A Mark-Up Language and Interpreter
for Interactive Scenes for Embodied
Conversational Agents

David Novick(m), Mario Gutierrez, Ivan Gris, and Diego A. Rivera

Department of Computer Science, The University of Texas at El Paso,
500 West University Avenue, El Paso, TX 79968-0518, USA
novick@utep. edu,
{mgutierrezl9,darivera?}@miners.utep. edu,
ivangris4@gmail. com

Abstract. Our research seeks to provide embodied conversational agents
(ECAs) with behaviors that enable them to build and maintain rapport with
human users. To conduct this research, we need to build agents and systems that
can maintain high levels of engagement with humans over multiple interaction
sessions. These sessions can potentially extend to longer periods of time to
examine long-term effects of the virtual agent’s behaviors. Our current ECA
interacts with humans in a game called “Survival on Jungle Island.” Throughout
this game, users interact with our agent across several scenes. Each scene is
composed of a collection of speech input, speech output, gesture input, gesture
output, scenery, triggers, and decision points. Our prior system was developed
with procedural code, which did not lend itself to rapid extension to new game
scenes. So to enable effective authoring of the scenes for the “Jungle” game, we
adopted a declarative approach. We developed ECA middleware that parses,
interprets, and executes XML files that define the scenes. This paper presents the
XML coding scheme and its implementation and describes the functional
back-end enabled by the scene scripts.

Keywords: Embodied conversational agents + Scene - Interpreter - Parser

1 Introduction

Authoring of scenes in which embodied conversational (ECAs) agents interact with
humans currently has limited technological support. Scenes tend to be written directly as
a computer program that specifies procedurally how the ECA should behave. As the
number and complexity of scenes increases, writing the scenes becomes correspondingly
more difficult and more prone to the sorts of problems associated with unstructured code.
Scene developers could write better scenes, more quickly, if they had a way to write
scenes less like a writing a computer program and more like writing a script for a play.

Writing scenes for ECAs, however, is much more complicated than writing a play
because the scenes have to account for the technical details of the agents’ inputs and
outputs through speech and gesture and the technical details of the agent’s virtual
world. Ideally, ECAs can interact with human beings in such a way that they require

© Springer International Publishing Switzerland 2015
R. Shumaker and S. Lackey (Eds.): VAMR 2015, LNCS 9179, pp. 206-215, 2015.
DOI: 10.1007/978-3-319-21067-4_22



A Mark-Up Language and Interpreter 207

little to no human intervention to complete tasks and or to navigate conversations. But
writing scenes for this is a daunting task, especially when the interaction space involves
shared reality, where the virtual side of the interaction contains with which both agent
and human can interact). High-functionality ECA systems have to include gesture
recognition for task-based processes, gesture recognition for general annotation,
branching, 3D movement in virtual space, speech, and other sophisticated features.

The research program of UTEP’s Advanced aGEnt eNgagement Team (AGENT)
seeks to provide ECAs with behaviors that enable them to build and maintain rapport
with human users. To conduct this research, we need to build agents and systems that
can maintain high levels of engagement with humans over multiple interaction ses-
sions. These multiple sessions can potentially run over longer periods of time to
examine long-term effects of the virtual agent’s behaviors, so our research team has to
write and implement many scenes.

Our team’s most recent system, “Escape from the Castle of the Vampire King”
(Gris et al. 2014), had a human and ECA play a game over two sessions. The program,
though, was essentially a text-based game, such as Colossal Cave (Crowther et al.
1976) and Zork (Anderson and Galley 1985), realized with an ECA serving as narrator
and with game-appropriate scenery. Dialog management could be handled by a rela-
tively simple command interpretation loop. Although development of the “Vampire
King” game involved writing a program complex enough to require eventual refac-
toring, the system was still simple enough that it could be developed with traditional
software engineering techniques.

