
AModel-Based Framework for Multi-Adaptive
Migratory User Interfaces

Enes Yigitbas(&), Stefan Sauer, and Gregor Engels

s-Lab – Software Quality Lab, University of Paderborn,
Zukunftsmeile 1, 33102 Paderborn, Germany

{eyigitbas,sauer,engels}@s-lab.upb.de

Abstract. Nowadays users are surrounded by a broad range of networked
interaction devices for carrying out their everyday activities. Flexible and natural
interaction with such devices in a seamless manner remains a challenging
problem, as many different contexts of use (platform, user, and environment) have
to be supported. In this regard, enabling task continuity by preserving the user
interface’s state and adapting it to the changing context of use can help to improve
user experience despite possible device changes. The development of such
multi-adaptive migratory user interfaces (MAMUIs) involves several challenges
for developers that are partially addressed by frameworks like CAMELEON-RT.
However, supporting the development of user interfaces with adaptation and
migration capabilities is still a challenging task. In this paper, we present an
integrated model-based framework for supporting the development of MAMUIs.

Keywords: Model-Based user interface development � Adaptive user inter-
face � User interface migration

1 Motivation

To day users are surrounded by a broad range of networked interaction devices (e.g.
mobile phones, laptops, tablets, smartwatches, terminals etc.) for carrying out their
everyday activities. Allowing for flexible and natural interaction with such devices in a
seamless manner remains a challenging problem, as many different contexts of use
(platform, user, and environment) have to be supported.

Figure 1 shows a usage scenario of such a distributed interactive system. Pur-
chasing a train ticket is carried out by the use of different devices which provide
different interaction interfaces. In this scenario, the ticket purchase is first prepared on a
home PC entering the reservation dates (date and time for round-trip). In transit, the
user is able to book additional services (luggage service, seat reservation, hotel res-
ervation at destination) via smartphone. Finally, the printing of the ticket is done at the
ticket machine. Focusing on this example scenario, one can see that different devices
can be used to access and modify the information provided by the user interface. In this
regard, a device change can cause a context change, which has to be considered for an
intuitive and flexible task continuation. The major problems in developing cross-device
user interfaces for such scenarios are: lack of efficient development methods for gen-
erating multiple user interfaces for different platforms, poor adaptation to the context of

© Springer International Publishing Switzerland 2015
M. Kurosu (Ed.): Human-Computer Interaction, Part II, HCII 2015, LNCS 9170, pp. 563–572, 2015.
DOI: 10.1007/978-3-319-20916-6_52



use, and inadequate support for seamless migration of user interfaces across different
devices.

Regarding the scenario mentioned above, enabling task continuity by preserving the
user interface’s state during migration and adapting it to the changing context of use can
help to improve user experience despite possible device changes. The development of such
multi-adaptive migratory user interfaces (MAMUIs) is partially addressed by frameworks
like CAMELEON-RT [3]. However, the following factors remain challenging:

• Multi-platform capability: Increase efficiency of multi-platform user interface
development across heterogeneous computing platforms (Windows, iOS, Android,
Windows Phone etc.).

• Adaptation capability: Establish adaptation mechanisms that enable (semi-) auto-
matic user interface adaptation as reaction to context changes.

• Migration capability: Share an application’s user interface and client-side logic
across multiple heterogeneous devices in order to support distributed transactions.

In this paper, we present an integrated model-based framework for supporting the
efficient development of MAMUIs that enable task continuity and adaptivity to context
changes. The paper is structured as following: First, we present related work in the area
of model-based development and user interface migration as well as user interface
adaptation. Then, we present architectural patterns as basic solution concepts for
addressing the challenges of MAMUI development. Based on these architectural pat-
terns, we describe our integrated model-based development framework for MAMUIs.
Finally, we conclude with a summary and an outlook for future research work.

