Graphical User Interface for Search
of Mathematical Expressions with Regular
Expressions

Takayuki Watabe' ™ and Yoshinori Miyazaki®

! Graduate School of Science and Technology, Shizuoka University,
Shizuoka, Japan
dgsl3012@s. inf. shizuoka. ac. jp
2 Graduate School of Informatics, Shizuoka University, Shizuoka, Japan
yoshi@inf. shizuoka. ac. jp

Abstract. This paper discusses a pattern-matching method with regular
expressions for mathematical expressions on electronic documents. In ordinary
regular expressions, a pattern is described as a string with meta-characters.
However, strings are unsuitable for mathematical expressions because of their
two-dimensional structure (e.g., fractions, superscripts, and subscripts). In
addition, meta-characters for regular expressions are frequently used as normal
characters, forcing users to type escape characters. Therefore, in this study, we
propose a graphical user interface (GUI) to create patterns for mathematical
expressions.

Keywords: Mathematical expressions - Pattern-matching - Regular expres-
sions + GUI

1 Introduction

A mathematical expression used for describing mathematical concepts and models is a
significant notation. Electronic documents, including web pages and e-books, often
contain mathematical expressions and need to retrieve content. Search algorithms for
natural language are partially adaptable to mathematical expressions because a math-
ematical expression consists of natural language characters. However, the layout of the
characters in a mathematical expression is different from that in natural language; this
suggests a need to develop search algorithms specifically for mathematical expressions.

Some studies on searching mathematical expressions have been conducted [1-3]
typically in relation to search engines. Moreover, search algorithms can be used to
highlight search results in a document or move to a page that comprises the results. In
general, pattern-matching algorithms (string searching algorithms) are suitable for such
applications. Previously, we proposed a search algorithm for mathematical expressions
similar to a pattern-matching algorithm for natural language [4]. Using this algorithm,
our search tool (MathRegExp) allows users to use regular expressions to describe
patterns. Regular expressions can make patterns flexible using wildcards, Boolean or,
the number of occurrences of character(s), etc. Although several studies have attempted

© Springer International Publishing Switzerland 2015
M. Kurosu (Ed.): Human-Computer Interaction, Part I, HCII 2015, LNCS 9169, pp. 438-447, 2015.
DOI: 10.1007/978-3-319-20901-2_41

Graphical User Interface for Search of Mathematical Expressions 439

to implement wildcards for searching mathematical expressions [5, 6], their functions
and notations are different from those used in regular expressions. Our regular
expressions for mathematical expressions are similar to the original regular expressions
for plain texts.

In MathRegExp, a pattern is expressed as a string. However, using strings as the
pattern has some problems. First, the two-dimensional layout of characters in mathe-
matical expressions is represented one-dimensionally, preventing intuitive under-
standing of which expressions are to be matched to a pattern. Second, because
meta-characters for regular expressions are frequently used as normal characters (e.g.,
“+7, “(”, and “)”), users must use escape characters, which are cumbersome and prone
to mistakes. Because of these problems, novice users, including mathematics learners
and liberal arts scholars, might find MathRegExp difficult to use. Therefore, in this
study, we propose a graphical user interface (GUI) to create patterns for MathRegExp.

A GUI for describing mathematical expressions has been proposed previously [7].
Our GUI satisfies the further demand of the ability to input regular expressions for
advanced and complex matching as well. Our GUI displays these as figures to solve the
aforementioned problem of escaping meta-characters and provides users with two
methods for inputting regular expressions.

2 Patterns

This section outlines the patterns of MathRegExp as strings to introduce its functions.
Here, the proposed GUI internally generates patterns as strings. A pattern consists of
characters, structures, and regular expressions, which will be discussed below.

2.1 Characters and Structures

Characters are represented in Unicode. Because Unicode contains categories for
mathematical expressions, users can describe symbols appearing in various fields,
including calculus, geometry, logic, and set theory.

