ≤ Max dist ∧

wilcoxon(dist a, dist b ) > T do

dist a ∪ ← run trial(deg a)

dist b ∪ ← run trial(deg b)

if wilcoxon(dist a, dist b ) > T then

return tie

elsif avg(dist a ) < avg(dist b) then

return left

else

return right

climb()

low, high ← 0, 1

while high < Max exp do

case compare(2low, 2high) of

left : break

right:

low ← high

high ← high + 1

tie : high ← high + 1

return (low, high)

bin search(low, high)

mid ← (low + high) / 2

case compare(low, mid) of

left : return bin search(low, mid)

right: return bin search(mid, high)

tie : return mid

main()

(low, high) ← climb()

deg ← bin search(2low, 2high)

while (true) do run trial(deg)

Fig. 1. Search Algorithm using Wilcoxon Signed-Rank Test.

the time taken by that trial and the size of the concretization space, e.g., if we
concretized n bits, we return 2n. We will use this information to estimate the
time-to-solution of running at this degree.

Since Sketch solving has some randomness in it, a single trial is not enough
to provide a good estimate of time-to-solution, even under our heuristic assump-
tions. In Table 1 we used 256 trials at each degree, but for a practical algorithm,
we cannot fix a number of trials, lest we run either too many trials (which wastes
time) or too few (which may give a non-useful result).

To solve this issue, our algorithm uses the Wilcoxon Signed-Rank Test [24]
to determine when we have enough data to distinguish two degrees. We assume
we have a function wilcoxon(dist a, dist b) that takes two equal-length lists of
(time, concretization space size) pairs, converts them to distributions of esti-
mated times-to-solution, and implements the test, returning a p-value indicating
the probability that the means of the two distributions are different.

Recall that in our preliminary experiment in Sect. 3, we calculated the esti-
mated time to success of each trial as t/p, where t was the time of the trial and
p was the empirical probability of success. We use the same calculation in this
algorithm, except we need a different way to compute p, since the success rate
is always 0 until we find a solution, at which point we stop. Thus, we instead
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calculate p from the search space size. We assume there is only one solution, so
if the search space size is s, we calculate p = 1/s.2

Comparing Degrees. Next, compare takes two degrees as inputs and returns a
value indicating whether the left argument has lower expected running time,
the right argument does, or it is a tie. The function initially creates two empty
sets of trial results, dist a and dist b. Then it repeatedly calls run trial to add
a new trial to each of the two distributions (we write x ∪ ← y to mean adding y
to set x). Iteration stops when the number of elements in each set exceeds some
threshold Max dist, or the wilcoxon function returns a p-value below some
threshold T . Once the algorithm terminates, we return tie if the threshold was
never reached, or left or right depending on the means.

In our experiments, we use 3×max(8, |cores|) for Max dist. Thus, compare
runs at most three “rounds” of at least eight samples (or the number of cores, if
that is larger). This lets us cut off the compare function if it does not seem to
be finding any distinction. We use 0.2 for the threshold T . This is higher than
a typical p-value (which might be 0.05), but recall our algorithm is such that
returning an incorrect answer will only affect performance and not correctness.
We leave it to future work to tune Max dist and T further.

Searching for the Optimal Degree. Given the compare subroutine, we can imple-
ment the search algorithm. The entry point is main, shown in the lower-right
corner of Fig. 1. There are two algorithm phases: an exponential climbing phase
(function climb) in which we try to roughly bound the optimal degree, followed
by a binary search (function bin search) within those bounds.

We opted for an initial exponential climb because binary search across the
whole range could be extremely slow. Consider the first iteration of such a process,
which would compare full concretization against no concretization. While the for-
mer would complete almost instantaneously, the latter could potentially take a
long time (especially in situations when our algorithm is most useful).

The climb function aims to return a pair low, high such that the optimal
degree is between 2low and 2high. It begins with low and high as 0 and 1, respec-
tively. It then increases both variables until it finds values such that at degree
2high, search is estimated to take a longer time than at 2low, i.e., making things
more symbolic than low causes too much slowdown. Notice that the initial tri-
als of the climb will be extremely fast, because almost all variables will be
concretized.

To perform this search, climb repeatedly calls compare, passing in 2 to the
power of low and high as the degrees to compare. Then there are three cases.
If left is returned, 2low has better expected running time than 2high. Hence we
assume the true optimal degree is somewhere between the two, so we return them.
Otherwise, if right is returned, then 2high is better than 2low, so we shift up to
the next exponential range. Finally, if it is a tie, then the range is too narrow
to show a difference, so we widen it by leaving low alone and incrementing high.