Our current system, “Survival on Jungle Island,” is much more complex, though. It
has already has eight scenes, and we expect it to have at least eight more, so that the
game can provide extended interaction between human and ECA. Consequently,
development of “Jungle Island” using the procedural representations and traditional
software engineering techniques we used for the “Vampire King” game would have
made writing the game’s many scenes unreasonably complicated and burdensome. This
meant finding a much more efficient way of developing scenes for ECA systems, a way
that would enable us to write dozens of scenes with only modest technical effort
beyond imagining the scenes’ substantive content.

The requirements of developing systems like “Jungle Island” led us to adopt a
declarative approach to authoring scenes for human-ECA interaction. In our approach,
developers write scenes as scripts, using a mark-up language represented as XML tags,
and these scripts are interpreted by middleware to drive the real-time system. In this
paper we present our XML-based mark-up language for scripting human-ECA inter-
actions, describe its implementation in middleware, describe the functional back-end
enabled by the scene scripts, contrast our approach with existing standards such as
SAIBA, FML, and BML, present an excerpt of a representative scene script, discuss the
advantages and limitations of our approach, and outline related future work.

2 Scene Mark-Up Language

In this section we review the functionality of our mark-up language and its interpreter.
We discuss each tag and its function.



208 D. Novick et al.

Scripts using the mark-up language rely on twelve XML tags to identify agent
behaviors and scene flow. A scene is a session of interaction, typically designed to take
four to five minutes, that includes multiple human-ECA exchanges. Each exchange is
called an episode, and the flow of the dialog within a scene is managed by choosing
different episodes as a function of users’ responses.

In developing our ECA system, we aimed for a design that promoted the sensation
of immersion in the virtual world and the naturalness of the interaction between human
and ECA. This led us to adopt a robust approach that would provide scene developers
with control of scene progression by adaptively enabling or disabling
speech-recogntion grammars for specific dialogs, gesture recognition libraries for
specific gesture event, and control of what happens in the 3D scenes.

Authors specify scenes declaratively with XML tags such as scene (a collection of
episodes), episode (a spoken and/or gestural interaction concluding with a control-flow
decision), do (a gesture), speak (an utterance, specified via a string that can be output
through a voice synthesizer, with an optional file name for a recorded version of the
utterance), pause (for some number of seconds or fractions of seconds), decide (a
conditional construct based on speech or gesture input from the human, go (to an
episode), and nextscene. Table 1 presents the tags, their parameters, and their functions.

Table 1. Name, parameters, and functions of the tags

Tag Parameters Function
scene scene name Name of the file. Corresponds to a 3D environment
in Unity with the same name
episode episode name Name of the episode. Episode tags can contain any
tag except scene
do emotion, hands, These tags specify the agent’s animations. You can
locomotion and upper specify an animation for the face (emotion),
body hands, lower body (locomotion) and upper body
speak wav file and speech Contains either a.wav file name as a string, and/or
string the text of what the character will say
decide speech id or gesture id Makes a dialog branching decision based on user’s
speech or gesture input
go target episode jumps to a new episode upon the conclusion of the
current one or after a decide tag conditions have
been met
pause seconds Pauses the interaction. Useful to avoid further input
while the agent performs a lengthy animation.
createrule | grammar rule name Sets the name of a grammar rule.
tag grammar tag Serves as the name of a grammar slot to which

several items are mapped to. Each grammar rule
can have any number of tags

items grammar items Items are the words users

ruleCall grammar rule name Calls a previously defined grammar. After tags and
items were provided, grammars can be reused in
any section through rule calls

nextscene scene name The name of the new scene to be loaded




A Mark-Up Language and Interpreter 209

(There are also memory tags, such as store and recall, that connect to an SWI-Prolog
back-end so that enables the ECA to maintain a dynamic dialog model.)

The scene interpreter, implemented in C# for convenient integration with other
modules of the ECA system, parses the XML script, creates scene, episode, and action
objects corresponding to the script’s tagged elements, and sends the objects to the
ECA’s run-time system for execution.