2 Background

Focusing on the topic of model-based development of multi-adaptive migratory user
interfaces (MAMUIs), multiple aspects have to be taken into account: The model-based
development approach for creating UIs and existing approaches for the migration and
adaptation of UIs.

Fig. 1. Example scenario

564 E. Yigitbas et al.



2.1 Model-Based Development

Model-based development methods have been discussed in the past for various indi-
vidual aspects of a software system and for different application domains. This applies to
the development of the data management layer, the application layer or the user interface
layer [8]. The CAMELEON Reference Framework (CRF) [6] provides a unified
framework for model-based and model-driven development of UIs. CAMELEON-RT
[3] is an extended version of this framework which represents an abstract reference
model for developing the run-time infrastructure for distributed and migratable user
interfaces. There are already different approaches such as [4] or [11] which propose
model-based development of UIs. These approaches mainly focus on model-based
development and its technological implementation aspects. However, aspects like task
continuity under device changes, which increase the flexibility of using different UIs, are
not sufficiently integrated in the model-based development process.

2.2 UI Migration

UI migration is an important concept to transfer a UI or parts of it from a source device
to a target device in order to carry a UI and its state across different devices and to
enable mobile, distributed interaction. An example solution for partial Web migration
to mobile devices is presented in [7]. Refinements of this concept and architecture
proposals for UI migration are described in [15] and [16]. There are also model-based
approaches for the dynamic distribution of UIs as described in [12] for example.
However, an integrated UI migration process, supporting adaptivity to context changes
is not fully covered yet.

2.3 UI Adaptation

Adaptive UIs have been promoted as a solution for context variability due to their ability
to automatically adapt to the context-of-use at runtime. Norcio and Stanley consider that
the idea of an adaptive UI is straightforward since it simply means [13]: “The interface
should adapt to the user; rather than the user must adapt to the system.” Based on [2] we
can generally differentiate between the following types of adaptive UIs:

• Adaptable User Interfaces allow interested stakeholders to manually adapt the
desired characteristics; example: a software application that supports the manual
customization of its toolbars by adding and removing buttons.

• Semi-Automated Adaptive User Interfaces automatically react to a change in the
context-of-use by changing one or more of their characteristics using a predefined
set of adaptation rules. For example: an application can use a sensor to measure the
distance between the end-user and a display device, and then trigger predefined
adaptation rules to adjust the font-size.

• Fully-Automated Adaptive User Interfaces can automatically react to a change in
the context-of-use. However, the adaptation has to employ a learning mechanism,
which makes use of data that is logged over time. One simple example is a software
application, which logs the number of times each end-user clicks on its toolbar

A Model-Based Framework for Multi-Adaptive Migratory User Interfaces 565



buttons and automatically reorders these buttons differently for each end-user
according to the usage frequency.

A classification of different adaptation techniques was introduced by Oppermann
[14] and refined by Brusilovsky [5]. UIs with adaptation capabilities have been pro-
posed in the context of various domains and there are also proposals for integrating
adaptive UI capabilities in enterprise applications (e.g. [1]). Still, the aspect of auto-
mated adaptation is not sufficiently covered during the migration process of a UI
regarding to context changes.

3 Architectural Patterns for MAMUIs

In order to support the development of MAMUIs we have identified basic architectural
patterns to address the identified challenges: Multi-platform, Adaptation and Migration
capabilities.

