
Conflict-Driven Conditional Termination

Vijay D’Silva1 and Caterina Urban2(B)

1 Google Inc., San Francisco, USA
2 École Normale Supérieure, Paris, France

urban@di.ens.fr

Abstract. Conflict-driven learning, which is essential to the perfor-
mance of sat and smt solvers, consists of a procedure that searches
for a model of a formula, and refutation procedure for proving that no
model exists. This paper shows that conflict-driven learning can improve
the precision of a termination analysis based on abstract interpretation.
We encode non-termination as satisfiability in a monadic second-order
logic and use abstract interpreters to reason about the satisfiability of
this formula. Our search procedure combines decisions with reachability
analysis to find potentially non-terminating executions and our refuta-
tion procedure uses a conditional termination analysis. Our implemen-
tation extends the set of conditional termination arguments discovered
by an existing termination analyzer.

1 Conflict-Driven Learning for Termination

Conflict-driven learning procedures are integral to the performance of sat and
smt solvers. Such procedures combine search and refutation to determine if a
formula is satisfiable. Conflicts discovered by search drive refutation, and search
learns from refutation to avoid regions of the search space without solutions.

Our work is driven by the observation that discovering a small number of
disjunctive termination arguments is crucial to the performance of certain ter-
mination analyzers [27]. Figure 1 summarizes our lifting of conflict-driven learn-
ing to termination analysis. We use reachability analysis to find a set of states
that constitute potentially non-terminating execution. We apply a conditional
termination analysis to this set to eliminate states from which all executions ter-
minate. Unlike termination analysis, which solves a decision problem and returns
a yes or no answer, conditional termination analysis is concerned with discov-
ering sufficient conditions for termination. Sufficient conditions for termination
play the role of learned clauses in our analysis. They prevent subsequent runs of
reachability analysis from revisiting states from which termination is guaranteed.

Our conflict driven conditional termination procedure (cdct) can be viewed
as a sound but incomplete solver for a family of monadic, second-order formulae.
Büchi’s theorem shows that the language of a Büchi automaton is non-empty
exactly if a formula in the monadic second-order theory of one successor (s1s) is
satisfiable [5]. This theorem can be viewed encoding non-termination of a finite-
state program as satisfiability in s1s. We introduce s1s(t), an extension of s1s
c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part II, LNCS 9207, pp. 271–286, 2015.
DOI: 10.1007/978-3-319-21668-3 16

272 V. D’Silva and C. Urban

Search Refutation

Propagate

Decide

Analyze

Generalize

sat unsat

Conflict

Lemma sat/smt Termination

Satisfiability Non-Termination

Model Infinite execution

Countermodel Finite or infeasible trace

Constraint Propagation Reachability Analysis

Conflict Analysis Termination Analysis

Fig. 1. Conflict driven learning as applied to termination

to sequences of first-order structures, and encode non-termination in a control-
flow graph (cfg) as satisfiability in s1s(t). A model of a formula is an infinite
execution that respects the transition constraints in the cfg.

Formulating non-termination as satisfiability provides a clear route for lifting
cdcl to non-termination. We combine decisions with reachability in an abstract
domain to construct and refine assignments to second-order variables in the
same way that sat solvers construct and refine partial assignments. A notable
difference to standard abstract interpretation is that our assignments are neither
over- nor under-approximations of the set of reachable states. Our conflict analy-
sis uses backwards abstract interpretation to enlarge the set of states from which
termination is guaranteed. We present a generalized unit rule for combining rank-
ing functions with reachability analysis. These components are combined in our
new analysis, which we have implemented and evaluated against state-of-the-art
termination provers.

2 Non-Termination as Second-Order Satisfiability

The two contributions of this section are the logic s1s(t), which extends the
monadic second-order logic of one successor (s1s) with a theory and an encoding
of program non-termination as satisfiability in this theory.

2.1 Monadic Second-Order Theories of One Successor

We use =̂ for definition. Let P(S) be the powerset of S. For f : A → B, the
function f [a �→ b] maps a to b and c distinct from a to f(c). The symbols
x, y, z range over first-order variables in Vars, f, g, h over functions in Fun, and
P,Q,R over predicates in Pred . We use a set Pos of first-order position variables
whose elements are i, j, k, a set SVar of monadic second-order variables denoted
X,Y,Z, a unary successor function suc and a binary successor predicate Suc.

Our logic consists of three families of formulae called state, transition and
trace formulae, which are interpreted over first-order structures, pairs of first-
order structures and infinte sequences of first-order structures respectively. The
formulae are named after how they are interpreted over programs.

Conflict-Driven Conditional Termination 273

t ::= x | f(t0, . . . , tn) Term
ϕ ::= P (t0, . . . , tn) | ϕ ∧ ϕ | ¬ϕ State Formula
ψ ::= suc(x) = t | ψ ∧ ψ | ¬ψ Transition Formula
Φ ::= X(i) | Suc(i, j) | ϕ(i) | ψ(i)

| Φ ∧ Φ | ¬Φ | ∃i : Pos.Φ Trace formula

A first-order interpretation (Val , I) defines functions I(f) and relations I(P)
over values in Val . The value �t�s of a term t in a state s : Vars → Val , is s(x) if
t is x, and I(f)(�t0�s, . . . , �tn�s) if t is f(t0, . . . , tn). The interpretation of a state
formula is the standard first-order semantics. A transition formula is interpreted
at a transition, that is, a pair of states (r, s). A formula ϕ in which the symbol
suc does not occur is interpreted at the state r, while suc(x) = t compares the
value of the term t in r with the value of x in the successor state s.