We refer to the particular symbol layouts appearing in a mathematical expression as
structures. A notation for a structure is the form \keyword { argument] } [{ argument2 }
[{argument3}]] (where “[“and “]” indicate optionality). A keyword specifies a type of
structure (e.g., fraction, superscript, or square root), and structures are allowed to be
nested. For example, \frac{1} {\sqgrt{2}} is acceptable for % Table 1 shows a

list of structures.
The structures in Table 1 and characters in Unicode enable users to describe
summation, definite integration, and maximum.

2.2 Regular Expressions

Regular expressions are divided into five categories, namely, wildcard, character class,
quantification, Boolean or, and backreference.

440 T. Watabe and Y. Miyazaki

Table 1. List of structures

Keyword | Description Argument Example
1 2 3

sub subscript subscript s

sup superscript superscript 2

subsup subscript and | subscript superscript ®
superscript

under underscript base underscript lim

over overscript base overscript a

underover |underscript and | base underscript | overscript =
overscript ;

sqrt square root base Vx

root radical with index | base index Ya

frac fraction numerator | denominator %

A wildcard is represented as “.” and matches an arbitrary character or arbitrary

structure. For example, \frac{.} {2} matches g

A character class matches a character enclosed by “[“ and ”’]”. Therefore, [xyz]
\sup {2} matches both x? and y?. A negated character class matches a single character
that is not contained between “[~” and “]”. An abbreviated notation using “-” in
character classes is acceptable: [0-9] matches an arbitrary single digit, and
[~stx-z] matches any character other than “s”, “t”, “x”, “y” and “z”. Structures are
unacceptable in character classes.

Quantification is described as “*”, “+” and “?”. “*” represents “zero or more of a
preceding element,” “+” matches “one or more of a preceding element,” and “?”
matches “zero or one of the preceding element.” As an example, \sqgrt { . +} matches
V2a.

Boolean or is represented as *

x and y individually.
A scope of quantification and Boolean or is specified by enclosing with “ (> and
. For example, (x\sub{.}) + matches xi, x,, x3, etc., and (\sgrt{.}|.\sup
{\frac{1}{2}}) matches \/)—c or x. In addition, a structure is assumed to be a
character, hence the pattern \sqgrt{.} + is valid.

A backreference, notated as “\n” (n is a number), matches a mathematical
expression identical with the expression matched with a part of a pattern enclosed by
the n'" parenthesis (i.e., “(” and “)”). For example, \frac{. +}{ (. +) }-\frac
{. +}{\1} matches the addition of two fractions with common denominators.

c|” cn|

” separates alternatives, i.e., x | y matches both

“) 2

Graphical User Interface for Search of Mathematical Expressions 441

3 GUI

The method of creating patterns is similar to that of inputting ordinary text, namely,
repeatedly inserting a character after a cursor. However, it might be necessary to create
patterns with untypable characters, structures, or regular expressions.

3.1 GUI for Mathematical Expressions

Characters are input from the keyboard if they are typable. A palette is provided for
inputting untypable characters, including Greek letters and mathematical symbols.
Structure templates (i.e., empty structures) are displayed when the buttons are clicked.
A double-lined rectangle indicates a structure argument, such as those in Fig. 1.

Users can position the cursor at the rectangle and input a pattern as an argument of
the structure. The cursor is controlled by clicking or pressing arrow keys. When arrow
keys are pressed, the cursor moves in the order of argumentl, argument2, and
argument3.

A structure is deleted by pressing the delete key after selecting the entire structure
using rectangle selection or placing a cursor on one of the empty arguments
(double-lined rectangles).

3.2 GUI for Regular Expressions

This chapter presents figures for regular expressions and methods of inputting and
editing them.

3.2.1 Figures of Regular Expressions
Regular expressions are displayed on our GUI as figures rather than meta-characters.
Table 2 shows the figures.

These figures represent the scope with a rectangle, allowing users to intuitively
grasp the scope of mathematical expressions having two-dimensional structures. This
representation also solves the problem that parentheses in regular expressions repre-
sented as strings have the double meaning of specifying scope and capturing backre-
ferences. Here, the number of capturing (i.e., n of capturing in Table 2) is assigned as
the order of inputting.