3.1 Multi-Platform Capability

For increasing the efficiency of multi-platform user interface development it is important
to overcome the process of implementing interfaces for M heterogeneous devices with N
different contexts while maintaining N*M architectural models and code for all the
variants of the same UI. The model-based development process proposes a stepwise
approach. At the beginning, models of abstract user interfaces are specified that are then
transformed to models of concrete user interfaces. Eventually, the final user interfaces
are generated by model-to-code transformations. Such a modeling and generation
process is described by the CAMELEON Reference Framework which is illustrated in
Fig. 2. The top layer Task & Concepts includes a task model that is used for the
hierarchical description of the activities and actions of individual users of the user
interface. The abstract user interface (AUI) is described in the form of a dialogue model
that specifies the user’s interaction with the user interface independent of specific
technology. The platform specific representation of the user interface is described by the
concrete user interface (CUI), which is specified by a presentation model. The lowest
layer of the framework is the final user interface (FUI) for the target platform. The
vertical dimension describes the path from abstract to concrete models. Here, a
top-down approach is followed, in which the abstract description of relevant information
about the user interface (AUI) is enriched to more sophisticated models (CUI) through
model-to-model transformations (M2 M). Subsequently, the refined models are trans-
formed (model-to-code transformation, M2C) to produce the final user interface (FUI).
Based on this architectural pattern, it is possible to enable multi-platform capability for
the different UIs that are generated during the development process.

3.2 Adaptation Capability

While the architectural pattern above described, supports multi-platform UI generation,
it is not sufficient to develop adaptive UIs, because there are no means to model

566 E. Yigitbas et al.



adaptivity. Nevertheless, the model-based development process offers flexibility to
extend it for the development of adaptive components. In this context we have analyzed
different architectural concepts for self-adaptive systems such as MAPE-K by Kephart
and Chess [9] and the 3-layer reference architecture by Kramer and Magee [10]. As a
result of this analysis, we have identified the need for an architectural pattern for
representing the adaptation process (see Fig. 3). Such an architectural pattern for UI
adaptation can be characterized by an Adaptation Manager that monitors the
Managed/Adaptive UI. The Managed/Adaptive UI can run on different platforms (PC,
smartphone and terminal). The Adaptation Manager consists of five main components
that work in the following way: The Monitor component is responsible for observing
the context information. Context information changes are then evaluated by the Ana-
lyze component to decide whether adaptation is needed. If so, the planning of an
adaptation schedule is done by the Plan component. Finally, the adaptation operations
are performed by the Execute component, so that an adapted UI can be presented. The
Knowledge base is responsible for storing data that is logged over time and can be used
for inferring future adaptation operations.

Fig. 2. Simplified CAMELEON reference framework

A Model-Based Framework for Multi-Adaptive Migratory User Interfaces 567



3.3 Migration Capability

For sharing an application’s user interface and client-side logic across multiple het-
erogeneous devices and in order to support distributed transactions it is important that
the UI can be transferred from a source to a target device. For this reason, we have
defined a further architectural pattern called UI migration (see Fig. 4).

In order to support this in a seamless manner, we have to enable task continuity
during the migration process so that the state of the UI is carried over and the pre-
sentation is adapted to the target device and its context. For reaching this goal, the
source platform triggers a migration request to the Migration Server. This can be done
manually by request of the user or automatically based on context information events,
like for example, low battery status of a mobile device. The Migration Server accepts
the migration request to transfer the current FUI A to the selected target platform. For
supporting the migration process, the Migration Server consists of four main compo-
nents. The Task Mapping component is responsible for determining which activities of
the task model are supported by the target platform. After establishing a mapping on
the task level, the State Mapping component captures the state of the migrating FUI A.
This state is the result of the history of user interactions with the application including
previous input data. The CUI Redesign component provides a mapping on the CUI
level by rearranging the CUI model of the migrating UI for the special needs of the
target platform. It considers platform information like display size or resolution for this
purpose. Finally, the FUI Adaptation component returns as a result of the Migration
Server a Context-adapted FUI A’ that is activated on the target platform.

Fig. 3. UI adaptation manager

568 E. Yigitbas et al.



4 Model-based Framework for MAMUIs

In the previous section, we have presented different architectural patterns for devel-
oping MAMUIs. While these patterns address basic solution concepts for tackling the
different challenges, it is important to design an integrated framework which combines
the several aspects of multi-platform capability, adaptation capability and migration
capability. For this reason, we propose our MAMUI Reference Framework which
supports the development of migratory user interfaces that can extend across a variety
of devices and are adaptive to context changes like platform, user and environment.
The MAMUI Reference Framework which is depicted in Fig. 5 consists of four main
parts: UI Generator, Adaptation Manager, Migration Server and Context Manager.

