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Abstract. The foundation for a collaborative, man-machine system for adap-
tive performance of tasks in a multiple, heterogeneous unmanned system
teaming environment is discussed. An autonomics system is proposed to
monitor missions and overall system attributes, including those of the operator,
autonomy, states of the world, and the mission. These variables are compared
within a model of the global system, and strategies that re-allocate tasks can be
executed based on a mission-health perspective (such as relieving an overloaded
user by taking over incoming tasks). Operators still have control over the
allocation via a task manager, which also provides a function allocation inter-
face, and accomplishes an initial attempt at transparency. We plan to learn about
configurations of function allocation from human-in-the-loop experiments, using
machine learning and operator feedback. Integrating autonomics, machine
learning, and operator feedback is expected to improve collaboration, trans-
parency, and human-machine performance.
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1 Introduction

Human roles in unmanned vehicle command and control (C2) are in flux, transitioning
between responsibility for one situated vehicle, to a supervisor responsible for many
abstracted, automated vehicles [1, 2]. This supervisory role is very similar to military
command and control in terms of providing commanders intent to agents, planning and
monitoring their actions, intervening if necessary, and learning from feedback about
how the mission is being performed [3, 4]. The rapid advance of technology and recent
autonomous ship trials prove such role transitions are imminent for the warfighter [5].

Understanding and improving human-machine teaming is needed to aid future
supervisors [6]. In the current paper, we provide the first steps for our adaptive function
allocation methods. These help guide our ultimate goal of autonomics implementation
for human-machine cooperation with teams of autonomous heterogeneous vehicles.

Many systems benefit from human-centered integration [7–9], although automating
tasks occasionally has notable downsides, such as lowered situation awareness,
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increased workload and increased operator complacency [10–13]. Costs of automation
are sometimes a function of human attention allocation. A complacent operator allo-
cates attention differently than an attentive one who is constantly checking up on
automated systems or teams [13].

As a human supervisor, tasks require four general information processing phases;
acquiring information, analyzing it, coming to a decision and executing it. Automation
of a task within each phase may vary across a single automated system [14], but there
usually are tradeoffs in performance and attention as a result. These tradeoffs are more
favorable for higher degrees of automation of information acquisition and analysis,
compared to the automation of decisions - but there are always tradeoffs ([15, 16]). In
part, adaptive systems are an answer to this problem. However, an open question is
about how to divide functions and tasks between automation and humans. In the
unmanned system domain, especially, this is a pressing issue because automation is
necessary but the demand to maintain awareness for the task, and transparency in the
available automation, are both high.

2 Methods

We have chosen a “playbook” approach to the supervision of multiple unmanned
vehicles [17–19] as one potential solution in a wide spectrum of control abstractions, in
part because decision making is left to the operator (choosing plays), and because of the
documented benefits of these systems in the literature [19–21]. These systems can be
made to adapt to the environment, operator and the tasks at hand [20]. Adaptation in
this sense represents updating “who does what” dynamically, in addition to deter-
mining task sequences and deadlines, and adapting information presentation [22].
These adaptive approaches typically outperform static levels-of-automation approaches
[8, 21].

Function allocation schemes should reflect the contextual dynamics of real-world
supervision. The lack of dynamics is exactly what is poorly addressed by static LOA
perspectives [23, 24]. Therefore we focus on methods that allow for adaptation of task
performance with automation, understanding that dynamics encompass a wide range of
possibilities. Determining which are useful is something that machine learning may aid,
but this is a long term goal not addressed in detail here. In order to implement an
adaptive system in the context of multiple, heterogeneous vehicle command and
control, we are also employing the use of autonomics to help achieve system goals.

Autonomic approaches manage complex systems such that they exhibit
self-adaptation in response to demands on the system or degradation of performance.
One such autonomics approach is the Rainbow autonomics framework (Fig. 1),
developed at Carnegie Mellon University (CMU) [25]. Rainbow employs an
architecture-based, self-adaptation approach that models the managed system through
an architecture description language, receives information from the system through
gauges from probes that read data from different points within the managed system, and
then executes strategies. These strategies provide instruction on how the managed
system should adapt to sensed changes in order to maintain “health” (which can be
characterized with different metrics).
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In a system consisting of teams of unmanned vehicles under the supervisory control
of a single operator, necessarily there must exist some level of autonomy for the
vehicles to operate without the operator being responsible for remote operation [26]. As
the number of vehicles, and teams of vehicles begins to proliferate, there also must be
enough automation to assist the supervisor in managing a large complex situation,
which rapidly overwhelms the limitations of memory, attention, and basic human
performance (e.g., [27]). Adaptation becomes a question of whether autonomy should
be in charge (and allocating tasks), and the relative level at which the autonomy should
be operating within a range - from completely manual to largely automatic performance
[20, 28, 29]. Movement along this range has been used to reduce workload for oper-
ators in demanding tasks.