Quantification, Boolean or, and capturing are applied to a part of a mathematical
expression. When multiple functions are applied to an identical part, merged figures are
displayed. In a merged figure, “possibility of absence” (optionality) is represented as a
broken-lined rectangle, “repetition” is three vertical lines following a rectangle,

Fig. 1. Templates of structures

442 T. Watabe and Y. Miyazaki

Table 2. Figures of Regular Expressions

Description Figure
Wildcard

Character class

Negated character class

Quantification (+)

Quantification(*) | 77777777 !

Quantification(?) | 77777777 ;

Boolean or |

Capturing for backreference i'

Backreference : :

“Boolean or” is a spaced vertical line, and “capturing” is an appended number with a
small rectangle. Figure 2 is an example of a merged figure representing (x|y|z) *.

3.2.2 Inputting Regular Expressions

A wildcard is inputted by clicking a button, similar to the inputting of untypable
characters. The method for inputting a character class, a negated character class, or
backreference is identical to that for inputting structures, namely, displaying a rounded
rectangle (or a hexagon) and describing contents for character classes (or a reference
number).

Fig. 2. Merged figure of (x|y|z)*

Graphical User Interface for Search of Mathematical Expressions 443

Our GUI provides two input methods for the functions with a scope (i.e., quanti-
fication, Boolean or, and capturing). The first method is identical to that for inputting
structures, displaying a rectangle and describing a part of the pattern in the scope. The
second is selecting a part of an already created pattern to specify the scope and assign
the function.

We suppose that there are different procedures for creating patterns. Some users
might decide to use regular expressions before creating a pattern, for example, a user
inputs \frac{. +}{ () }\+\frac{. +}{\1} as “addition of fractions with a
common denominator” and then concretely describes the denominator. Others might
add regular expressions to the pattern after describing a mathematical expression, for
example, a user searches with a pattern such as sinx and then wishes to search
trigonometric functions, searching again with (sin|cos|tan)x. Our GUI allows
users to follow both the procedures by providing multiple input methods. The former
users will employ the method for structures and the latter will use selecting and
assigning method.

3.2.3 Editing Regular Expressions
Users edit wildcards such as characters, character classes, and capturing as structures.

When users edit regular expressions having scope, they must first select the scope.
A scope is selected by clicking a rectangle or pressing right (left) cursor keys with the
cursor just before (after) the rectangle. When a scope is selected, the cursor disappears
and the selected rectangle blinks. The rectangle is blurred by clicking characters or
structures in the pattern or pressing cursor keys, and the cursor appears at the appro-
priate position.

Types of editing regular expressions with a scope are divided into “assigning the
function,” “updating the scope,” and “deleting the scope.” Users assign a function
using buttons. The buttons for quantification and backreferences behave as toggles. If a
function is assigned to a scope, the button remains pressed. The button for Boolean or
is used for adding alternatives. When the button is clicked, a spaced line is inserted in
the rectangle, enabling the user to input a new alternative. Users can update a scope by
dragging and resizing the selected rectangle. It is impossible for the scope of Boolean
or to be updated because the function has multiple pattern parts. A scope is deleted by
pressing the delete key with the selected scope. If a scope with Boolean or is deleted,
the second to the last alternatives are also deleted.

2

3.3 Examples of Patterns

In Table 3, we show examples of patterns created using our GUI, the corresponding
patterns as strings, and the matched mathematical expressions.

444 T. Watabe and Y. Miyazaki

Table 3. Patterns and Matched Mathematical Expressions

Multiplication of a and b

SR I

axXb,a-b,ab
Relation between arithmetic and geometric means

e IS E IS \/ ——
\1[x-]? - i
igft{ [x] 2 2 @EX :@

a+b \/— x1+ x2>m

Maclaurln series of e*
e\sup{x}=1\
+x\+ (\frac{

x\sup{ ([0-9 X

+) 13 {\213\ ex =14+x+—+

+)+... '

eX=1+x+ 4 eX=1+x+ + + + 4+

Note: as a result of performmg to specnﬁcatlon th1s pattern could also match math

ematical expressions including e* = 1+ x + E + E + Z + E + -

4 Implementation of Matching

This section explains how our matching algorithm is implemented. Highlighting
matched parts of mathematical expressions in web pages, one application of our
algorithm, including replacing, is detailed. Figure 3 is the conceptual diagram of the
implementation.