The UI Generator is responsible for generating the final user interfaces (FUIs) for
the different platforms (Desktop, Mobile, Terminal, etc.). The generation process is
based on the CAMELEON Reference Framework where a transformational approach is
preceded. At the beginning of the transformation process, task models are created
which describe the activities and actions of individual users of the user interface. The
task models are then transformed to abstract UI models (AUI) which describe the user’s
interactions with the user interface independent of a specific technology. In a next
transformation step, the concrete UI models (CUI) for the different platforms are cre-
ated. Finally, by using model-to-code transformations the final user interfaces (FUIs)
are generated.

The Adaptation Manager is responsible for monitoring the adaptive FUIs and
adapting them to the different kinds of context changes. In order to support adaptation
mechanisms at different levels of the CAMELEON Reference Framework, the Adap-
tation Manager consists of three adaptation layers. Task Feature Adaptation enables
changes in the task models such as, for example, minimizing the task feature set based

Fig. 4. UI migration

A Model-Based Framework for Multi-Adaptive Migratory User Interfaces 569



on the context information. This means for instance that task activities which are not
executable on particular platforms or for some predefined user roles are not represented
in the FUI. Similarly, the adaptation layer Navigation Adaptation is responsible for
changing the navigation flow of the FUI by manipulating the AUI model. Based on the
context information, it is also possible to perform changes in the CUI models in order
to reach Layout Adaptation. For specifying the different changes in the adaptation
process, the Adaptation Manager makes use of an adaptation model. The adaptation
model is encoded in the adaptation layers. In the adaptation model different adaptation
rules based on the ECA (Event-Condition-Action) paradigm and the Context Model are
defined, which are evaluated at runtime to react to the context changes.

While a final user interface (FUI) is running on a particular platform, a context
switch may happen by changing the device. For this purpose, a Migration Server can
accept a migration request from a source platform for migrating the current FUI to a
target platform. In order to support the migration process, several steps are provided by
the Migration Server as described in detail in Sect. 3.3. First, a task mapping between
the source and target platform is done. This is necessary in order to adjust the different
task activities so that executable tasks are selected for the target platform. After that, a

Fig. 5. MAMUI reference framework

570 E. Yigitbas et al.



state mapping of the user interfaces is established, so that preconfigured UI features and
input data are carried over to the target platform. In the next step, the CUI model of the
current platform is redesigned in order to adapt it for the target platform considering the
context changes. For reaching this goal, the Migration Server makes use of the
described layers of the Adaptation Manager. Finally, the context-adapted FUI is
activated for the target platform.

The Context Manager operates on a Context Model that is divided into a Platform,
User and Environment model. The Context Manager provides useful context infor-
mation for the Managed/Adaptive UI, so that the Adaptation Manager is able to
observe context changes that are addressed by related adaptation rules defined in the
adaptation model.

With the interplay of its described main components, the proposed MAMUI Ref-
erence Framework provides a basic solution concept to support multi-platform, adap-
tive and migratory UI development. In our ongoing research work, we are currently
developing an integrated development environment to address the main parts of the
MAMUI Reference Framework. This will include the modelling and transformation of
the core UI models at different levels and also the modelling of aspects like adaptation
and migration. Future work will include the evaluation of our integrated development
environment based on practical example scenarios.

5 Conclusion and Outlook

This paper presents an integrated model-based framework for supporting the devel-
opment of multi-adaptive migratory user interfaces (MAMUIs). We have referred to a
cross-device user interface usage scenario from practice, which served as a basis to
show the different challenges in this context, e.g. multi-platform, adaptation and
migration capability. In order to address these challenges, we have described different
basic solution patterns for supporting the development of MAMUIs. Based on these
architectural patterns, we have presented our integrated model-based MAMUI Refer-
ence Framework. Our future work will focus on the development and evaluation of a
modelling and execution workbench based on the proposed MAMUI Reference
Framework.