(r, s) |= P (t0, . . . , tn) if (�t0�r, . . . , �tn�r) ∈ I(P)
(r, s) |= ϕ ∧ ψ if (r, s) |= ϕ and (r, s) |= ψ

(r, s) |= ¬ϕ if (r, s) �|= ϕ (r, s) |= suc(x) = t if �x�s = �t�r

A trace τ : N → (Vars → Val) is an infinite sequence of states and τ(m) is
the state at position m. A position assignment σ : (Pos → N) ·∪ (SVar → P(N))
maps position variables to N and second-order variables to subsets of N such that
{σ(X) | X ∈ SVar} partitions N. We explain this partition condition shortly.
A trace formula is interpreted with respect to an s1s(t) structure (τ, σ).

Note that there are first-order variables of two sorts in a trace formula.
A trace formula Φ asserting that the transition formula ψ(x, y) =̂ suc(x) = y +1
is true at the trace position denoted by i has the form ψ(x, y)(i). The predicate
Suc(i, j) asserts that the position j occurs immediately after i.

(τ, σ) |= Suc(i, j) if σ(i) + 1 = σ(j) (τ, σ) |= ϕ(i) if τ(σ(i)) |= ϕ

(τ, σ) |= ψ(i) if (τ(σ(i)), τ(σ(i) + 1)) |= ψ (τ, σ) |= X(i) if σ(i) ∈ σ(X)
(τ, σ) |= Φ ∧ Ψ if (τ, σ) |= Φ and (τ, σ) |= Ψ (τ, σ) |= ¬Φ if (τ, σ) �|= Φ

(τ, σ) |= ∃i : Pos.Φ if (τ, σ[i �→ n]) |= Φ for some n in N

An s1s(t) structure (τ, σ) is a model of Φ if (τ, σ) |= Φ, and is a countermodel
otherwise. A trace formula is satisfiable if it has a model. An s1s(t) structure
is defined using an infinite trace, so finite traces cannot be models of a formula.

2.2 Encoding Non-Termination in S1S(T)

We now recall control flow graphs (cfgs) and encode non-termination as satis-
fiability. A command in Cmd is an assignment x := t of a term t to a first-
order variable x, or is a condition [ϕ], where ϕ is a state formula. A cfg

G = (Loc, E, in, ex, stmt) consists of a finite set of locations Loc including an

274 V. D’Silva and C. Urban

(∀i.First(i) ⇒ Xin(i)) ∧ (∀i.Xex(i) ⇒ Last(i))
∧ ∀i.∀j.Xin(j) ∧ Suc(i, j) ⇒ (suc(x) = x − 1)(i) ∧ Xa(i)
∧ ∀i.∀j.Xa(j) ∧ Suc(i, j) ⇒ (x �= 0 ⇒ suc(x) = x)(i) ∧ Xin(i)
∧ ∀i.∀j.Xex(j) ∧ Suc(i, j) ⇒ (x = 0 ⇒ suc(x) = x)(i) ∧ Xin(i)

in

a

ex

[x �= 0]

[x = 0]

x := x − 1

Fig. 2. A formula encoding non-termination of the program shown in the monadic
second-order theory of one successor over integer arithmetic.

initial location in, an exit location ex, edges E ⊆ Loc × Loc, and a labelling
stmt : E → Cmd of edges with commands. To assist the presentation, we assume
that the exit location ex has no successors.

The formula Transc below defines the semantics of commands using the con-
dition SameV =̂

∧
x∈V suc(x) = x, that variables in V are not modified. The

set of models of Transc is the transition relation Relc. We write Transe and
Rele for the transition formula and relation of the command stmt(e). The for-
mula InfG extends the translation of Büchi automata to s1s to encode cfgs in
s1s(t). We write First(i) =̂ ∀j.¬Suc(j, i) for the first position on a trace and
Last(i) =̂ ∀j.¬Suc(i, j) for a position that cannot be on an infinite trace.

Transc =̂

{
b =⇒ SameVars if c = [b]
suc(x) = t ∧ SameVars\{x} if c = x := t

InfG =̂ (∀i.First(i) =⇒ Xin(i)) ∧ (∀j.Xex(j) =⇒ Last(j))

∧
∧

v∈Loc

∀i.∀j.Xv(j) ∧ Suc(i, j) =⇒
∨

(u,v)∈E

Trans(u,v)(i) ∧ Xu(i)

The formula InfG encodes program behaviour as follows. Consider an s1s(t)
structure (τ, σ). The interpretation σ(X�) of a second-order variable X� repre-
sents positions on the trace when execution is at location �. Such an interpre-
tation partitions N because each position on a trace corresponds to a unique
location. The entry constraint on First(i) ensures execution begins at in. The
exit constraint implying Last(j) enforces that an infinite execution does not
visit ex. The conditions involving Suc(i, j) are called transition constraints and
express that consecutive states on a trace must respect the transition relation
of G. Theorem 1 expresses non-termination as satisfiability.

Theorem 1. A cfg G has a non-terminating execution iff InfG is satisfiable.

We believe this is a simple yet novel encoding of non-termination that allows the
duality between search and refutation to be exploited for termination analysis.
In contrast, the second-order encoding of termination in [13] uses a predicate for
disjunctive well-foundedness and is solved in a different manner.