We use the regular expressions library called Onigmo [8] internally. The library can
describe recursive patterns in addition to ordinary functions of regular expressions.
Recursion is indispensable to our manner of matching mathematical expressions
because we use parentheses to represent structure (i.e., “{”, and “}” in \keyword
{content}). Correspondence of parentheses cannot be treated by ordinal regular
expressions. For example, a pattern of \sqgrt{. +}, which means “a square root
including an arbitrary mathematical expression,” matches \sqrt{x}\frac{1}{2}
because . + in the pattern matches “x}\frac{1}{2.” If the . + is revised to ["
{}1 +, which means “repetition of a character unless {or },” to avoid this problem,
then the pattern causes another problem that the pattern does not match the mathe-
matical expression \sgrt {x\sup{2}}. A recursive pattern solves the problem. The
details will be discussed later.

Graphical User Interface for Search of Mathematical Expressions 445

web
pages GUI
extraction @

the pattern
as string

=

normalization

stringification Q conversion

Onigmo

[

highlighting

Fig. 3. Conceptual diagram

It is assumed that target mathematical expressions of our matching method are
described in a format called MathML [9] Presentation Markup. This format is standard
for describing mathematical expressions in electronic papers because it is recom-
mended by W3C and can be used in HTMLS. In MathML, a single mathematical
expression can be described as various data. For example, two MathML data in Fig. 4
represent the identical mathematical expression: ab?.

On the left-hand side in Fig. 4, a and b? are located on the same line. On the
right-hand side, the superscript “2” is attached to ab. Such problems are found in
several tags of MathML, which reduces the precision of the pattern-matching process.
Therefore, we normalize MathML data to eliminate data variety before
pattern-matching. Moreover, normalized data are stringified to a similar format for the
patterns described in Sect. 2.

Patterns are created using the GUI, and the GUI generates patterns as strings
following the aforementioned format. The patterns, however, are not interpreted
appropriately as patterns with Onigmo, hence, they are converted before matching. An
example of conversion is shown in Table 4.

<math> <math>
<mi>a</mi> <msup>
<msup> <mrow>
<mi>b</mi> <mi>a</mi>
<mn>2</mn> <mi>b</mi>
</msup> </mrow>
</math> <mn>2</mn>
</msup>
</math>

Fig. 4. Two kinds of data for ab®

446 T. Watabe and Y. Miyazaki

Table 4. Example of conversion of a pattern and a mathematical expression

A mathematical expression A pattern

Two-dimensional f 3

representation n ® ||
a+ 7 X —_

Stringified repre- | (a+\frac{\sqgrt{3}}{ \frac{.+}{2}

sentation 2})x\sup{n}
Converted repre- | (a+/::::/{/:::/{3/} /i /{ ((?<arb>(?<a
sentation /Y/{2/Y)x/:/{n/} rbe>[M{}:/\\11/ (2!

() INNOINN NN TN
\\\) | (?<arbs>/:+(/{
(\g<arbc>|\g<arbs) *
/NDH)))+/Y/ 12/}

29 66

The notable processes of the conversion are “replacing keyword,
and “calling pattern recursively.”

If keywords are retained in stringified mathematical expressions, normal characters
in a pattern can match characters to represent keywords. For example, the pattern of a
matches a in a keyword frac in a mathematical expression of \frac{1}{2}. To
avoid this problem, we replace keywords with sequences of colons (:) and a colon as a
normal character to \ :.

In patterns for searching mathematical expressions, a structure behaves as a single
character. Therefore, the pattern of \sqgrt {2} + is acceptable. However, quantifica-
tion (+) in this pattern plays the role of “one or more of a character of }” when it is
interpreted as a pattern with Onigmo. In conversion, every structure is enclosed by
parentheses for setting the appropriate scope.

