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Abstract. Brain-computer interface (BCI) systems often require millisecond-
level timing precision in order to function reliably. However, as BCI research
expands to an ever-widening array of applications, including operation in
real-world environments, such timing requirements will need to be relaxed. In
addition, overall BCI system design must be improved in order to better dis-
ambiguate the numerous, seemingly similar, neural responses that may arise in
such environments. We argue that this new area of operational BCI will require
the integration of neural data with non-neural contextual variables in order to
function reliably. We propose a framework in which non-neural contextual
information can be used to better scope the operational BCI problem by indi-
cating windows of time for specific analyses as well as defining probability
distributions over these windows. We demonstrate the utility of our framework
on a sample data set and provide discussion on many of the factors influencing
performance.
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1 Introduction

Previous work to monitor individuals in operational environments using electroen-
cephalography (EEG) has focused on continuous state monitoring. Systems have been
developed to estimate states such as a user’s alertness or fatigue [1, 2]. In order to
perform reliably in operational settings many of these systems focus on, relatively,
slowly varying signals that often exhibit broad scalp topologies. These systems do not
attempt to monitor the moment-to-moment dynamics associated with event-related,
phase-locked, processing unless precise event timing information is available. Within
the field of brain-computer interfaces (BCI) there has been little work in developing
tools capable of detecting such events in real-time without precise timing.

Most BCI classifiers are built using some form of time-locked signal representation,
which in turn is based on the onset of some known event. However, in real-world
applications the onset of events is often not known. Without knowing the time periods
to which the classifier should be applied it is very difficult to control the number of false
positives produced. This problem is exacerbated when one considers that in real-world
environments there are numerous tasks and side-tasks that an individual may perform.
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Therefore one of the major problems associated with asynchronous, online, EEG-based
event detection is one of scope. Furthermore, we argue that it is unlikely that advances
in EEG technology or signal processing methods for EEG analysis alone will be able to
clearly disassociate the myriad brain states and phase-locked events that a system could
encounter in operational settings.

In this regard, researchers and system developers must find alternative methods to
analyze and interpret real-time EEG data. In order to facilitate application of current
BCI tools to operational settings we feel that well-designed systems need the following
three critical components:

1. Trigger mechanism: This mechanism indicates a period of high likelihood for an
event’s occurrence and, thus, scopes the classification problem.

2. Likelihood function: Even with an appropriate trigger mechanism, the temporal
ambiguity of the neural event must be quantified or estimated in order to optimize
classifiability.

3. Decision criterion: This enables a go/no-go decision to be made using the current
data. In the case of a no-go response, the classifier may wait for more data, or output
that there is insufficient information to make a decision.

Our approach is based on the notion that in operational settings there is an inextricable
link between behavior and brain dynamics [3, 4] that must be taken advantage of in
order to build functioning BCI systems.

2 Operational BCI Model

2.1 Trigger Mechanism

Most of the prior work in the field of asynchronous BCI [5, 6] has focused on strategies
to reason over the output of multiple classifiers without utilizing additional information,
such as that provided by other physiological and behavioral sources, to contextualize or
scope the problem. Scoping the problem, however, is a critical need that must be met in
order to perform BCI analysis in operational environments. In its most basic form,
scoping the problem defines an analysis window over which the BCI system must
reason and may be used to select the appropriate set of classifiers to apply to that
analysis window. We propose the use of a trigger mechanism to initially scope the
problem.

In operational environments there may be a number of potential trigger mecha-
nisms. Triggers may occur before, during, or after an event and, in some cases, may
only occur with a particular probability. However, when present, the trigger mechanism
determines an analysis window for the underlying BCI components. In addition, the
trigger itself may form one layer of event detection with the presence or absence of a
neural signature forming a subsequent layer for event detection. Trigger mechanisms
may be unique to each data set and to each cognitive event.

Specific trigger mechanisms could come from behavior, such as saccadic eye
movements or changes in pupil dilation in response to the onset of visual stimuli or
gross movement patterns in response to actual or perceived errors. Alternatively,
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triggers could come from more general state changes such as changes in attentional
focus or current task. In the prior case, the analysis window may be a relatively short,
well defined period of time, whereas in the latter case the trigger may indicate a shift
from one set of asynchronous BCI tools to another.

2.2 Likelihood Function

The second need for operational BCI is that, even given an approximate analysis
window, there will still be a significant amount of temporal variability associated with
the precise timing of the cognitive event. This is due, in large part, to the ambiguity of
the natural world and the difficulty associated with determining the precise timing, both
at the physiological level and at the hardware level, of events. It is important to
establish, to the extent possible, a likelihood function describing the probability of the
event within the analysis window. There has been recent work to account for temporal
ambiguity in the event response, e.g. Marathe et al. [7], but such approaches have not
incorporated probability distributions derived from known behavior and event
dynamics.

