
Chapter 3
Applications of Multi-Type Branching Processes

3.1 Introduction

Two applications of multi-type branching processes to epidemic models are pre-
sented. The first application is to an SEIR epidemic model and the second appli-
cation is to the same epidemic model but with dispersal. The SEIR epidemic is
modeled as a two-type branching process. Occurrence of an outbreak depends on
the number of exposed and infectious individuals. It is shown that the offspring pgfs
for the exposed and infectious populations lead to an explicit formula for the proba-
bility of an outbreak. In the SEIR model with dispersal, the case of two regions with
different healthcare situations are considered. One region has poor healthcare versus
another region with excellent healthcare. It is shown that the rate and the direction
of movement have a large impact on the occurrence of an outbreak. Branching pro-
cess theory is used to investigate the probability of an outbreak when the movement
rates differ between the two regions.

Although the SIR and SEIR epidemic models are simple, they are often used as
a first approximation during or after disease outbreaks to provide estimates of the
potential spread of the disease or to understand the pattern of spread. For example,
SIR and SEIR epidemic models in conjunction with data provided useful informa-
tion about the spread of the 2002–2003 SARS (Severe Acute Respiratory Syndrome)
pandemic which began in China, the 2009–2010 H1N1 influenza pandemic which
began in Mexico, and the 2014 Ebola outbreak in Africa [11, 22, 33].
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3.2 SEIR Epidemic

Consider an SEIR epidemic model, where S, E, I, and R are the susceptible, exposed,
infectious, and recovered individuals, respectively. With disease-related mortality
rate α , the population size is not constant, S(t) +E(t) + I(t) +R(t) = N(t). The
deterministic SEIR ODE model has the form:

dS(t)
dt

=−β
S(t)
N(t)

I(t)

dE(t)
dt

= β
S(t)
N(t)

I(t)−δE(t)

dI(t)
dt

= δE(t)− γI(t)−αI(t)

dR(t)
dt

= γI(t).

(3.1)

Births, deaths, and temporary immunity are not included in this model. However,
the basic reproduction number near the disease-free state has the same form as in
the SIRS model considered in Chapter 2 [36]:

R0 =
β

γ +α
. (3.2)

For the CTMC SEIR epidemic model, let X(t) = (X1(t),X2(t),X3(t),
X4(t)) denote the discrete random variables for the four states, (S(t),E(t),
I(t),R(t)). The transition rates for the CTMC SEIR epidemic model (MC Rates)
and those for the corresponding branching process approximation (BP rates) for
exposed and infectious populations, X2 and X3 are given in Table 3.1. Because the
rates are nonlinear, the solution of the deterministic model does not represent the
mean of the stochastic model. Note that event 1 has a nonlinear transition rate in
the MC model but a linear rate in the branching process approximation.

Table 3.1 Transition rates for the CTMC SEIR epidemic model (MC Rates) and for the corre-
sponding branching process approximation for exposed and infectious individuals (BP Rates).

Event ΔX(t) MC Rates BP Rates

1 (−1,1,0,0) β
X1(t)
N(t)

I(t) β I(t)

2 (0,−1,1,0) δX2(t) δX2(t)
3 (0,0,−1,1) γX3(t) γX3(t)
4 (0,0,−1,0) αX3(t) αX3(t)

To compute the probability of epidemic extinction for the multi-type branching
process, the pgfs for the random variables, X2 and X3, are defined. Applying the
transition rates from Table 3.1, the pgfs for X2 and X3 are
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f1(s1,s2) =
δ s2

δ

f2(s1,s2) =
β s1s2 + γ +α

β + γ +α
.

Although f1 is a simple function, f2 is not. The expectation matrix of the pgfs is

M =

⎡
⎣

0 1
β

β + γ +α
β

β + γ +α

⎤
⎦ .

Matrix J = Λ(M− I) is

J =

[−δ δ
β −γ −α

]
,

where Λ = diag(δ ,β + γ + α). Both matrices are irreducible. It is clear that if
R0 > 1, the branching process is supercritical. In particular, if R0 > 1, the unique
fixed point of the pgfs is (q∗1,q

∗
2) ∈ (0,1)2, where q∗i = 1/R0 (Whittle’s result). The

difference between the SIR and SEIR CTMC models is that the exposed period
increases the time until extinction and the presence of both exposed and infectious
individuals increases the probability of an outbreak. This latter result can be seen in
the probability of extinction (no major outbreak) for the CTMC SEIR epidemic
model, which is given by

P0(e0, i0)≈ (1/R0)
e0+i0 .