Example 1. A cfg G and the formula InfG for a program with a variable x of
type Z are shown in Fig. 2. We write a trace as a sequence of values of x. Let τ

Conflict-Driven Conditional Termination 275

be the trace −1,−1,−2,−2, . . . and σ the assignment mapping Xex to the empty
set, and Xin and Xa to even and odd positions, respectively. The structure (τ, σ)
is a model of InfG. Every structure (τ, δ), with τ as before, in which δ(Xex) is
not empty is a countermodel of InfG because ex is not reachable if x is initially
−1, so some transition in τ must violate a transition constraint in InfG. Every
structure (τ ′, δ′) with x non-negative in τ ′(0) is also a countermodel of InfG

because executions with x initially non-negative terminate. Since τ ′ is infinite
by definition, some transition in τ ′ must be infeasible. Terminating executions
cannot be models of InfG because traces in s1s(t) structures are infinite. �
The formula InfG is a conjunction of formulae in which second-order variables
and first-order program variables are free but first-order position variables are
bound. We exploit this structure in our analysis.

3 Conflict-Driven Conditional Termination

The conflict-driven conditional termination procedure (cdct) in Algorithm 1
generalizes cdcl from sat to termination analysis. The input is the formula
InfG. The output (result,Δ,Θ) is a result concerning a set of structures Δ and
a set Θ of piecewise-defined ranking functions (pdrfs).

The value of result is one of divergent, terminates, or unknown. cdct returns
divergent if the traces represented by Δ do not reach the exit location, which
could be due to non-termination or undefined behaviour; It returns terminates
if Δ is empty and Θ guarantees termination for all states. It returns unknown
if cdct cannot prove termination and cannot progress. This happens if the
abstract domain cannot accurately represent non-terminating executions, if the
ranking functions used cannot express a termination argument, or a bound on
the number of decisions has been exceeded.

cdct maintains four global data structures. The trail tr is a sequence of
assignments to second-order variables. The explanation array exp contains in
each element exp[i], the decision or constraint used by propagation to add tr [i] to
the trail. The set of pdrfs Θ, generated by conditional termination analysis, are
our analogue of learned clauses. The blocking constraints Ψ contain constraints
representing two types of states, which need not be revisited. One is states from
which all executions terminate. The other is states for which cdct could neither
prove termination nor demonstrate non-termination.

Each execution of the cdct loop begins with a call to Search(), which
attempts to find a non-terminating execution. If Search() returns divergent,
cdct returns. If Search() returns unknown, the trail represents a potential con-
flict because it has discovered a set of states from which some execution ter-
minates. The conflict is potential because the trail may also contain models of
InfG. This is a difference to sat and smt solvers where a conflict contradicts a
formula.

The conflict analysis procedure Analyze()extracts from a potential conflict a
definite conflict θ, expressed as a ranking function. The domain of θ represents

276 V. D’Silva and C. Urban

Algorithm 1. CDCT(InfG)
Trail: tr ← ε
Explanations: exp ← ε
Blocking constraints: Ψ ← ∅
pdrfs: Θ ← ∅
while true do

result ← Search()
if result = divergent or
(result = unknown and exceeded()) then

return (result, [tr], Θ)

θ ← Analyze()
Θ ← Θ ∪ {θ}
Ψ ← Ψ ∪ Learn([tr], θ)
if Backtrack() = false then

return (terminates, [ε], Θ)

Z s tep (Z x) {
i f (x>20)

return 3 ;
else i f (x>10)

return 2 ;
else

return 1 ;
}
void main () {

y , i : Z

[a] i f (y>0)
i = −s tep (y) ;

else
i = step (−y) ;

[b] while (y<−3||y>3)
y = y+i ;

[ex]}

states from which all executions terminate. The learning step Learn() generates a
blocking constraint to drive subsequent search away from these states. Learning
also generates a blocking constraint if cdct cannot make progress analyzing
[tr]. This happens if no more decisions can be made and no ranking function can
be extracted. cdct then backtracks if possible.

An Example Run. A program is shown in C-like syntax alongside Algorithm1.
The location a is reached after the variables are initialized, b is the loop head, and
ex is the exit location. The program terminates but the abstract interpretation-
based tool FuncTion [32] cannot prove termination. cdct enables FuncTion

to prove termination while also avoiding case explosion. Even though other tools
may be able to prove termination, we believe cdct is interesting because similar
ideas could be used to expand the programs handled by those tools.

In this example, we use an interval abstract domain and affine ranking func-
tions. Search() uses reachability analysis to derive the intervals y:[−3, 3], i:[−3, 3]
at ex but termination analysis fails. Decisions restrict the range of a vari-
able at a location: for example, Search() heuristically uses conditions from the
code to make the decisions y:[1,∞] and y:[−∞, 10] at location a. Reachabil-
ity derives the range y:[1, 3], i:[−1,−1] at ex, which is a conflict, because no
trace with these states at ex satisfies InfG. Analyze() represents this conflict as
Xex �→ {y:[1, 3], i:[−1,−1] → 0}, which assigns a pdrf to the second-order vari-
able Xex and expresses that the program terminates in 0 steps for the states
shown. The pdrf is propagated backwards through the program by an abstract
interpreter [31] to derive the second-order assignments below. We omit the inter-
val on i, which is unchanged.

Xex �→ y:[1, 3] → 0,Xb �→ y:[1, 3] → 1,Xb �→ y:[4, 4] → 3,Xb �→ y:[5, 5] → 5

Conflict-Driven Conditional Termination 277

If these assignments are propagated to location b, we could only prove that the
program terminates for y:[1, 5] at a. Instead, we apply widening to the pdrfs
to derive Xb �→ {y:[1, 3] → 1, y:[4, 10] → 2x + 5}, which bounds the number of
steps to termination at the loop head for y in the ranges shown. We heuristically
expand the piece y:[4, 10] of the pdrf to y:[1,∞] and check if the 2x + 5 is still
a ranking function. Since it is, we have proved termination for executions with
y:[1,∞], i:[−1,−1] at b, despite having explicitly only analyzed the range y:[0, 5].

