
A Mashup-Based Application for the Smart
City Problematic

Abdelghani Atrouche1(&), Djilali Idoughi1, and Bertrand David2,3

1 Laboratoire de Mathématiques Appliquées-LMA,
Université A. Mira, Bejaia, Algerie

{atrouche.a,djilali.idoughi}@gmail.com
2 Université de Lyon, CNRS, Lyon, France

3 École Centrale de Lyon, LIRIS, UMR5205, Écully, France
bertrand.david@ec-lyon.fr

Abstract. A mashup is an application that combines data and functionalities
from more than one source. It groups disparate data in ways that enable users to
do new things or accomplish common tasks with newfound efficiency. The
introduction of mashup applications and their increasing use by users in the field
of e-Learning and e-commerce highlights new issues in a context called the
“smart city”. Indeed, transportation based on private cars, public transportation
services and shared bicycles need appropriate user interfaces, which can be
“mashuped” to allow an integrated approach to transportation related to weather
conditions, real-time traffic situations and personal preferences. These new
needs for composition and combination (orchestration) of existing web services
and their underlying user interfaces are good examples of mashuping. First, we
provide in this paper some valuable explanations on two kinds of orchestration:
service orchestration and HCI (Human Computer Interface) orchestration.
Secondly, we apply this global approach to the context of “smart cities”.

Keywords: HCI �Mashup � Smart city � Orchestration � Service orchestration �
User interface orchestration

1 Introduction

Today, the main challenge facing software developers is to cope with development
complexity and adaptation to frequent changes. The practice of software engineering is
particularly essential for developing applications which are human life oriented. The
“software design component-based” approach [1] is a valid approach, even for
non-interactive software. For interactive software, the HCI dimension (Human Com-
puter Interface) is required, especially in order to be able to adapt the interface to user
demand (services) when he/she is dealing with software using different interaction
devices. The HCI should provide better utilization, more adapted to user context fea-
tures. To reflect the behavior of the system and its ease of use and availability, we must
design these user interfaces with the same rigor and concerns as the systems them-
selves. The user interface must allow usability of the features expected by the user in

© Springer International Publishing Switzerland 2015
M. Kurosu (Ed.): Human-Computer Interaction, Part II, HCII 2015, LNCS 9170, pp. 683–694, 2015.
DOI: 10.1007/978-3-319-20916-6_63



different conditions of use and different interaction devices, naturally also in mobility.
Furthermore, the composition of services is related to elaboration of an appropriate
HCI, allowing users to handle these new services by a well-organized orchestration.
The introduction of ICT (Information and Communication Technology) in the daily life
of citizens has led to the emergence of new appropriate economic, social and envi-
ronmental needs. In this context, the goal of the smart city, a major application field, is
to allow citizens to be smarter, i.e. to allow them instant and quick access to services
proposed by the city such as energy, transportation, culture, sport, etc.

In this paper, we propose a global approach for designing and implementing
interactive software, integrating non-interactive components within a logic of orches-
tration of services and human-computer interfaces in accordance with user tasks. This
takes the form of providing their generation and composition (mashup) by orchestration
of the HCI.

2 Mashup Applications

Mashups are defined as “the perspective of software engineering. A mashup is con-
structed by the assembly and the combination of several existing functions integrated
into a new application” [2].

The term “mashup” was defined initially in the field of music, where it consists of
remixing two (or more) sounds in order to obtain a new one. Mashup is primarily and
usually performed for the so-called “drag&drop” applications from different sources.
The mashup architecture is made up of three elements according to Merrill [3]: Data,
Services and User Interface. Mashup aims at the composition of a three-tier application:
(1) Data (data integration), (2) Application logic (process integration) and (3) User
interface (presentation integration). Integration of heterogeneous data sources uses two
main technologies: web services and Mashup. Integration implies that all relevant data
for a particular bounded and closed set of business processes is processed in the same
software application.