References

1. Akiki, P.A., et al.: Integrating adaptive user interface capabilities in enterprise applications.
In: Proceedings of the 36th International Conference on Software Engineering (ICSE 2014),
pp. 712–723. ACM (2014)

2. Akiki, P.A., et al.: Adaptive model-driven user interface development systems. ACM
Comput. Surv. 47(1), 1–33 (2014). Article 9

3. Balme, L., Demeure, A., Barralon, N., Calvary, G.: CAMELEON-RT: a software
architecture reference model for distributed, migratable, and plastic user interfaces. In:
Markopoulos, P., Eggen, B., Aarts, E., Crowley, J.L. (eds.) EUSAI 2004. LNCS, vol. 3295,
pp. 291–302. Springer, Heidelberg (2004)

A Model-Based Framework for Multi-Adaptive Migratory User Interfaces 571



4. Botterweck, G.: A model-driven approach to the engineering of multiple user interfaces. In:
Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 106–115. Springer, Heidelberg
(2007)

5. Brusilovsky, P.: Adaptive Hypermedia. In: User Modeling and User-Adapted Interaction,
vol. 11, pp. 87–110. Kluwer Academic Publishers, March 2001

6. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
unifying reference framework for multi-target user interfaces. Interact. Comput. 15, 289–308
(2003)

7. Ghiani, G.; Paternò, F.; Santoro, C.: On-demand cross-device interface components
migration. In: Proceedings of the 12th international conference on Human computer
interaction with mobile devices and services (MobileHCI 2010), pp. 299–308. ACM (2010)

8. Hussmann, H., Meixner, G., Zuehlke, D. (eds.): Model-Driven Development of Advanced
User Interfaces. Springer, Heidelberg (2011)

9. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50
(2003)

10. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Proceedings of
2007 Future of Software Engineering (FOSE 2007), IEEE Computer Society, Washington,
DC, USA, pp. 259–268 (2007)

11. Link, S., Schuster, T., Hoyer, P., Abeck, S.: Modellgetriebene Entwicklung grafischer
Benutzerschnittstellen (Model-Driven Development of Graphical User Interfaces). i-com 6,
Nr. 3, Oldenbourg, München, pp. 37–43 (2008)

12. Martinie, C., Navarre, D., Palanque, P.: A multi-formalism approach for model-based
dynamic distribution of user interfaces of critical interactive systems. Int. J. Hum.-Comput.
Stud. 72, 77–99 (2014)

13. Norcio, A.F., Stanley, J.: Adaptive human-computer interfaces: a literature survey and
perspective. IEEE Trans. Syst. Man Cybern. 19, 399–408 (1989)

14. Oppermann, R.: Individualisierte systemnutzung. In: Paul, M. (ed.) GI – 19. Jahrestagung,
Computergestützter Arbeitsplatz, pp. 131–145. Springer, Heidelberg (1989)

15. Paternò, F., Santoro, C., Scorcia, A.: Ambient intelligence for supporting task continuity
across multiple devices and implementation languages. Comput. J. 53(8), 1210–1228 (2010)

16. Yanagida, T., Nonaka, H.: Architecture for migratory adaptive user interfaces. In: Computer
and Information Technology, CIT 2008, pp.450-455 (2008)

572 E. Yigitbas et al.


	A Model-Based Framework for Multi-Adaptive Migratory User Interfaces
	Abstract
	1 Motivation
	2 Background
	2.1 Model-Based Development
	2.2 UI Migration
	2.3 UI Adaptation

	3 Architectural Patterns for MAMUIs
	3.1 Multi-Platform Capability
	3.2 Adaptation Capability
	3.3 Migration Capability

	4 Model-based Framework for MAMUIs
	5 Conclusion and Outlook
	References