Our approach contrasts with that of some other standards for specifying ECAs and
their interactions. In particular, our system differs from the SAIBA framework (Zwiers
et al. 2011) so that our ECAs can more easily integrate cognitive functions across what
would be separate modules in a SAIBA-compliant system. SAIBA’s strong modularity
may not be appropriate for interaction that is fine-grained or requires rich contextual
information (Lee et al. 2008). Similarly, the strong theoretical frameworks of BML
(Kopp et al. 2006) and FML (Heylen et al. 2008) tend to impose cognitive and
operational models that may be over-detailed and limiting for ECAs intended to
explore the frontiers of human-agent interaction in practical terms. In a sense, archi-
tectures such as BML and FML handle the interaction from the agent’s point of view.
In our case, we need additional control over the environment and its navigation for
actions by both the user and the agent.

Each scene is contained in a file. Inside each scene there can be any number of
episodes. Each episode can contain tags that enable the agent to speak, listen, decide,
act, and then jump to other episodes. In addition, each scene corresponds to a physical,
navigable 3D representation of the environment. By changing scenes, one can change
the scenery—and even the agent, if required.

Inputs from humans to the ECA system come through speech and gesture. The
author’s parameters for decide tag determine how the system processes these inputs and
chooses the next episode in the scene. In Sects. 3 and 4, respectively, we discuss the
handling of speech output and input, and gesture output.

3 Speech Handling

In this section we focus on the speech modules, and in particular on the speak and
decide speech tags. We begin with the speak tag, which specifies the ECA’s spoken
language output. To illustrate the scripting language’s handling of speech, Fig. 1
presents an abridged episode from an early scene in the “Survival on Jungle Island”
game. In this episode, as in all others, speak tags contain both a written and optionally
an audio version of the dialog specified; for example, in the script below the file
decideul.wav is a recorded version of the utterance. Because authors can use text
strings without speech files, they can quickly prototype and test scenes using synthetic
speech before committing to recordings. When executing behaviors indicated with a
speak tag, the system uses the audio file name to find the audio for playback and has the
agent lip-sync to the audio through a dialog tree, implemented as a separate module.

The decide tag signals a branching condition, which determines which will be the
next episode. The agent asks a question and provides two or more possible answers.
When the speech-recognition module recognizes one of the answers with high confi-
dence, the system branches to a named episode, which is a parameter for the go tag.



210 D. Novick et al.

<episode "splitpaths5">
<do emotion "Neutral" hands "Idle" Locomotion "Default" upperBody "Thinking"
isSpecial "false" special "none'>
<speak "splitpaths5ul.wav" "So, where to now? Should we take the grassy path
which leads to the jungle or take the rocky path which leads to the
mountains?">
<pause "1'">
<decide speech>
<createRule "paths">
<go "grassy"> </go>
<tag '"grass">
<items "grassy path" "grassy" "lets take the grassy path"
"lets take the path no one has been to" "the grassy
path" "the jungle" "the grassy path, i am afraid of
the mountains" "the grassy path is safer" "the safest
path" "the left one" "to the left" the one on the
left">
</tag>
<go "rocky"> </go>
<tag "rock">
<items "rocky path" "rocky" "mountains" "the mountain
path" "the rocky road" "the right one" "the one on the
right" "let's seek altitude" "let's go to the moun-
tains" "we should take the rocky path" "the rocky path
to the mountain">
</tag>
</rule>
</decide>

Fig. 1. A scene section using our markup-language. This script causes the agent to look
thoughtful while asking a question (through a predefined audio file). It then pauses for a second
to prevent the speech recognizer from listening to the playing audio file. Finally, a grammar is
created inside a decide tag, which enables users to progress to the next episode or scene
depending on their verbal expressions.

In the example in Fig. 1, “grassy” and “rocky” refer to other episodes of the scene, to
which control will pass depending on the human’s answer to the ECA’s question.