Moreover, updates in one application module or component are reflected
throughout the business process logic, with no complex external interfacing. Data are
stored once, and are instantaneously shared by different business processes enabled by
the software application [3]. In the Mashup, every user can compose his/her own
service with other services in order to create a new service. Mashup is a “Consumer
Centric Application”. The Mashup describes web 2.0 sites combining functions of one
site with another site. Different pieces of UIs (User Interfaces) are integrated into a new
web application. This approach requires composition and orchestration of web services.

The goal of service composition is to produce richer applications. In UI integra-
tions, it is very important to have a component model that can support interactions and
compositions. When the user has the privilege of editing the Mashup, he/she is able to
construct multiple applications and multiple versions of Mashups.

684 A. Atrouche et al.



3 State of the Art

The concept of mashups has been popularized in the web application domain as a result
of a large number of well-known web-based systems, such as Google Maps (maps.
google.com) and Flickr (www.flickr.com). Their main contribution was to release their
APIs to the public, thus enabling developers to leverage existing web technologies and
create new applications. By restricting the development process to feature composition,
mashups enable developers to rapidly create custom applications aimed at niche
audiences [4, 5]. Web mashups [6] have turned lessons learned from data and appli-
cation integration into lightweight, simple composition approaches featuring a signif-
icant innovation: integration at UI level.

Besides web services and data feeds, mashups reuse pieces of UIs (e.g., content
extracted from web pages or JavaScript UI widgets) and integrate them into a new web
page. Mashups, therefore, show a need for reuse in UI development and suitable UI
component technologies.

The web mashup [7] phenomenon produced a set of mashup tools, aiming at
assisting mashup development by means of easy-to-use graphical user interfaces tar-
geted also at non-professional programmers. It is convenient to separate the types of
mashups into the following three categories: data, user interface (UI), and process. Data
mashups combine two or more data sets to create a new data set. UI mashups combine
familiar UI elements to create new applications. Process mashups combine two or more
processes into a single execution. It is also worth noting that most mashups fall into
more than one of these categories or can be implemented in different ways.

As the orchestration HCI has proved very useful in service composition, it is
important to provide some more details on orchestration. Orchestration is seen as “a
musical arrangement to involve several instruments and therefore their process” [8]. It
is thus an agreement or an organization defined by process management. According to
SOA, orchestration is a mechanism that defines the integration or composition oper-
ation of services. On the other hand, there is an approach, namely user oriented
orchestration, where caution is required when using the HCI.

Web services and SOA (Service Oriented Architecture), viewed in a process-oriented
perspective, need a particular language to define how services can be composed into
business processes. Such definitions would allow abstract processes as well as execut-
able processes to be described [9].

In most service orchestration approaches, such as BPEL [10], there is no support
for UI design. Many variations of BPEL have been developed, e.g., aiming at invo-
cation of REST services [11] or at exposing BPEL processes as REST services [12]. In
terms of standard BPEL, orchestration is a process made up of a set of associated
activities (e.g., sequence, flow, if, assign, validate, or similar), variables (to store
intermediate processing results), message exchanges, correlation sets (to correlate
messages in conversations), and fault handlers. As UI orchestration has proved very
useful in service composition, it is important to provide some more details on these two
orchestrations: Service orchestration and UI Orchestration.

A Mashup-Based Application for the Smart City Problematic 685

http://maps.google.com
http://maps.google.com
http://www.flickr.com


It is generally accepted that the architecture of a mashup is divided into three layers:

• Presentation/user interaction: this is the mashup UI. The main technologies used are
HTML/XHTML, CSS, Javascript, Asynchronous Javascript and Xml (Ajax).

• Web Services: the product functionality can be accessed using API services. The
main technologies used are XMLHTTPRequest, XML-RPC, JSON-RPC, SOAP
and REST.

• Data: handling data like sending, storing and receiving. The main technologies used
are XML, JSON and KML.

Architecturally, there are two styles of mashups: Web-based and server-based.
Whereas Web-based mashups typically use the user’s web browser to combine and
reformat data, server-based mashups analyze and reformat data on a remote server and
transmit these data to the user’s browser in its final form.

To contribute to orchestration studies, we decided to increase the number of layers
to five to explicitly introduce the Service Orchestration Layer and the UI Orchestration
Layer.