The learning step complements the decision y:[1,∞] and uses Xa �→ y:[−∞, 0]
to restrict future search. Learnt constraints typically have more structure.
A similar run of cdct can show termination when y is initially non-positive.

Consider the program with the loop condition changed to (y > −3). Now, the
program does not always terminate. Decisions and learning can infer a ranking
function for positive y as before. Decisions can also discover that for Xa �→
y:[−1,−1], ex is unreachable, indicating non-termination (as all locations lead
to ex). In this way, cdct proves conditional termination using disjunctions of
ranking functions and also identifies non-terminating executions.

4 Search for a Conflict

We now show how a trail, a data structure used by sat solvers, can be used to
make explicit the incremental progress made by an abstract interpreter.

Abstract Domains. A bounded lattice (L,
,�,�) is a partially ordered set with
a meet �, a join �, a greatest element � (top), and a least element ⊥ (bottom).
A concrete domain for forward analysis (P(State),⊆, F) is a lattice of states
with a set F = {postc | c ∈ Cmd} of monotone functions called transformers,
where postc(S) is the image of S under the transition relation for c. An abstract
domain is a bounded lattice (A,
, G,�) with a set of abstract transformers
G =

{
postA

c | c ∈ Cmd
}

and a widening operator � : A × A → A. There is a
monotone concretization function γ : A → P(State) satisfying that γ(�) = State
and γ(⊥) = ∅. The transformers satisfy the soundness condition postc(γ(a)) ⊆
γ(postA

c (a)) that abstract transformers overapproximate concrete transformers.
Literals are essential for propagation and conflict analysis in sat. The ana-

logue of literals in abstract domains are complementable meet-irreducibles [11].
A lattice element c is a meet-irreducible if a � b = c implies that a = c or b = c.
Let MA be the meet-irreducibles of A. An abstract element a has a concrete com-
plement if there exists an a in A such that γ(a) = ¬γ(a). A meet decomposition
of an element a is a finite set mdc(a) ⊆ MA satisfying that

�
mdc(a) = a and

that there is no strict subset S ⊂ mdc(a) with
�

S = a. A has complementable
meet irreducibles if every m ∈ MA has a concrete complement m ∈ MA.

Example 2. The interval lattice has elements [a, b], where a ≤ b ∈ Z∪{−∞,∞}.
The intervals [−∞, k], [k,∞] are meet-irreducibles, unlike [0, 2]. The set S =
{[−∞, 2], [0,∞], [−5,∞]} satisfies

�
S = [0, 2] but is not a meet decomposition

because {[−∞, 2], [0,∞]} ⊂ S. The concrete complements of [−∞, k] and [k,∞]
are [k + 1,∞] and [−∞, k − 1], while [0, 2] has no concrete complement. �

278 V. D’Silva and C. Urban

Algorithm 2. Search()

while true do
Propagate()
if tr(Xex) = ⊥ then

return divergent

d ← dec(InfG, Ψ, tr)
if [tr]
 [tr ·d] then

return unknown

Trail tr exp Modification

1 ε Initial state
2 Xex:[−∞, 0], Xex:[0, ∞] {in, a, ex} Propagation

3a ↪→ Xin:[9, ∞] Xin:[0, ∞] dec Decision
4a Xa:[1, ∞] {a, in} Propagation
5a Xin:[−∞, 0] dec Decision
6a Xa:⊥ {a, in} Propagation

3b Xin:[−∞, −7] dec Decision
4b Xa:[−∞, −7], Xex:⊥ {a, in} Propagation

Abstract Assignments. sat solvers use partial assignments to incrementally con-
struct a model. We introduce abstract assignments, which use abstract domains
to represent s1s(t) structures. Let Struct be the set of s1s(t) structures. The lat-
tice of abstract assignments (AsgA,
) contains the set AsgA =̂ SVar → A with
the pointwise order : asg
 asg ′ if asg(X)
 asg ′(X) for all X in SVar . The meet
and join are also defined pointwise. An abstract assignment asg represents a set
of s1s(t) structures as defined by the concretization conc : AsgA → P(Struct).

conc(asg) =̂ {(τ, σ) | for all X ∈ SVar . {τ(i) | i ∈ σ(X)} ⊆ γ(asg(X))}

An abstract assignment asg is a definite conflict for Φ if no model of Φ is in
conc(asg) and is a potential conflict if conc(asg) contains a countermodel of Φ.

Trail. We introduce a trail, which contains meet-irreducibles as in [4,10] and
in which a second-order variable can appear multiple times. A trail over A is
the empty sequence ε or the concatenation tr ·(X:m), where X is a second-order
variable and m is a complementable meet-irreducible. A trail tr defines the
assignment [tr] where [ε] =̂ λY.� and [tr ·(X:m)] maps X to [tr](X) � m and all
other Y to [tr](Y). A trail tr is in potential/definite conflict with Φ if [tr] is. We
write tr(X) for [tr](X). An explanation exp for a trail of length n is a function
from [0, n − 1] to constraints in InfG or learnt clauses.