To improve reusability, the decide tag can transfer control to any episode in the
scene, enabling authors to create dialogs that loop until certain criteria are met. The
grammar itself contains every word or phrase that can be recognized by the system and
is not affected by the current state of the conversations. A speech-recognition grammar
is in turn composed of rules. Each rule defines what words or phrases should be
recognized during a particular dialog state, which is what we define as episode. As the
control flow swaps the episode, the rule changes as well to enable a different set of
available words for recognition. The idea behind this rule-based grammar, in which the
rules act as speech-recognition separators for episodes, is to enable only a small subset
of the whole grammar to be active at any given time. This in turn helps improve the
recognition by not engaging in grammar over-coverage.

By creating a rule, an author can refer to a speech-recognition grammar in future
episodes without the need to declare the grammar again. In other words, if a rule has
been declared, it can be called and reused again from the script by just specifying the
name. If the rule is being used for the first time, its name, tags, and items must be
declared. The only requirement is that the grammar has been used at least once before
being reused. This is the function of the createrule tag. Figure 2 shows a rule initialized



A Mark-Up Language and Interpreter 211

from the script and a demonstration of how to reuse it, and Fig. 3 presents the standard
grammar xml file that is created based on the script declaration.

<<scene “beach2”>

<episode '"beach2c'">

<do emotion "Neutral" hands "Idle" Locomotion "StandUp" upperBody
"Pointing" isSpecial "false'" special "none'>
<speak "beach2au2.wav" "Here, let me help you up. Grab my hand.">
<decide gesture>
<go "trapped"> "Grab Hand" </go>

</decide>

</episode>

<episode "trapped'">

</episode>
</scene>

Fig. 2. In this scene the agent uses a combination of animations to extend its hand to the user.
The agent then prompts the user to grab her hand through a decide tag. With only one option, it is
a required gesture to progress through the interaction. After the user performs a “Grab Hand” the
control flow decides on the next episode to execute. At the end, the scene changes. On the virtual
side, a new environment is loaded.

Episode 1

decide
Episode 1a Episode 1b
Episode 1 Episode 2a Episode 2b
Episode 3
Episode 2 Episode 3

Episode 4

a. Fully connected graph for Q&A b. Progression graph for dialog tree

Fig. 3. Graphs of episodes and transitions showing different styles of dialog paths

4 Gesture Handling

In this section we explain the implementation of the tags for performing and recog-
nizing actions. In the example presented in Fig. 2, the interaction begins in scene
“beach2” with the episode “start.” The do tag accesses the animation tree to produce a
blend of animations to produce the intended motion for the agent (Gris, Rivera &
Novick 2015). The system uses a layered approach to animation that enables



212 D. Novick et al.

developers to specify the agent’s actions with enough control to represent the desired
situation and emotion but with enough abstraction as to avoid getting lost in detailed
descriptions of animations. Movements of the body are specified in layers for loco-
motion, emotion, upper-body, and hands.

The episode in Fig. 2 uses a locomotion layer, which enables the agent to walk
around, move to the next waypoint, sit, crouch, crawl, or do any other movement that
requires character displacement across the scene or lower body animations that change
the current stance. In the example, the agent starts the scene by moving to a standing
position, which is a valid transition because the default starting point for this particular
scene was specified as crouching, even though agents generally start scenes in a
standing position.

The emotion layer controls the configuration of the agent’s face. All transitions are
weighted and transitioned gradually between emotions; the transitions are handled by
the system’s additional animation-tree modules.

The hands parameter indicates the position or shape of the fingers. This is used for
special circumstances such as pointing or making representational hand gestures.

Finally, the upperBody parameter specifies the action of the torso and arms. In the
design of our ECA system and the mark-up language, we sought to avoid unnecessary
or overspecialized animations. In the case of the scene in Fig. 2, the agent is extending
its hand towards the user to help him or her cross a gap in the virtual scenery. The
upper-body parameter is pointing because this enables reuse of another animation.
A pointing animation includes an outstretched arm; without the hand performing a
pointing gesture, too, the pointing gesture is just an extended arm with an open hand.
This is one of the ways in which work is reused to create new interactions without
additional low-level development work.