4 Smart City

Smart Cities refer to cities that aim to improve the living standards of citizens - not only
by developing new physical infrastructures, but also by using information technology.
These solutions bring services closer to the community and play a positive role in an
environmental context, thus helping to build sustainable cities. A smart city is charac-
terized by a set of ICT applications corresponding to a wide range of issues related to
traffic, energy, urban mobility, security, etc. For all these applications, we can distin-
guish end-users i.e. citizens, visitors, and operators i.e. employees.

Citizens and visitors are able to use these ICT applications to make everyday
decisions based on processed information which could not be used manually. These
applications use various data sources to present a high-level view of current events and
offer decision guidance to users. A combination of these applications in coherent and
useful proposals seems understandable. This is the first situation requiring mashup of
these applications. City employees or companies are in charge of operating these city
infrastructures, such as a bus company or rental bikes, in order to allow end-users to
use them. They also need to acquire some integrated and specialized applications in a
wide range of fields such as town planning, optimization and organization of trans-
portation, civil services, waste disposal and so on, which are, however, limited in the
operational scope to their responsibilities. The Mashup approach is an answer to these
requirements. To concretize our explanation, we describe in the next section a scenario
issued from our smart city application field.

4.1 A Case Study or Scenario

To explain the mashup approach we describe a scenario in which citizens as end-users
and employees as operators use five services. They are mainly oriented to transportation

686 A. Atrouche et al.



choices and related to observed situations made up of weather conditions, real-time
traffic situations in public transportation and street circulation. These five services are as
follows:

1. Weather situation is the service informing end-users in the short-term (less than
12 h) of weather conditions, allowing them to choose an appropriate means of
travel.

2. City atmospheric pollution service provides users with the expected level of pol-
lution for the same period.

3. Bicycle rental fleet management service, such as Vélo’V in Lyon, offers users the
possibility to rent a bicycle with indication of availability in departure and arrival
stations.

4. Real-time vehicle traffic information service provides overall city traffic informa-
tion, as well as, more precisely, the local traffic situation (for a district).

5. Real-time public transportation information service is in charge of indicating bus,
tram and metro traffic situations.

In our scenario, we have five web services: weather application, traffic appli-
cation, pollution application, management of rental bicycles and transportation
management. We use the UML Use case diagram to specify them (Fig. 1). Citizens
use these services, and Operators (employees) are in charge of updating the status of
these services.

These services are made up of several tasks which are either operator or end-user
oriented. Operator-oriented tasks are working condition-oriented (such as indication of a
new traffic jam area), while end-user tasks are use-oriented (to identify traffic jam areas).
In both categories, more or less sophisticated tasks are provided such as simple obser-
vation of public transportation situation or appropriate trip structure between two points.

Fig. 1. Use case diagram of our Smart City scenario

A Mashup-Based Application for the Smart City Problematic 687



These services are, of course, Web services. They are available on various elec-
tronic devices located anywhere (personal apartment, public building, in street termi-
nals and also and mainly personal devices i.e. tablets and smartphones). The main
structure of these services is based on three parts: (1) specific application data,
(2) SOA-based logical behaviors, and (3) user interface. However, the tasks proposed
by each service are not available to everybody. Certain tasks are only operator-oriented,
while others are end-user-oriented.

The first level of use is based on individual task (mono task) activation by the user
interface and relates to a particular web service and corresponding User Interface. For
example in Fig. 2, the end-user mono-task is weather consultation and the operator
mono-task is weather update. In this relatively easy form of utilization, the application
is not necessarily monolithic. It can use the mashup approach to indicate on the Google
map the location of public transportation stations or traffic jam situations.

The second level of use is concerned with an integrated use of different tasks (called
mashuped tasks) from different services in an integrated way; by interconnecting them
with the mashup technology and orchestration of user interfaces. In Fig. 2, the end-user
mashuped task aims at determining appropriate transportation in relation with weather
and pollution conditions, street traffic and public transportation situations and bicycle
availability. The Operator mashuped task allows him/her to modify public transpor-
tation in relation with increased pollution. At this higher level integration, the system is
able to take into account weather conditions, atmospheric pollution, traffic conditions
and user preferences (if they are available) in order to choose appropriate mono-mode
or inter-mode transportation (same mode for all segments or different modes) (Fig. 2).