2 Notice we can ignore the size of the symbolic space, since symbolic search will find
a solution if one exists for the particular concretization.
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We also terminate climbing if high exceeds some maximum exponent Max exp.
In our implementation, we choose Max exp as 14, since for our subject programs
this makes runs nearly all symbolic.

After finding rough bounds with climb, we then continue with a binary
search. Notice that in bin search, low and high are the actual degrees, whereas
in climb they are degree exponents. Binary search is straightforward, maintain-
ing the invariant that low has expected faster or equivalent solution time to high
(recall this is established by climb). Thus each iteration picks a midpoint mid
and determines whether low is better than mid, in which case mid becomes the
new high; or mid is better, in which case the range shifts to mid to high; or there
is no difference, in which case mid is returned as the optimal degree.

Finally, after the degree search has finished, we repeatedly run Sketch with
the given degree. The search exits when run trial finds a solution, which it
signals by raising an exception to exit the algorithm. (Note that run trial may
find a solution at any time, including during climb or bin search).

Parallelization. Our algorithm is easy to parallelize. The natural place to do this
is inside run trial: Rather than run a single trial at a time, we perform parallel
trials. More specifically, our implementation includes a worker pool of a user-
specified size. Each worker performs concretization randomly at the specified
degree, and thus they are highly likely to all be doing distinct work.

Timeouts. Like all synthesis tools, Sketch includes a timeout that kills a search
that seems to be taking too long. Timeouts are tricky to get right, because it is
hard to know whether a slightly longer run would have succeeded. Our algorithm
exacerbates this problem because it runs many trials. If those trials are killed
just short of the necessary time, it adds up to a lot of wasted work. At the other
extreme, we could have no timeout, but then the algorithm may also waste a lot
of time, e.g., searching for a solution with incorrectly concretized values.

To mitigate the disadvantages of both extremes, our implementation uses
an adaptive timeout. All worker threads share an initial timeout value of one
minute. When a worker thread hits a timeout, it stops, but it doubles the shared
timeout value. In this way, we avoid getting stuck rerunning with too short a
timeout. Note that we only increase the timeout during climb and bin search.
Once we fix the degree, we leave the timeout fixed.

5 Experimental Evaluation

We empirically evaluated adaptive concretization against a range of benchmarks
with various characteristics.3 Compared to regular Sketch (i.e., pure symbolic
search), we found our algorithm is substantially faster in many cases; compet-
itive in most of the others; and slower on a few benchmarks. We also com-
pared adaptive concretization with concretization fixed at the final degree chosen
by the adaption phase of our algorithm (i.e., to see what would happen if we
3 Our testing infrastructure, benchmarks, and raw experimental data are open-sourced

and explained at: http://plum-umd.github.io/adaptive-concretization/.

http://plum-umd.github.io/adaptive-concretization/
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could guess this in advance), and we found performance is reasonably close,
meaning the overhead for adaptation is not high. We measured parallel scala-
bility of adaptive concretization of 1, 4, and 32 cores, and found it generally
scales well. We also compared against the winner of the SyGuS’14 competition
on a subset of the benchmarks and found that adaptive concretization is bet-
ter than the winner on 6 of 9 benchmarks and competitive on the remaining
benchmarks.

Throughout this section, all performance reports are based on 13 runs on
a server equipped with forty 2.4 GHz Intel Xeon processors and 99 GB RAM,
running Ubuntu 14.04.1. LTS. (We used the same machine for the experiments
in Sect. 3.) For the pure Sketch runs only, performance is also on 13 runs with
a 2-hour timeout and 32 GB memory bound.

5.1 Benchmarks

The names of our benchmarks are listed in the left column of Table 2, with the
size in the next column. The benchmarks are grouped by the synthesis appli-
cation they are from. Each application domain’s sketches vary in complexity,
amount of symmetry, etc. We discuss the groups in order.

– Pasket. The first three benchmarks, beginning with p , come from the appli-
cation that inspired this work: Pasket, a tool that aims to construct exe-
cutable code that behaves the same as a framework such as Java Swing, but
is much simpler to statically analyze [11]. Pasket’s sketches are some of
the largest that have ever been tried, and we developed adaptive concretiza-
tion because they were initially intractable with Sketch. As benchmarks, we
selected three Pasket sketches that aim to synthesize parts of Java Swing
that include buttons, the color chooser, and menus.