All parameters from these tags are parsed and stored to handle new agent gestures,
providing flexibility and expandability of gesture libraries without having to delve too
deeply in the implementation to access them. These animation libraries are created by
combining multiple exchangeable parameters for separate body-part layers. After
parsing, these gestures become available as they were specified, in an ordered sequence
when called by the episode in control of the dialog state, however, developers can
incorporate (outside of the markup language declaration) conditions or variables that
affect the agent’s gesture behavior depending on the runtime observations of the
interaction. For example, a developer can specify within an episode a gesture con-
taining surprise for the upper body animation layer, and happiness for the facial ani-
mation layer. If, however, this normally happy moment is obscured by a series of user
transgressions that the developer kept track of throughout the interaction, the “do” tag
queue can be accessed at runtime and animations can be overwritten. This provides
additional control over the otherwise static declaration, although it requires an addi-
tional abstraction layer between the rendering application and the xml interpreter that
we do not provide.

For gestures, the decide tag connects to the ECA system’s gesture-recognition
module. In episode in Fig. 2, the agent waits for the user to extend his or her hand
towards the screen. The gesture is then captured and processed by a Kinect and our
gesture-recognition software. Similar to the way the decide tag works for speech, this
list can contain several gestures leading to different episodes, depending on the gesture



A Mark-Up Language and Interpreter 213

performed by the human. Depending on the gesture that the user performs, the decide
tag will transfer control to the appropriate episode. This is also useful to create
activities that require a gesture response to progress. Gestures are specific to the
application; in the case of our most recent ongoing project, they represent survival
activities, such as lighting a fire, spear fishing, and signaling for help.

5 Conclusion

We developed an XML-based scene markup language that supports a variety of fea-
tures for speech, gesture, memory, and scene handling in human-ECA interaction. Our
approach limits detail of gesture animation in favor of abstraction and reusability. We
focused on making the markup language extendable and adaptable for use as mid-layer
software for agents using different architectures.

The scene markup language enables authors of scripts to develop dialog paths that
can vary depending on the nature of the application. In a Q&A application, the dialog
path will revisit states multiple times and in any order, as shown in Fig. 3a, as a fully
connected graph. In a storytelling application, the dialog path will follow a
decision-based progression, as shown in Fig. 3b, as a dialog tree. The markup language
enables both forms to be created by adjusting parameters and rearranging the episode
order.

In the markup language, tags are flexible and new tags can be added; however,
changes made to the structure will require the users to update their scripts. Our lan-
guage enforces consistency but does not provide it automatically.

We have successfully tested our mark-up language in two different projects. First,
we wrote scripts for eight scenes that take advantage of scene transition, episode
transition, gesture management, and dialog management. Second, we updated our
previous agents to our new architecture. Where our previous agents took months to
develop, the updated versions were recreated from scratch in a few hours, including
additional animation, gesture and lip-sync features.

A major advantage of this approach is the relative ease of authoring scenes. Rather
than having to write procedural code, which is typically hard to understand, modify,
and debug, scene authors can create scenes declaratively and more easily reuse or adapt
episodes. Undergraduate computer science students in a course on innovation in
technology were able write scripts efficiently, producing a dozen scenes in which they
were able to express creativity in the human-agent interaction rather than be concerned
with implementation.

Our approach has limitations of design and implementation. In terms of design, our
approach is fundamentally limited by its orientation toward scene-driven interaction.
For human-ECA systems that are more about spontaneous, less-constrained interaction
than episodic storytelling, an FML/BML approach might be more appropriate. In terms
of implementation, we found that rewriting scripts to conform to updates in the
specification of the markup language or changes to our file-naming conventions turned
out to be tedious. Improvements to the system would include a tool for automatic
updating of scripts to conform to changes in the scripting specification and a tool to
update filename changes when you update the script. For example, if the naming



214 D. Novick et al.

convention for audio files changes, the tool would spare the author from having to
update manually all names for both the scripts and the files. As another example, we
plan to update the tags associated with the grammar rules so that the tag names are
createRule and callRule (instead of ruleCall) and so that these tags close
with/createRule and/callRule (instead of/rule, which is an artifact from system’s iter-
ative development).