Fig. 2. End-User and Employee mono-tasks and mashuped tasks

688 A. Atrouche et al.



5 Our Approach

5.1 Proposed Architecture

The architecture (Fig. 3) that we propose consists of five layers:

1. User Interface: the nearest layer to the user that presents to the user the final
interface on his/her screen.

2. UI Orchestration: in this layer the UI orchestrator composes or integrates UI
components allowing appropriate visualization and manipulation by users.

3. Service Orchestration: the layer where the Service orchestrator interconnects
several services and their data in order to provide an appropriate functional answer
as expected by the application. This interconnection is either a simple composition
or a reasoning approach based on algorithm or knowledge manipulation.

4. Services: at this level all services are available and can access corresponding data
sources located at the Data layer.

5. Data: this layer contains all sources of data needed by different services.

On Fig. 3, we show an overall architecture model with 5 layers broadly explained
hereafter with typical mashup situations related to our scenario:

• User interface 1 (UI-1) explains a classical situation where a UI component (widget)
shows the current weather situation on the screen. The corresponding weather
service task delivers current data.

Fig. 3. The multi-layer mashup-based application architecture

A Mashup-Based Application for the Smart City Problematic 689



• User interface 2 (UI-2) corresponds to the first mashuping situation, in which traffic
situation data are not visualized as a list, but mashuped in a Google Map Com-
ponent (GMC). In this case, application data are distributed geographically on the
city Google Map.

• User interface 3 (UI-3) is in charge of delivering on the same screen information
provided by different services. UI orchestration is easy, based only on composition
of different UI components (widgets). Each widget is in relation with one task of the
corresponding service, which is in charge of delivering appropriate data. In our case
the user can observe at the same time weather, traffic and pollution situations.

• User Interface 4 (UI-4) presents a more sophisticated situation. The goal is to collect
information concerning user profile, public transportation situation and bicycle
availability in the departure station and space availability at the destination in order
to offer the user an intermodal transportation based on several public transportation
segments (bus, tram and metro) combined with bicycle segments (if the user profile
is compatible with its use). For this application we have grouped all proposed
aspects. We need to mashup different services in order to determine a composite
transportation trajectory compatible with the user profile. Then we must find an
appropriate presentation based on integration of different widgets. This means, at
the service orchestration layer, that service orchestration must propose service
reasoning able to find appropriate transportation segments with their transportation
supports (bus, tram, metro or bicycle). It must then transmit this information to the
UI Orchestration layer, where UI Integration must be provided to allow appropriate
information presentation. At this layer, integration between public transportation
widgets and the bicycle widget must be provided.

• The last case, which is not materialized (UI-5), is concerned with mashup of all
services: choice of transportation in a composite intermodal way using, potentially,
private car, several public transportation forms (bus, tram and/or metro) and bicycle in
relation with user profile (age, bicycle ability, etc.), traffic situation, weather condi-
tions and pollution. This service mashuping is reasoning- and/or algorithm-oriented
in order to determine appropriate transportation segment scheduling according to the
current situation (weather, pollution, traffic and public transportation conditions and
user preferences. Once the transportation means has been determined, it is important
to show chosen transportation schedule data appropriately. For this purpose, an
integrated UI based on integrated widgets is needed.

In our architecture, two main layers are concerned with orchestration and mashuping:
the Service Orchestration layer and the User Interface orchestration layer.

5.2 Service Orchestration Layer

At this layer, the service orchestrator is in charge of orchestrating services either by
composition or by reasoning. Composition aims at unifying different services through
seamless functional integration of aggregated sources. The resulting mashup is a new
application, and participating sources are components of this new application.

690 A. Atrouche et al.



Reasoning refers to integration of aggregated resources and services, which are con-
nected by logical (reasoning rules) or algorithms in order to create new aggregated
functionalities.