Search(). Algorithm 2 extends a trail tr by propagating constraints from the
cfg, making decisions, or applying a generalized unit rule. It returns divergent
if tr(Xex) is ⊥, meaning that ex is unreachable. It returns unknown if tr(Xex)
is not ⊥ and no decisions can be made. This trail is a potential conflict because
every structure in conc([tr]) with a non-empty assignment to Xex violates the
constraint Xex(i) =⇒ Last(i), hence is a countermodel of InfG.

Example 3. The table alongside Algorithm2 illustrates the construction of tr
and exp during interval analysis of the program in Fig. 2. The exp column shows
the locations of the propagated constraints. The rows 1, 2, 3a, 4a, 5a, 6a represent
a run of Search(). The trail is initially empty and the result of standard interval
analysis is the trail Xex:[−∞, 0],Xex:[0,∞] in step 2, representing the assignment
{Xin �→ �,Xa �→ �,Xex �→ [0, 0]}. An arbitrary decision Xin:[9,∞] in step 3a is
not sound (see Example 3) and the smallest sound decision containing it is [0,∞].
Propagation yields Xa:[1,∞] in step 4a. The decision Xin:[−∞, 0] in step 5a

Conflict-Driven Conditional Termination 279

Algorithm 3. Propagate()

asg ← [tr]
foreach S ∈ scc(InfG) do

asg ′ ← Reach(S, asg)
foreach Xv:m ∈ mdiff (asg ′, asg)
do

tr ← tr ·(Xv:m)

foreach ψ ∈ Ψ do
tr ← gunit(tr , ψ)

Algorithm 4. Analyze()

dc ← {j �→ � | 0 ≤ j ≤ |tr |}
dc[|tr |] ← {|tr | �→ [tr](Xex) → 0}
i ← |tr |
repeat

if dc[i] = � or exp[i] = nil then
continue
rk ← Term(exp[i], dc[i])
dc[i] ← �
i ← i − 1
Update(dc, tr , rk)

until Unique Implication Point
return [dc]

is sound, and when propagated, yields a conflict in step 6a, so search returns
unknown. An alternative run is 1, 2, 3b, 4b. A decision Xin:[−∞,−7] is sound,
and propagation yields Xa:[−∞,−7] and Xex:⊥, so search returns divergent. �
Propagate(). Algorithm 3 calls an abstract interpreter and stores the results
in the trail in a form amenable to conflict analysis and learning. The notion
of meet-difference makes explicit the incremental change between two calls to
the abstract interpreter. Formally, the meet-difference of a, b ∈ A mdiff (a, b) =
mdc(a)\mdc(b). The meet-difference of two abstract assignments is the pointwise
lift mdiff (asg , asg ′) = {Xv:m | m ∈ mdiff (asg(Xv), asg ′(Xv)),Xv ∈ SVar}.

In a transition constraint ψ =̂ ∀i.∀j.Xv(j)∧Suc(i, j) ⇒ . . ., we write sink(ψ)
for Xv. A strongly connected component (scc) of InfG is a set of transition
constraints T such that the set of locations {v | ψ ∈ T,Xv = sink(ψ)} is an scc

of G. The set of sccs of InfG is scc(InfG). Propagate() calls a standard abstract
interpreter on each scc and uses a meet-difference calculation to extend the trail
with new information. Propagate() also applies a generalized unit rule gunit ,
explained in §conflicts. Propagation is sound in the sense that it does not elimi-
nate models of the constraints involved.

Lemma 1. If (τ, σ) satisfies InfG and Ψ and is in conc([tr]), it is also in
conc([tr]) after invoking Propagate().

Decisions. The abstract assignment computed by (the abstract interpreter used
by) Propagate() can be refined using decisions. Boolean decisions make variables
true or false and first-order decisions use values [7,24] but our decisions, like those
in [11], use abstract domain elements.

A decision is an element X:m that can be on a trail. A decision is sound if
conc(X:m) ∪ conc(X:m) = Struct . That is, considering the structures in m and
m amounts to considering all possible structures.

Example 4. Recall the unsound decision Xin:[9,∞] from Example 3. The struc-
ture (τ, σ) with τ = 9, 9, 8, 8, . . . and σ partitioning Xin and Xa into even and
odd values is not in conc(Xin:[9,∞]) as x cannot be 8 at in. Similarly, it is not
in conc(Xin:[−∞, 8]) so conc(Xin:[9,∞]) ∪ conc(Xin:[−∞, 8]) �= Struct . �

280 V. D’Silva and C. Urban

The unsoundness arises because pointwise lifting does not preserve concrete com-
plements. Though m is the concrete complement of m in A, [Xv:m] need not be
the concrete complement of [Xv:m] in AsgA. Unsound decisions can be extended
by propagation to a post-fixed point to cover all structures. All decisions on
variables Xv in singleton sccs with no self-loops are sound.

A decision rule dec(InfG, Ψ, tr) returns an abstract domain element d such
that [tr ·(Xv:d)]
 [tr]. The decision rule makes progress if this order is strict.
Unlike in sat the decision rule can cause divergence of cdct because an infinite
series of decisions like [0,∞], [1,∞], . . . may not change the result of propagation.

5 Conflict Analysis

Unlike sat and smt solvers, which generate definite conflicts, Search() generates
potential conflicts. We apply backwards abstract interpretation with ranking
functions to extract definite conflicts, and use widening to generalize them.

Ranking Function Domains. Due to space limitations, we only briefly recall the
concrete domain of ranking functions, which provides the intuition for conflict
analysis, and discuss the abstract domain informally. See [8,31] for details.