The problem that \sgrt{. +} matches \sqgrt{x}\frac{1l} {2} is resolved
by calling patterns recursively with two notations of Onigmo, (? < name >) and
\g < name > . (? < name >) are used for naming a pattern enclosed by parenthesis as
name, and \g < name > calls the named pattern. We replace wildcard as follows using
these functions (indented for readability).

(? < arb>

(? <arbe > [“{}:/\\T| /72001 NNV NN A\

| (? <arbs >/: + (/{(\g <arbc > |\g < arbs >)*/}) +)

)

The replacement represents “an arbitrary character (named arbc)” or “an arbitrary
structure (named arbs).” arbc has the ability to match an arbitrary character including
characters for describing structures (i.e., {, }, :, and /). In arbs, an argument of a
structure is zero or more of arbc or arbs with \g < name > notations, namely, calling
arbs in arbs, and making it possible to treat correspondence of parentheses for struc-
tures ({and}).

setting scope,”

Graphical User Interface for Search of Mathematical Expressions 447

5 Conclusion

In this paper, we proposed a GUI to facilitate searching mathematical expressions
based on a pattern-matching algorithm with regular expressions. Our GUI displays
patterns two-dimensionally and reduces the number of escape characters, improving
usability, especially for novice users, and preventing error or omission in patterns.

In the future, we aim to add an input method that does not require the use of a
mouse. Some existing GUIs for mathematical expressions, including Microsoft Word
and LyX, have an input method that enables users to input untypable characters by
describing a backslash and a keyword and then pressing a space bar. We plan to expand
this function to input not only untypable characters but also structures and regular
expressions, allowing adept users to promptly create patterns.

Acknowledgement. This work was supported by JSPS Grant-in-Aid for JSPS Fellows Grant
Number 26-2758.

References

1. Yokoi, K., Aizawa, A.: An approach to similarity search for mathematical expressions Using
MathML. In: 2nd Workshop Towards Digital Mathematics Library, pp. 27-35 (2009)

2. Miner, R., Munavalli, R.: An approach to mathematical search through query formulation and
data normalization. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.)
MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 342-355. Springer, Heidelberg
(2007)

3. Zanibbi, R., Yuan, B.: Keyword and Image-based retrieval of mathematical expressions. In:
IS&T/SPIE Electronic Imaging, International Society for Optics and Photonics, vol.
7874 (2011)

4. Watabe, T., Miyazaki, Y.: Pattern matching algorithm for mathematical expressions with a
regular expression. IPSJ J. Inf. Process. Soc. Jpan. 56(5), 1417-1427 (2015)

5. Miller, B.R., Youssef, A.: Technical aspects of the digital library of mathematical functions.
Annals of Mathematics and Artificial Intelligence, Springer 38(1-3), 121-136 (2003)

6. Altamimi, M.E., Youssef, A.S.: Wildcards in math search, implementation issues. In:
CAINE/ISCA, pp. 90-96 (2007)

7. Kovalchuk, A., Levitsky, V., Samolyuk, I., Yanchuk, V.: The formulator mathml editor
project: user-friendly authoring of content markup documents. In: Autexier, S., Calmet, J.,
Delahaye, D., Ion, P.D., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol.
6167, pp. 385-397. Springer, Heidelberg (2010)

8. Onigmo. https://github.com/k-takata/Onigmo

9. MathML. http://www.w3.org/TR/MathML/

https://github.com/k-takata/Onigmo
http://www.w3.org/TR/MathML/

	Graphical User Interface for Search of Mathematical Expressions with Regular Expressions
	Abstract
	1 Introduction
	2 Patterns
	2.1 Characters and Structures
	2.2 Regular Expressions

	3 GUI
	3.1 GUI for Mathematical Expressions
	3.2 GUI for Regular Expressions
	3.2.1 Figures of Regular Expressions
	3.2.2 Inputting Regular Expressions
	3.2.3 Editing Regular Expressions

	3.3 Examples of Patterns

	4 Implementation of Matching
	5 Conclusion
	Acknowledgement
	References