A second implementation improvement involves extending the availability of
gesture interpretation. In addition to detecting gestures specified in the decide tags, our
system also tracks the human’s conversational gestures throughout the interaction
session outside the decide tags. These include gestures such as crossed arms, normal
stance, hand(s) on hip, hand(s) on face, and many others. Currently, these gestures are
recognized through a background process that produces a gesture-annotation file for
research of human-ECA interaction. It might be helpful to authors to integrate this
annotation functionality to the markup language declarations so that they could access
the human’s gestures in real time.

A third implementation improvement would provide a higher-level authoring tool.
Currently, authors create scene scripts by writing XML code directly, producing files
similar to those in Figs. 1 and 2. Our plans for future work include developing a
WYSWYG authoring system for the scripts that would generate the XML files auto-
matically. This would enable non-technical authors to develop new scene scripts. As it
is, we use the current version of the system for generating new scenes for the “Survival
on Jungle Island” game and will be using the system to create our next-generation
applications.

References

Anderson, T., Galley, S.: The History of Zork. The New Zork Times, New York (1985)

Crowther, W., Woods, D., Black, K.: Colossal cave adventure. Computer Game. Intellect Books,
Bristol (1976)

Rayon, A., Gris, 1., Novick, D., Camacho, A., Rivera, D.A., Gutierrez, M.: Recorded speech,
virtual environments, and the effectiveness of embodied conversational agents. In: Bickmore,
T., Marsella, S., Sidner, C. (eds.) IVA 2014. LNCS, vol. 8637, pp. 182-185. Springer,
Heidelberg (2014)

Gris, I., Novick, D., Rivera, D.A., and Gutierrez, M.: UTEP’s AGENT architecture. In: IVA
2014 Workshop on Architectures and Standards for IVAs, Intelligent Virtual Agents (2014),
Boston, August 2014

Gris, L., Rivera, D.A., Novick, D.: Animation guidelines for believable embodied conversational
agent gestures In: HCII 2015, Seattle, 2—7 August 2015 (in press)

Heylen, D., Kopp, S., Marsella, S.C., Pelachaud, C., Vilhjalmsson, H.H.: The next step towards a
function markup language. In: Prendinger, H., Lester, J.C., Ishizuka, M. (eds.) IVA 2008.
LNCS (LNAI), vol. 5208, pp. 270-280. Springer, Heidelberg (2008)

Kopp, S., Krenn, B., Marsella, S.C., Marshall, A.N., Pelachaud, C., Pirker, H., Thorisson, K.R.,
Vilhjalmsson, H.H.: Towards a common framework for multimodal generation: the behavior
markup language. In: Gratch, J., Young, M., Aylett, R.S., Ballin, D., Olivier, P. (eds.) IVA
2006. LNCS (LNAI), vol. 4133, pp. 205-217. Springer, Heidelberg (2006)



A Mark-Up Language and Interpreter 215

Lee, J., DeVault, D., Marsella, S., Traum, D.: Thoughts on FML: behavior generation in the
virtual human communication architecture. In: AAMAS (2008)

Novick, D., Gris, I.: Building rapport between human and eca: a pilot study. In: Kurosu, M. (ed.)
HCI 2014, Part II. LNCS, vol. 8511, pp. 472-480. Springer, Heidelberg (2014)

Zwiers, J., van Welbergen, H., Reidsma, D.: Continuous interaction within the SAIBA
framework. In: Vilhjalmsson, H.H., Kopp, S., Marsella, S., Thoérisson, K.R. (eds.) IVA 2011.
LNCS, vol. 6895, pp. 324-330. Springer, Heidelberg (2011)



	A Mark-Up Language and Interpreter for Interactive Scenes for Embodied Conversational Agents
	Abstract
	1 Introduction
	2 Scene Mark-Up Language
	3 Speech Handling
	4 Gesture Handling
	5 Conclusion
	References