– Data Structure Manipulation. The second set of benchmarks is from a project
aiming to synthesize provably correct data-structure manipulations [13]. Each
synthesis problem consists of a program template and logical specifications
describing the functional correctness of the expected program. There are two
benchmarks. l prepend accepts a sorted singly linked list L and prepends a
key k, which is smaller than any element in L. l min traverses a singly linked
list via a while loop and returns the smallest key in the list.

– Invariants for Stencils. The next sets of benchmarks, beginning with a mom ,
are from a system that synthesizes invariants and postconditions for scientific
computations involving stencils. In this case, the stencils come from a DOE
Miniapp called Cloverleaf [7]. These benchmarks involve primarily integer
arithmetic and large numbers of loops.

– SyGuS Competition. The next sets of benchmarks, beginning with ar and hd ,
are from the first Syntax-Guided Synthesis Competition [1], which compared
synthesizers using a common set of benchmarks. We selected nine benchmarks
that took at least 10 s for any of the solvers in the competition, but at least
one solver was able to solve it.
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Table 2. Comparing Sketch, adaptive, and non-adaptive concretization.

– Sketch. The last three groups of benchmarks, beginning with s , deriv,
and q , are from Sketch’s performance test suite, which is used to iden-
tify performance regressions in Sketch and measure potential benefits of
optimizations.

5.2 Performance Results

The right columns of Table 2 show our results. The columns that include running
time are greyed for easy comparison, with the semi-interquartile range (SIQR)
in a small font. (We only list the running times SIQR to save space.) The median
is ∞ if more than half the runs timed out, while the SIQR is ∞ if more than
one quarter of the runs timed out. The first grey column lists Sketch’s running
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time on one core. The next group of columns reports on adaptive concretization,
run on 32 cores. The first column in the group gives the median of the final
degrees chosen by adaptive concretization. The next column lists the median
number of calls to run trial. The last column lists the median running time.
Lastly, the right group of columns shows the performance of our algorithm on 32
cores, assuming we skip the adaptation step and jump straight to running with
the median degree shown in the table. For example, for p button, these columns
report results for running starting with degree 4,160 and never changing it. We
again report the number of trials and the running time.

Comparing Sketch and adaptive concretization, we find that adaptive con-
cretization typically performs better. In the figure, we boldface the fastest time
between those two columns. We see several significant speedups, ranging from
14× for l min, 12× for ar sum, and 11× for s logcnt to 4× for hd 15 d5 and
deriv3 and 3× for ar s 6 and s log2. For p button, regular Sketch reaches
the 2-hour timeout in 4 of 13 runs, while our algorithm succeeds, mostly within
one minute. In another case, p menu, Sketch reliably exceeds our 32 GB mem-
ory bound and then aborts. Overall, adaptive concretization performed better
in 23 of 26 benchmarks, and about the same on one benchmark.

On the remaining benchmarks (p color and a mom 2), adaptive concretiza-
tion’s performance was within about a factor of two. Comparing other similarly
short-running benchmarks, such as deriv4 and deriv5, where the final degree
(16) was chosen very early, the degree search process needed to spend more time
to reach bigger degree, resulting in the slowdown. Finally, a mom 2 is 1.5× slower.
In this case, Sketch’s synthesis phase is extremely fast, hence parallelization
has no benefit. Instead, the running time is dominated by the checking phase
(when the candidate solution is checked symbolically against all possible inputs),
and using adaptive concretization only adds overhead.

Next we compare adaptive concretization to non-adaptive concretization at
the final degree. In 7 cases, the adaptive algorithm is actually faster, due to
random chance. In the remaining cases, the adaptive algorithm is either about
the same as non-adaptive or is at worst within a factor of approximately three.

5.3 Parallel Scalability and Comparison to SyGuS Solvers

We next measured how adaptive concretization’s performance varies with the
number of cores, and compare it to the winner of the SyGuS competition. Table 3
shows the results. The first two columns are the same as Table 2. The next five
columns show the performance of adaptive concretization on 1, 4, and 32 cores.
Real time is wall-clock time for the parallel run (the 32-core real-time column is
the same as Table 2), and CPU time is the cumulative Sketch back-end time
summed over all cores. We discuss the rightmost column shortly. We boldface
the fastest real time among Sketch, 1, 4, and 32 cores.