5.3 User Interface Orchestration Layer

At this layer, the UI orchestrator is in charge of orchestrating UI interfaces either by
composition or by integration. The goal of UI composition is to present on the screen a
collection of independent basic UI components (widgets). UI integration is concerned
with integration of several UI components (widgets) into a single one.

5.4 Scenario-Based Explanations

Let us now show the role of these two orchestrators on our scenario situations:

1. UI-1 is a standalone application made up of Weather service (S1) and a
UI-component showing and managing Weather visualization. The Service
Orchestration layer and the UI orchestration layer are not concerned.

2. UI-2 is a Traffic management application made up of Traffic service (S2) and a UI
component, Google Maps, allowing visualization of traffic data (situation) in a map
perspective. This is what we call vertical mashup between a service and an open
visualization application able to take into account the data to be projected on the
map.

3. UI-3 is a mashuped application taking into account multiple data delivered by three
services (Weather – S1, Traffic – S2 and Pollution – S3). At the service orches-
tration layer, no action is required: these services deliver independent data and
propagate them to the UI Orchestration layer, where the UI Orchestrator uses UI
composition to show on the screen three UI components, visualizing independently
these data on a single surface.

4. UI-4 is a more sophisticated situation in which two orchestration layers are
required. At service orchestration level, the service orchestrator asks Service Rea-
soning to group User Profile information, the Public Transportation situation and
Bicycle management, treated by services S6, S4 and S5, respectively. Service
reasoning is the service mashup which, in relation with user profile, indicates user
ability to use a bicycle and elaborates a transportation schedule either mixing public
transportation and bicycle segments or using public transportation only. The UI
Orchestrator at the UI orchestration layer is in charge of integrating UI components
C4 & C5 to show the trip structure.

5. UI-5 is, as described, a sophisticated mashuping at the service orchestration layer
with weather, pollution and user profile conditions to determine the appropriate
transportation solution based on an inter-modal aggregation. The optimized trip
structure is presented in a mashuped single UI component showing the user the
proposed trip.

A Mashup-Based Application for the Smart City Problematic 691



It is important to observe that, at the Service Orchestration layer, mashuping is
based on the study, connection and interrelation between different tasks available for
each service. At the UI orchestration layer, the main goal is to deliver to each user in
respect to his/her role, the appropriate user interface for both visualization and inter-
action. The buttons, menus and commands proposed are in relation with the user’s
accreditations, i.e. use for citizens, and management for city operators. The UI
orchestration layer is in charge of managing task authorization and filtering.

Fig. 4. Large screen information scenarios concerning transportation proposals

692 A. Atrouche et al.



5.5 Supportive User Interface

On the right side of Fig. 3 we show a new module added to the overall architecture
model with 5 layers, as explained previously. This module, called the supportive User
Interface [13], is in charge of creating new mashuped applications. Supervision data,
supervision services, the Supervision Service Orchestration Tool and the Supervi-
sion UI Orchestration Tool are the main components of this module. The supportive
User Interface offers users different possibilities for manipulation as well as facilitating
manipulation of different services. Two working conditions are proposed: program-
ming devoted to trained developers and a visual programming-oriented approach in
which a light version of mashuping is provided to less trained developers and
high-level users. Naturally, at the Service Orchestration layer, visual programming, i.e.
graphical manipulation of concepts, is mainly used to compose tasks and data and to
express relatively simple and easily expressed reasoning. At the UI Orchestration layer,
composition of UI components (widgets) is supported as well as the low level of UI
Integration. Naturally, the user-friendliness of this interface is the decisive factor for
determining utilization: only by professional developers or also by experienced users
(Figs. 4 and 5).

6 Conclusion

Application mashuping is a main and much appreciated approach for creating appro-
priate applications based on reuse of existing ones. In this paper, we tried to clarify this
large and flourishing activity by means of multiple solutions and approaches. As our
application field we took the smart city and its need to receive appropriate applications
which can be elaborated by applying the mashuping approach. We proposed an
architecture based on five layers, allowing both clear distinction of data, services and
UI, as well as, with respect to mashuping, the Service orchestration layer and the UI
orchestration layer. We consider this separation to be essential as Service orchestration
and UI orchestration are very different. We explained the main mashuping techniques

Fig. 5. Smartphone UI scenario

A Mashup-Based Application for the Smart City Problematic 693



used at these two layers: composition and algorithmic or reasoning for service
orchestration, and UI composition and UI integration for UI orchestration. We also
proposed à supportive user interface, which is mashup application creation- or
evolution-oriented, either with a programming interface for experienced developers or a
visual programming-oriented approach for experienced users.