A numerical example of the SEIR CTMC model along with the deterministic
solution is given in Figure 3.1. Three of the four sample paths represent an out-
break, whereas in one there is no outbreak. The probability of a major outbreak is
1−P0(1,0) = 0.625.

If additional mortality occurs during the exposed period at rate εX2(t), then the
pgf for X2 is

f1(s1,s2) =
δ s2 + ε
δ + ε

.

The basic reproduction number for the ODE model with mortality during the exp-
osed period differs from (3.2) and is equal to

R0 =
βδ

(δ + ε)(γ +α)
. (3.3)

If R0 > 1, then the fixed point can be explicitly determined,

q∗1 =
δ

δ + ε
1
R0

+
ε

δ + ε

q∗2 =
1
R0

.
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A model with natural births and deaths in all stages yields a similar result [4]. The
value for the probability of extinction is greater in the exposed period than in the inf-
ectious period, q∗1 > q∗2. This is a reasonable result since in the exposed period, ind-
ividuals may die with probability ε/(δ + ε) before becoming infectious or become
infectious but not transmit the disease with probability δ/[(δ + ε)R0].
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Fig. 3.1 Four sample paths of the CTMC SEIR epidemic model along with the deterministic solu-
tion (dashed curve). Parameter values are β = 0.4, δ = 0.4, γ = 0.1, α = 0.05, and ε = 0. Initial
values are S(0) = 499, E(0) = 1, I(0) = 0 = R(0). The basic reproduction number R0 = 2.67. The
probability of a major outbreak is 1−P0(1,0) = 0.625.

3.3 Epidemic Dispersal

Suppose disease is spread between two populations each occupying different reg-
ions or patches and modeled by the SEIR epidemic equations within each patch.
In population 1, poor healthcare facilities result in frequent disease outbreaks. In
population 2, better healthcare facilities and reduced mortality and recovery rates
result in no major outbreaks. For population 1, the basic reproduction number is
greater than one but for population 2, the basic reproduction number is less than
one. With dispersal between these two populations, the outcome changes depending
on the direction and the rate of dispersal.

Let the disease parameters for each of these populations be denoted as βi, δi, γi,
and εi, i = 1,2. The rate of dispersal from population 1 to 2 is m1 and the rate from
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population 2 to 1 is m2. For simplicity, the model assumes that all individuals within
each stage, S, E, I, or R, disperse at the same rates, i.e., with rates m1 and m2. The
disease is spread by the movement of exposed or infectious individuals between
these two populations. The deterministic model for population 1 with dispersal is

dS1(t)
dt

=−β1
S1(t)
N1(t)

I1(t)−m1S1(t)+m2S2(t)

dE1(t)
dt

= β1
S1(t)
N1(t)

I1(t)−δ1E1(t)− ε1E1(t)−m1E1(t)+m2E2(t)

dI1(t)
dt

= δ1E1(t)− γ1I1(t)−α1I1(t)−m1I1(t)+m2I2(t)

dR1(t)
dt

= γ1I1(t)−m1R1(t)+m2R2(t).

(3.4)

A similar system holds for population 2. Without dispersal, mi = 0, the basic repro-
duction number R0i, i = 1,2, for each population is given by formula (3.3), where
the parameters for population 1 or 2 have subscripts 1 or 2, respectively. We assume
R01 > 1 and R02 < 1.

A branching process approximation for the corresponding CTMC SEIR model
for two patches can be applied if the population size is large but the exposed and
infectious population sizes are small. For the branching process, we are only inter-
ested in the exposed and infectious stages. The direction and the rate of movement
of individuals in these disease stages have a large impact on the probability of an
outbreak.