We write f : A � B for a partial function whose domain is dom(f).
A ranking function f : State � O for a relation R is a map from states to
ordinals satisfying that for all s in dom(f) and (s, t) in R, t is in dom(f) and
f(t) < f(s). A concrete domain for termination analysis (Rank ,�, B) is a lat-
tice of ranking functions with backwards transformers B = {bkw c | c ∈ Cmd}
defined below. Informally f � g if f is defined on a state when g is and yields
a lower rank: f � g =̂ dom(f) ⊇ dom(g) and for all x in dom(g), f(x) < g(x).
The transformer bkw c maps a ranking function f to one defined on states with
all their successors in dom(f). Recall that Relc is the transition relation for a
command c.

bkw c(f) =̂ λs.

⎧
⎪⎨

⎪⎩

0 if Relc(s) = ∅
sup {f(r) | r ∈ Relc(s)} + 1 ifRelc(s) ⊆ dom(f)
undefined otherwise

A subset P ⊆ A of a domain A is an abstract partition if {γ(a) | a ∈ P} partitions
State. Let Fun ⊆ Rank be a lattice of functions, for example, affine functions.

A piecewise defined ranking function (pdrf) over Fun and A is a set ρ =̂
{a1 �→ f1, . . . , ak �→ fk} such that {a1, . . . , ak} is an abstract partition, and each
fi is in Fun. The abstract domain of pdrfs (aRank ,�,Abd) is a lattice aRank
with abduction transformers Abd . The concretization γr : aRank → Rank of
a ρ as above maps states to ranking functions: γr(ρ) =̂ {s �→ fi | s ∈ γ(ai)}.
The order and lattice operations are defined in terms of partition refinement
and unification [31]. To compare ρ1 and ρ2, we consider the coarsest abstract
partition that refines the abstract partitions of both and compare the ranking
functions in each block pointwise.

Conflict-Driven Conditional Termination 281

Conflict analysis starts with a precondition for termination and finds a weaker
precondition for termination, hence performs abduction. The abduction trans-
formers satisfy the soundness condition: γr(abdc(ρ)) � bkw c(γr(ρ)), which states
that the termination bounds obtained with pdrfs are weaker than those that
could be obtained in the concrete domain. A sound abduction transformer is
underapproximating. A ranking assignment rk : SVar → aRank associates a
pdrf with each second-order variable. Ranking assignments form a lattice with
point-wise meet and join and have a special order � for fixed point checks [31].
To exchange information between Analyze() and Search() we extract a meet-
irreducible representation of the domains of pdrfs. The meet-projection of a
pdrf ρ =̂ {ai �→ fi} is the set of sets of meet-irreducibles mpr(ρ) =̂ {mdc(ai)}
and provides a dnf-like representation of the abstract partition in ρ.

Analyze(). Algorithm 4 uses an array dc to construct and generalize a definite
conflict. Each dc[i] represents termination conditions for states in the trail. Exe-
cutions from states at ex terminate immediately so the last element of dc is
{Xex �→ {[tr](Xex) �→ 0}} and all other elements are �. The conflict analysis
loop walks backwards through the trail and extends dc[i]. Forward propagation
through the scc exp[i] added tr [i] to the trail, so dc[i] is propagated backwards
through exp[i] to generalize the conflict to a ranking assignment rk . New pdrfs
are added to dc by the procedure Update(). Specifically, for each Xv modified by
Term(), and m ∈ mpr(rk(Xv)), Update() finds trail indices with tr [j]
 Xv:m
and sets dc[j] to the appropriate pdrf. Analyze() continues until a unique impli-
cation point is reached, which is typically a dominator in the cfg at which a
decision was made. Analyze() returns [dc], a representation of the pdrfs in dc.

Learn() and the Generalized Unit Rule. Information computed by Search()
is communicated to Analyze() using the trail, while information from Analyze()
is represented within Search() by a blocking constraint and is incorporated in
search using generalized unit rule. We describe these very briefly.

A set C = {X1:m1, . . . , Xk:mk} of elements can be complemented element-
wise to obtain C = {X1:m1, . . . , Xk:mk}. If C is viewed as a conjunction of
literals representing a conflict, C is a clause the procedure can learn. Learn()
applies meet-projection to a pdrf and complements this projection to obtain a
blocking constraint. In practice, we simplify the partitions of the pdrf to avoid
an explosion of blocking constraints, analogous to subsumption in sat.

The generalized unit rule [10] extends a trail using a blocking constraint.
Assume that Ψ has the form {X0:m0, . . . , Xk:mk}. The trail gunit(tr , Ψ) is tr ·
(Xk:mk) if [tr](Xi) � mi = ⊥ for 0 ≤ i < k and is tr otherwise. The generalized
unit rule refines a trail in the sense that [gunit(tr , Ψ)]
 [tr]. If tr is inconsistent
with Ψ , [tr] will represent ⊥. Having presented all components of the procedure,
we now investigate how it works in practice.

6 Implementation

We have incorporated cdct in our prototype static analyzer FuncTion (http://
www.di.ens.fr/∼urban/FuncTion.html), which is based on piecewise-defined

http://www.di.ens.fr/~urban/FuncTion.html
http://www.di.ens.fr/~urban/FuncTion.html

282 V. D’Silva and C. Urban

Fig. 3. Overview of the experimental evaluation.

ranking functions [31]. A version without cdct [32] participated in the 4th Inter-
national Competition on Software Verification (SV-COMP 2015).