The real-time results show that, in the one-core experiments, adaptive con-
cretization performs better than regular Sketch in 17 of 26 cases. Although
adaptive concretization is worse or times out in the other cases, its performance
improves with the number of cores. The 4-core runs are consistently close to
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Table 3. Parallel scalability of adaptive concretization.

or better than 1-core runs; in some cases, benchmarks that time out on 1 core
succeed on 4 cores. At 32 cores, we see the best performance in 20 of the 26
cases, with a speedup over 4-core runs ranging up to 7×. There is only one case
where 4 cores is faster than 32: a mom 2. However, as the close medians and large
SIQR indicate, this is noise due to randomness in Sketch.

Comparing real times and CPU time, we can see that our algorithm does
fully utilize all cores. Investigating further, we found one source of overhead is
that each trial re-loads its input file. We plan to eliminate this cost in the future
by only reading the input once and then sharing the resulting data structure.

Finally, the rightmost column of Table 3 shows the performance of the Enu-
merative CEGIS Solver, which won the SyGuS’14 Competition [1]. As the Enu-
merative Solver does not accept problems in Sketch format, we only compare
on benchmarks from the competition (which uses the SyGuS-IF format, which
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is easily translated to a sketch). We should note that the enumerative solver is
not parallelized and may be difficult to parallelize.

Adaptive concretization is faster for 6 of 9 benchmarks from the competition.
It is also worth mentioning the Enumerative Solver actually won on the four
benchmarks beginning with hd . Our results show that adaptive concretization
outperforms it on one benchmark and is competitive on the others.

6 Related Work

There have been many recent successes in sampling-based synthesis techniques.
For example, Schkufza et al. use sampling-based synthesis for optimization
[14,15], and Sharma et al. use similar techniques to discover complex invari-
ants in programs [16]. These systems use Markov Chain Montecarlo (MCMC)
techniques, which use fitness functions to prioritize sampling over regions of
the solution space that are more promising. This is more sophisticated sampling
technique than what is used by our method. We leave it to future work to explore
MCMC methods in our context. Another alternative to constraint-based synthe-
sis is explicit enumeration of candidate solutions. Enumerative solvers often rely
on factoring the search space, aggressive pruning and lattice search. Factoring has
been very successful for programming by example [8,10,17], and lattice search
has been used in synchronization of concurrent data structures [23] and auto-
tuning [2]. However, both factoring and lattice search require significant domain
knowledge, so they are unsuitable for a general purpose system like Sketch.
Pruning techniques are more generally applicable, and are used aggressively by
the enumerative solver compared against in Sect. 5.

Recently, some researchers have explored ways to use symbolic reasoning to
improve sampling-based procedures. For example, Chaudhuri et al. have shown
how to use numerical search for synthesis by applying a symbolic smoothing
transformation [4,5]. In a similar vein, Chaganty et al. use symbolic reasoning to
limit the sampling space for probabilistic programs to exclude points that will
not satisfy a specification [3]. We leave exploring the tradeoffs between these
approaches as future work.

Finally, there has been significant interest in parallelizing SAT/SMT solvers.
The most successful of these combine a portfolio approach—solvers are run
in parallel with different heuristics—with clause sharing [9,25]. Interestingly,
these solvers are more efficient than solvers like PSATO [26] where every thread
explores a subset of the space. One advantage of our approach over solver par-
allelization approaches is that the concretization happens at a very high-level of
abstraction, so the solver can apply aggressive algebraic simplification based on
the concretization. This allows our approach to even help a problem like p menu
that ran out of memory on the sequential solver. The tradeoff is that our solver
loses the ability to tell if a problem is UNSAT because we cannot distinguish not
finding a solution from having made incorrect guesses during concretization.



392 J. Jeon et al.

7 Conclusion

We introduced adaptive concretization, a program synthesis technique that com-
bines explicit and symbolic search. Our key insight is that not all unknowns are
equally important with respect to solving time. By concretizing high influence
unknowns, we can often speed up the overall synthesis algorithm, especially
when we add parallelism. Since the best degree of concretization is hard to com-
pute, we presented an online algorithm that uses exponential hill climbing and
binary search to find a suitable degree by running many trials. We implemented
our algorithm for Sketch and ran it on a suite of 26 benchmarks across sev-
eral different domains. We found that adaptive concretization often outperforms
Sketch, sometimes very significantly. We also found that the parallel scalability
of our algorithm is reasonable.
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