The autonomics framework can play a central role in controlling such a “sliding
scale” of autonomy, allowing for adaptive automation approaches in supervisory
control. Because the primary role of Rainbow is to observe and maintain holistic
system and mission health, autonomics can adjust the level of autonomy based upon
multiple conditions within the system. These conditions may include operator work-
load [30] and attention allocation [31, 32], attention required for a task, risk associated
with a task or with the autonomy, risk associated with failing to act, operator input on
autonomy allowance [33], and other such determinable parameters.

For example, when autonomics detects an overloaded operator, it could set the
autonomy level higher, potentially relieving the burden on the operator and allowing

Fig. 1. The rainbow autonomics framework. [From 25]
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the system to maintain mission alignment. Such a relationship is not our starting point,
though it has been done successfully elsewhere [30, 34]. Rather, our particular method
allows for the inclusion of multiple, measurable factors, and for these factors to be
weighted differently in whether the autonomy takes action through a particular strategy.
For example, while adaptive function allocation may aid performance of certain types
of tasks, such as information acquisition or analysis, it may harm others such as
decision making [35]. Further, unique combinations of these measures may provide
more effective transitions, both up and down on the sliding scale of automation by
incorporating multiple factors, rather than a single measure (e.g., [28, 29], [36, 37]).

Two major challenges present themselves in this pursuit. First, as we consider the
tasks present in the existing multi-vehicle control domain, we must be able to define
them, identify them, and track their performance by both the human and the automa-
tion. And second, we must eventually demonstrate that we can effectively learn how to
measure, utilize and weight the impacts of various conditions and factors within the
human-machine system to adapt the allocation sets.

We address here the task-based aspect of our work, which encompasses the method
used to breakdown the operating task structure into definable portions for later allo-
cations. We will present these tasks within a display, called a task manager, used
successfully in other ongoing research [38]. The task manager also provides us with an
opportunity to address the transparency issues involved in automated function allo-
cation, discussed in the sections below.

3 Task Model

3.1 Task Methods Hierarchy

Providing assistance to supervisors in managing and performing tasks requires assisting
automation to have some model of the tasks involved. Task models have been well
studied and reviewed. Our approach traces its roots to the task structures defined by
Chandrasekaran et al. [39]. Chandrasekaran’s task structure is a bipartite directed
acyclic graph (DAG) of tasks, methods and subtasks. As in most DAG structures, these
components may be applied recursively. The bipartite and recursive nature of this task
structure results in tasks decomposed into methods, which in turn are composed of
subtasks, which are simply tasks themselves.

Tasks represent elements that must be performed in order to execute the method.
Methods are alternative approaches to completing a task. Therefore, the DAG has
characteristics of decision trees as well (Fig. 2).

Task generation can occur either through user initiation, or agents that recognize
particular properties within the system. When that happens, a task, defined in the
structure above, gets created and then must be queued for a supervisor, or an auton-
omous agent assisting a supervisor. The systems first decisions are who will perform
the task and by what method. Some methods may only be suitable for human efforts,
and some for computer. Some tasks require collaborative efforts, where some of the
sub-tasks are performed by human supervisors and others by automation.
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Algorithms can be used to make initial decisions or suggestions concerning tasking.
With proper instrumentation this decision can be made by considering properties of the
environment; the attention available from the supervisor with the history of the
supervisor’s performance for this type of task, other ongoing tasks, their current
workload, authorizations; the user-automation working agreements which help define
and constrain who can do what (and when they can do it); and the mission’s goals.

These granular tasks and their associated methods represent a breakdown of the
multiple vehicle task space. They will be unique to a specific platform or unmanned C2
system; yet the principles on which our measurements, and the autonomics system are
based may have wider applicability. For example, Rainbow can sit “on top” of other
systems, an does not interfere with their operations – therefore it can be integrated
somewhat easily into existing systems, and the majority of the work is in developing
the appropriate probes and gauges for the system to sample information through.

3.2 Task Manager Display

To provide visibility to the user and ultimate control over tasking, our initial task
management system was developed. It will allow the user, as well as the autonomic
controls, to reprioritize tasking for the human and autonomous assistant. The display
itself provides information on the current tasking for both entities (Fig. 3).

While allowing the user to dictate allocation necessarily adds to the load for the
operator, it allows the operator awareness of the tasks “to be done” in the scenario as
well. Even if no tasks were to be performed by an automated agent, the task management
interface provides an aid to the operator concerning tasks to be completed (reducing the
demands on prospective memory; [40, 41]). The use of such an interface is a starting
point for incorporating basic intent inference, as was done in prior programs, allowing
us to facilitate tasks when they are selected by the operator to be completed, by pulling
up the relevant task information for a given method. The instrumentation of the task

Fig. 2. Example structure: the bipartite nature creates alternating levels of tasks and methods
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manager will also provide us, as researchers, the important data concerning task shed-
ding and other task management behaviors including switching, and the effects of
interruptions – both known issues in this domain.