Let X(t) = (X1(t),X2(t),X3(t),X4(t)) denote the four discrete random variables
for stages E1, I1, E2, and I2, respectively. The four probability generating functions
of the approximating branching process are

f1(s1,s2,s3,s4) =
δ1s2 + ε1 +m1s3

δ1 +m1 + ε1

f2(s1,s2,s3,s4) =
β1s1s2 + γ1 +α1 +m1s4

β1 + γ1 +α1 +m1

f3(s1,s2,s3,s4) =
δ2s4 + ε2 +m2s1

δ2 + ε2 +m2

f4(s1,s2,s3,s4) =
β2s3s4 + γ2 +α2 +m2s2

β2 + γ2 +α2 +m2
.

(3.5)

If the spectral radius of the expectation matrix ρ(M)> 1, then the process is super-
critical. A formula for the minimal fixed point of (3.5), (q∗1,q

∗
2,q

∗
3,q

∗
4) can be com-

puted numerically. In the supercritical case, the probability of no major outbreak is
approximately

P0(e10, i10,e20, i20) = (q∗1)
e10(q∗2)

i10(q∗3)
e20(q∗4)

i20 ,

where e j0 and i j0 are the initial number of exposed and infectious individuals in
patch j, respectively. The probability of a major outbreak is 1−P0(e10, i10,e20, i20).
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An example with equal dispersal rates for the two populations, m1 = m2, results
in outbreaks in both populations. The probability of an outbreak increases in popu-
lation 1 but decreases in population 2. In Figure 3.2, population 1 has R01 = 2.67
but in population 2 there is lower transmission, higher recovery, and lower mortality,
so that R02 = 0.89. One infectious individual introduced into population 1 gives a
probability for no major outbreak, P0(0,0,0,1) = 0.751.
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Fig. 3.2 Four sample paths of the SEIR CTMC model with dispersal along with the ODE solu-
tion (dashed curve). Parameter values are β1 = 0.4, β2 = 0.2, δ1 = 0.4 = δ2, γ = 0.1, γ2 = 0.05,
α1 = 0.05, α2 = 0.025, ε1 = 0 = ε2, and m1 = 0.05 = m2. Initial values are S1(0) = 500,
S2(0) = 499, E1(0) = 0 = E2(0), I1(0) = 1, and R1(0) = 0 = R2(0). The basic reproduction num-
bers for each population are R10 = 2.67 and R02 = 0.89. Probability of no major outbreak is
P0(0,0,0,1) = 0.751.

With unequal dispersal between the two populations, the probability of an out-
break depends on the direction and magnitude of the dispersal rates (as in the birth-
death-dispersal model in Chapter 1). In Figure 3.3, the fixed points (q∗1,q

∗
2,q

∗
3,q

∗
4)

of the pgfs in (3.5) are computed numerically given both m1 and m2 lie in the range
[0,0.2]. If dispersal is greater toward the population with good healthcare facilities
it is possible to eradicate disease in both populations, that is, no major outbreaks
occur. Allowing movement out of the poor healthcare region but restricting move-
ment into the region (bottom left graph in Figure 3.3) is a good strategy for disease
control, but restricting movement out of the poor healthcare strategy but allowing
movement into that region (bottom right graph in Figure 3.3) is a poor strategy.
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Fig. 3.3 Probability of no major outbreak for a CTMC SEIR epidemic model with dispersal
between two populations as estimated by the fixed points q∗i . Dispersal from population 1 to 2
is m1 and from population 2 to 1 is m2. Parameter values are the same as in Figure 3.2, except
for the dispersal parameters: β1 = 0.4, β2 = 0.2, δ1 = 0.4 = δ2, γ = 0.1, γ2 = 0.05, α1 = 0.05,
α2 = 0.025, ε1 = 0 = ε2.

3.4 Summary

The multi-type branching process application to an SEIR epidemic with dispersal
illustrates the importance of controlling movement into and out of particular reg-
ions to prevent an outbreak. Although prevention and control measures are more
complex in real epidemic or pandemic situations, the basic SIR and SEIR mod-
els are often used in conjunction with data to help estimate the potential spread of
the disease, e.g., SARS, influenza, and Ebola [11, 22, 33]. The control measures
in pandemic situations often include travel restrictions, quarantine, isolation, and
drugs such as antiviral medication to prevent infection. Other specific applications
of branching processes to infectious disease models include vector-transmitted dis-
eases [4, 6, 9, 18], HIV infection, [12] and bovine respiratory syncytial virus [19].
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