FuncTion+cdct accepts (non-deterministic) programs in a C-like syntax.
It is implemented in OCaml and uses the APRON library [20]. The pieces
of a pdrf can be represented with intervals, octagons or convex polyhedra,
and ranking functions within the pieces are represented by affine functions. The
precision of the analysis can also be controlled by adjusting the widening delay.

Experimental Evaluation. We evaluated our tool against 288 terminating C
programs from the termination category of SV-COMP 2015. In particular, we
compared FuncTion+cdct with other tools from the termination category of
SV-COMP 2015 : AProVE [29], FuncTion without cdct [32], HIPTnT+ [22],
and Ultimate Automizer [18]. The experiments were performed on a system
with a 1.30 GHz 64-bit Dual-Core CPU (Intel i5-4250U) and 4 GB of RAM. For
the other tools, since we did not have access to their competition version, we
used the SV-COMP 2015 results obtained on more powerful systems with a
3.40 GHz 64-bit Quad-Core CPU (Intel i7-4770) and 33 GB of RAM.

Figure 3 summarizes our evaluation. The first column is the number of pro-
grams each tool could prove terminating. The second column reports the average
running time in seconds, and the last column reports the number of time outs,
which was set to 180 seconds. In Fig. 3b, the first column (�) lists the number
of programs that FuncTion+cdct proved terminating and the tool could not,
the second column (�) reports the number of programs that the tool proved
terminating and FuncTion+cdct could not, and the last two columns report
the number of programs that the tool and FuncTion+cdct were both able
(×) or unable (�) to prove terminating. The same symbols are used in Fig. 4.

Figure 3a shows that cdct causes a 9% improvement in FuncTion+cdct

compared to FuncTion without cdct. The increase in runtime is not evenly
distributed, and about 2% of the test cases require more than 20 seconds to
be analyzed by FuncTion+cdct (cf. Fig. 4a). In these cases the decision
heuristics do not quickly isolate sets of states on which the abstract interpreter
makes progress. Figure 4a shows that, as expected, FuncTion without cdct

terminates with an unknown result earlier. Figures 4b and 4d show that though
AProVE and Ultimate Automizer were run on more powerful machines,
FuncTion+cdct is generally faster but proves termination of respectively 19%
and 9% fewer programs (cf. Fig. 3a). HIPTnT+ proves termination of 16% more

Conflict-Driven Conditional Termination 283

0.01 0.1 1 10 100
0.01

0.1

1

10

100

FuncTion

F
u
n
c
T
i
o
n
[
3
2
]

(a)

0.01 0.1 1 10 100
0.01

0.1

1

10

100

FuncTion

A
P
r
o
V
E

[
2
9
]

(b)

0.01 0.1 1 10 100
0.01

0.1

1

10

100

FuncTion

H
I
P
T
n
T
+

[
2
2
]

(c)

0.01 0.1 1 10 100
0.01

0.1

1

10

100

FuncTion

U
l
t
i
m
a
t
e
A
u
t
o
m
i
z
e
r
[
1
8
]

(d)

Fig. 4. Detailed comparison of FuncTion against its previous version [32] (a),
AProVe [29] (b), HIPTnT+ [22] (c), and Ultimate Automizer [18] (d).

programs than FuncTion+cdct (cf. Fig. 4a), but FuncTion+cdct proves
termination of 52% of the program that HIPTnT+ is not able to prove termi-
nating (8% of the total test cases, cf. Fig. 3b). When comparing with FuncTion

without cdct [32], we observed a 2x speedup in the SV-COMP 2015 machines,
so the runtime comparison of FuncTion+cdct and HIPTnT+ is inconclu-
sive. Finally, thanks to the support for piecewise-defined ranking functions, 1%
of the programs could be proved terminating only by FuncTion+cdct (2.7%
by AProVE, 1% by HIPTnT+, and 1.7% by Ultimate Automizer). No
tool could prove termination for 0.7% of the programs.

7 Related Work and Conclusion

Büchi’s work relating automata and logic [5] is the basis for automata-based ver-
ification and synthesis. We depart from most work in this tradition in two ways.
One is the use of sequences of first-order structures as in first-order temporal
logics [19] and the other is to go from a graph-based representation to a formula,
which is opposite of the translation used in automata-theoretic approaches. The
use of s1s for pointer analysis [26], and termination [25] is restricted to decid-
able cases, as is [9]. Program analysis questions have been formulated with set-
constraints [1] and second-order Horn clauses [13], but solutions to these formulae

284 V. D’Silva and C. Urban

are typically invariants and ranking functions, not errors, and the methods used
to solve them differ from cdct.

A key intuition behind our work is to lift algorithmic ideas from sat solvers to
program analysis. The same intuition underlies smpp [17], which lifts dpll(t) to
programs, acdcl [10,11], which lifts cdcl to lattices, the lifting of St̊almarck’s
method [30], and lazy annotation, which uses interpolants for learning [23]. The
idea of guiding an abstract interpreter away from certain regions appears in
dagger [14] and Vinta [2], from which cdct differs in the use of a trail in
search and a unit rule in learning. Our generalized unit rule is from acdcl,
but the use of s1s(t), potential conflicts and the combination with pdrfs is
all new. The widening used in cdct preserves a termination guarantee and
we believe that algorithms for generating small interpolants [3] can help design
better widening operators.

Finally, termination analysis is a thriving area with more approaches than
we can discuss. A fundamental problem is the efficient discovery of disjunctions
of ranking functions [27]. We use backward analysis, as in [8,12], and our combi-
nation of conditional termination [6] with non-termination [15,21] is crucial. The
approach of [22] is similar ours with a different refutation step and information
exchange mechanism. At a high level, cdct is the dual of [16], which underap-
proximates non-terminating executions and overapproximates terminating ones,
while we overapproximate non-termination and underapproximate termination.
We believe cdct can be extended to transition-based approaches [28], but the
challenge is to develop search and learning.