Finally, the task manager also provides some insight into the operations of the
autonomy. For example, if the autonomy senses operator overload and begins to task
authorized tasks to the automation but the user is not actually overloaded, this will be
self-evident by examining the automation’s task queue. As we explore methods of
prioritization within the queues themselves, potentially giving the automation authority
to appropriately weight the importance of certain tasks for the human operator to aid in
decision making, the interface will be expanded to incorporate and present information
on how priority decisions were made. It may even be possible to allow the working
agreement between the human and the automation to include an agreed-upon priority
ranking to develop expectations between the two entities.

Fig. 3. Initial Prototype of Task Manager Displaying Simple User Interface with Task Queues
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4 Risk-Attention Metric

Ultimately, if we are to choose between supervisor(s) and autonomous assistant(s) for
performing tasks, we need to weigh the capabilities of each against current load, and
utilize known human factors in the decision. The human factors utilized are meant to
ensure that we maximize the collaborative decision making and performance ability of
the human-computer team. One way to do that is to balance risk vs. attention. The
fundamental idea is that if the most capable agent to do a particular action is available,
i.e., the one that reduces risk in performance of the action, it would be the natural agent
to select if all agents (human as well as autonomous) were completely available.

However, when available attention is not uniform or abundant, we need to balance
taking on risk to manage attention. This is something humans naturally do, though they
may not be optimal. This is further complicated by the risks posed by human perfor-
mance factors, such as the need for situational awareness and understanding what the
automation is doing.

If the workload is fairly light, we want the operator to pay attention to more tasks,
despite the computer being able to help. This will help keep operator situational
awareness up and prevent operators from becoming overly complacent concerning the
remaining automation. If the workload is heavy enough to put operations at risk
because of limited operator attention availability, then we want the computer (or other
people) to perform more of the tasks. Therefore, we want to utilize scores concerning
the ability of the computer to perform a task, relative to the ability of the human
supervisors to perform the same task; however our approach differs in that it is also
weighing contextual and adaptive factors, and that some operations will be limited by
our incorporation of working agreements. The difference between which agents do
what is essentially a measure of the risk in turning the task over to that agent. There is
additional interest in using this metric to evaluate the teaming of humans and auto-
mation to perform certain tasks (e.g., a truly collaborative “method” for performance),
which may rank lower on risk than either agent performing alone.

Measuring attention availability is more difficult. At its most straightforward, we
can measure how far behind schedule the task queue has become. Every task will have
some deadline (hard or soft), and tasks will have a distribution of predicted durations
depending on who has been assigned the task. It becomes an easy matter to count the
number of times that deadlines are missed over a particular time window as one
fundamental attribute of performance: it is by no means the only one. More advanced
methods that measure other actions by the operators, biometrics [32], and other
characteristics of the tasks may be beneficial and could be incorporated when available.

As this is work in progress, we have not yet experimented to find the appropriate
range of risk/attention values for maintaining situational awareness of both the auto-
mation, and the tasks themselves. This is the essence of the experimentation that we
will begin with the prototype task manager in late 2015. As a final note, we have
alluded to the use of machine learning to determine what an optimal configuration of
function allocations may be, based on recent developments in measuring their efficacy
[24]. These measures require user performance as well, but represent a further stage of
development for this work, and one that holds great promise for helping to determine
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appropriate allocation schemas, and how to adapt them (yet has not been done before).
It explores a range of potential solutions much more expansive than a typical analysis
may uncover or engineering might suggest.

5 Summary

As C2 develops technologically, reliable methods for human interaction with an
adaptive range of automation and autonomy must be established. Ultimately the
attention allocation policy of a user plays a significant role in determining tradeoffs. As
operators freely choose where to allocate attention, reduced workload provided by
automated assistance leaves both negative and positive behaviors as possible outcomes.

We are of course wary of schemes which employ high degrees of automation, but,
we also consider here that tradeoffs are a natural and persistent byproduct of function
allocation [15]. By allowing an autonomics framework to aid in task management and
providing an initial display of this aiding, we hope to provide adaptations and timely
support for the system and the user that accurately reflect the state of both, in context of
the mission. This method is sufficiently different from other methods of function
allocation as to suggest it could be beneficial. It may allow for adaptation that is not
opaque, and thus of great benefit.

Finally, we have touched on a relatively new concept of working agreements
between what the autonomy can and can’t do as set by the human [33]. This addresses
the complexities of expectation-based faults, wherein the human expects the automa-
tion to perform (or does not). It also increases the collaboration of the human-system
team. Overall, then, we are making progress toward more cooperation and more
transparency in these types of systems.
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