We are currently looking into the possibility of using this supportive visual pro-
gramming- oriented interface while using mashuped applications in order to adjust their
behaviors.

References

1. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding mashup development and its
differences with traditional integration. IEEE Internet Comput. 12(5), 44–52 (2008)

2. Lizcano, D., Soriano, J., Reyes, M., Hierro, J.J.: EzWeb/FAST: reporting on a successful
Mashup-based solution for developing and deploying composite applications in the
upcoming ubiquitous SOA. In: Proceeding of the Second International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technologies, UBICOMM 2008,
Valencia, Spain, pp. 488–495 (2008)

3. Merrill, D.: Mashups: the new breed of Web app: an introduction to mashups (2009). http://
www.128.ibm.com/developerworks/xml/library/x-Mashups.html

4. Grammel, L., Storey, M.: An end user perspective on mashup making, University of Victoria
Technical Report DCS-324-IR (2008)

5. Hartmann, B., Doorley, S., Klemmer, S.: Hacking, mashing, gluing: a study of opportunistic
design and development. Pervasive Comput. 7(3), 46–54 (2006)

6. Caste, B.: Introduction to Web Services for Remote Portlets, IBM Developerworks (2005).
http://www-128.ibm.com/developerworks/webservices/library/ws-wsrp/

7. Beinhauer, W., Schlegel, T.: User Interfaces for Service Oriented Architectures, July 2005.
http://www.webservice-kompass.de/fileadmin/publikationen/User_Interfaces_for_Service_
Oriented_Architectures.pdf

8. David, B., Chalon, R.: Orchestration modeling of interactive systems. In: Jacko, J.A. (ed.)
HCI International 2009, Part I. LNCS, vol. 5610, pp. 796–805. Springer, Heidelberg (2009)

9. Erl, T.: Service Oriented Architecture, Concepts, Technology, and Design. Prentice Hall,
Upper Saddle River (2006)

10. OASIS. Web Services Business Process Execution Language Version 2.0, April 2005. http://
docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

11. Pautasso, C.: BPEL for REST. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 278–293. Springer, Heidelberg (2008)

12. Van Lessen T., Leymann F., Mietzner R., Nitzsche J., Schleicher D.: A management
framework for WS-BPEL. In: ECoWS 2008, Dublin, pp. 187–196 (2008)

13. David, B., Chalon, R., Delomier, F.: Supportive user interfaces for MOCOCO (mobile,
contextualized and collaborative) applications. In: Kurosu, M. (ed.) HCII/HCI 2013, Part V.
LNCS, vol. 8008, pp. 29–38. Springer, Heidelberg (2013)

694 A. Atrouche et al.

http://www.128.ibm.com/developerworks/xml/library/x-Mashups.html
http://www.128.ibm.com/developerworks/xml/library/x-Mashups.html
http://www-128.ibm.com/developerworks/webservices/library/ws-wsrp/
http://www.webservice-kompass.de/fileadmin/publikationen/User_Interfaces_for_Service_Oriented_Architectures.pdf
http://www.webservice-kompass.de/fileadmin/publikationen/User_Interfaces_for_Service_Oriented_Architectures.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

	A Mashup-Based Application for the Smart City Problematic
	Abstract
	1 Introduction
	2 Mashup Applications
	3 State of the Art
	4 Smart City
	4.1 A Case Study or Scenario

	5 Our Approach
	5.1 Proposed Architecture
	5.2 Service Orchestration Layer
	5.3 User Interface Orchestration Layer
	5.4 Scenario-Based Explanations
	5.5 Supportive User Interface

	6 Conclusion
	References