References

1. Aiken, A.: Introduction to set constraint-based program analysis. Sci. Comput.
Program. 35, 79–111 (1999). Elsevier

2. Albarghouthi, A., Gurfinkel, A., Chechik, M.: Craig interpretation. In: Miné, A.,
Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 300–316. Springer, Heidelberg
(2012)

3. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Sharygina, N., Veith,
H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 313–329. Springer, Heidelberg (2013)

4. Brain, M., D’silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding floating-
point logic with abstract conflict driven clause learning. Formal Methods Syst.
Des. 45(2), 213–245 (2014). Springer

5. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Logic,
Methodology and Philosophy of Science, pp. 1–11. Stanford University Press (1960)

6. Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving condi-
tional termination. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
328–340. Springer, Heidelberg (2008)

7. Cotton, S.: Natural domain SMT: a preliminary assessment. In: Chatterjee, K.,
Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 77–91. Springer,
Heidelberg (2010)

8. Cousot, P., Cousot, R.: An abstract interpretation framework for termination. In:
Field, J., Hicks, M. (eds.) POPL, pp. 245–258. ACM (2012)

Conflict-Driven Conditional Termination 285

9. David, C., Kroening, D., Lewis, M.: Unrestricted termination and non-termination
arguments for bit-vector programs. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032,
pp. 183–204. Springer, Heidelberg (2015)

10. D’Silva, V., Haller, L., Kroening, D.: Abstract conflict driven learning. In: Gia-
cobazzi, R., Cousot, R. (eds.) POPL, pp. 143–154. ACM (2013)

11. D’Silva, V., Haller, L., Kroening, D., Tautschnig, M.: Numeric bounds analysis with
conflict-driven learning. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 48–63. Springer, Heidelberg (2012)

12. Ganty, P., Genaim, S.: Proving termination starting from the end. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 397–412. Springer, Heidelberg
(2013)

13. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: Vitek, J., Lin, H., Tip, F. (eds.) PLDI, pp.
405–416. ACM (2012)

14. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically refin-
ing abstract interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)

15. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.-G.: Proving
non-termination. In: Necula, G.C., Wadler, P. (eds.) POPL, pp. 147–158. ACM
(2008)

16. Harris, W.R., Lal, A., Nori, A.V., Rajamani, S.K.: Alternation for termination. In:
Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 304–319. Springer,
Heidelberg (2010)

17. Harris, W.R., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program analysis
via satisfiability modulo path programs. In: Hermenegildo, M., Palsberg, J. (eds.)
POPL, pp. 71–82. ACM (2010)

18. Heizmann, M., Dietsch, D., Leike, J., Musa, B., Podelski, A.: Ultimate

Automizer with array interpolation (Competition Contribution). In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 455–457. Springer, Heidel-
berg (2015)

19. Hodkinson, I.M., Wolter, F., Zakharyaschev, M.: Decidable and undecidable frag-
ments of first-order branching temporal logics. In: LICS, pp. 393–402. IEEE Com-
puter Society (2002)

20. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009)

21. Larraz, D., Nimkar, K., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Proving
non-termination using max-SMT. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 779–796. Springer, Heidelberg (2014)

22. Le, T.-C., Qin, S., Chin, W.-N.: Termination and non-termination specification
inference. In: Grove, D., Blackburn, S. (eds.) PLDI. ACM (2015)

23. McMillan, K.L.: Lazy annotation for program testing and verification. In: Touili,
T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 104–118. Springer,
Heidelberg (2010)

24. McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to richer logics. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 462–476. Springer,
Heidelberg (2009)

25. Mesnard, F., Payet, É.: A second-order formulation of non-termination. In: CoRR
(2014)

26. Møller, A., Schwartzbach, M.I.: The pointer assertion logic engine. In: Burke, M.,
Soffa, M.L. (eds.) PLDI, pp. 221–231. ACM (2001)

286 V. D’Silva and C. Urban

27. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, pp. 32–41. IEEE
Computer Society (2004)

28. Podelski, A., Rybalchenko, A.: Transition invariants and transition predicate
abstraction for program termination. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 3–10. Springer, Heidelberg (2011)

29. Ströder, T., Aschermann, C., Frohn, F., Hensel, J., Giesl, J.: AProVE: Termina-
tion and memory safety of C programs (Competition Contribution). In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 417–419. Springer, Heidelberg
(2015)

30. Thakur, A., Reps, T.: A generalization of St̊almarck’s method. In: Miné, A.,
Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 334–351. Springer, Heidelberg
(2012)

31. Urban, C.: The abstract domain of segmented ranking functions. In: Logozzo,
F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935, pp. 43–62. Springer,
Heidelberg (2013)

32. Urban, C.: FuncTion: an abstract domain functor for termination (Competition
Contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
464–466. Springer, Heidelberg (2015)

	Conflict-Driven Conditional Termination
	1 Conflict-Driven Learning for Termination
	2 Non-Termination as Second-Order Satisfiability
	2.1 Monadic Second-Order Theories of One Successor
	2.2 Encoding Non-Termination in S1S(T)

	3 Conflict-Driven Conditional Termination
	4 Search for a Conflict
	5 Conflict Analysis
	6 Implementation
	7 Related Work and Conclusion
	References