There are many ways in which likelihood functions may be obtained, but the key is
that these functions link measurable properties of the situation, e.g. the trigger mecha-
nism, to the probability of the cognitive event. These functions allow the system to
interpret the output of the BCI classifier, or an ensemble set of classifiers, at each time
point in the analysis window. In addition, if the likelihood function can be linked to
other measurable signals, either physiological or behavioral in origin, then this allows
the integration of the BCI output into a more structured belief network describing the
current state of the operator. Integration strategies that could be used include approaches
such as generalized linear models, multivariate regression, Bayesian belief networks,
Markov chains, or fuzzy methods. In addition, the likelihood function could be used to
integrate the output of multiple classifiers in a manner similar to the approach of [7].

2.3 Decision Criteria

Given the ambiguity associated with defining both the analysis window and the like-
lihood function, operational BCI systems will also need some form of confidence
metric or decision criteria to determine whether the current output should be accepted
or rejected. If the output is rejected, the system may continue to analyze additional data
as it arrives or assert that insufficient information was available to make the decision.
Incorporating a likelihood function allows a natural extension to develop confidence
values in the BCI output. An appropriate decision criterion must be tuned for each
scenario to balance (1) the speed with which a decision is reached, (2) the number of
misclassifications produced by the system, and (3) the number of missed cognitive
events. There has been much prior work in machine learning to develop confidence
metrics for both the input data and the output of the classifier [8]. We simply suggest
using metrics that take advantage of the known dynamics of the situation, e.g. the
likelihood function, the analysis window, and the signal to be classified.
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3 Methods

We illustrate our proposed framework using an experiment in which participants were
required to detect and report targets that appeared in the environment. Target reports
were made by pushing a button with either the left or right index finger. We focus on
classifying the target reports (i.e. distinguishing which hand the participants used). We
use saccadic eye movements as the trigger mechanism and use empirically derived
estimates of the distribution of response times given a saccadic eye movement as the
likelihood function. We compare our approach with an asynchronous method in which
no such information is available.

3.1 Participants

Participants were 13 right-handed males age 20—40 (mean, 31.3 std. 2.6). All subjects
reported normal, or corrected to normal, vision and reported no known neurological
issues. All participants provided written, informed consent in accordance with proce-
dures approved by the Institutional Review Board of the US Army Research Labora-
tory, and all testing conformed to the guidelines set forth by the 1964 Declaration of
Helsinki.

3.2 Stimuli and Procedure

Participants completed a simulation task in which they were driven, as passengers in a
vehicle, through a simulated environment and were responsible for detecting and
classifying targets and reporting the type of target, by pressing a button with either the
left or right index finger. The simulated environment was an urban landscape and
targets appeared at random, but in logically congruent, locations in that environment.
There were two basic types of targets: threats and nonthreats. Participants were trained
to recognize each type of target during an initial training phase. Training continued
until each participant reached a minimum performance level of 80 % classification
accuracy. Targets were presented roughly every three seconds and participants were
asked to respond as quickly and accurately as possible. Participants completed two
15 min blocks, each comprising approximately 180 targets.

3.3 Physiological Recording

Electrophysiological recordings were sampled at 1024 Hz from 64 scalp electrodes
arranged in a 10-10 montage using a BioSemi Active Two system (Amsterdam,
Netherlands). External leads were placed on the outer canthus and below the orbital fossa
of the right eye to record monopolar electrooculography (EOG). External leads were also
placed on both mastoids to provide electrical reference as well as on the forehead and
along the ridge of the masseter to record electromyographic (EMG) signals. The con-
tinuous data were referenced offline before being digitally filtered 0.3—50 Hz. To reduce
muscle and ocular artifacts in the EEG signal we removed EOG and EMG components
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using independent components analysis (ICA) by finding the ICA components that
maximally correlated with the horizontal and vertical EOG channels [9].

Eye tracking was recorded at 60 Hz using the Facelab (www.seeingmachines.com)
two-camera, video-based eye tracking system. Participants were calibrated for the eye
tracker prior to the start of the experiment. In addition, participants performed a
baseline eye tracking task involving a quick saccade task in which the participant had
to saccade to different points on the screen and click on colored targets using the mouse
pointer. This task was completed before and after the experiment.

3.4 Contextualized BCI System Construction

Baseline Classifier. We built a classifier for each participant to detect the finger
movements associated with target responses. We used ICA to derive a set of compo-
nents that captured the phase-locked, event-related potentials (i.e. ERPs) and
non-phase-locked (i.e. spectral changes in the alpha and beta frequency bands) but
event-related features associated with motor control for each subject. We used these
components as features and a forward feature selection algorithm to select the best
components for each subject. Classification was performed using a support vector
machine with a radial basis function kernel implemented with the LibSVM toolbox for
Matlab [10]. For each subject we trained on the first 15 min block of data and tested on
the second.

Integrating Context. To improve detection and disassociation of cognitive events
associated with target onset, target discrimination, and reporting, we developed the
model shown in Fig. 1. For the results described in the following section, we focused
on the model components highlighted by the dashed line.

We analyzed the relationships between target onset and the saccadic eye movement
and between the saccadic eye movement and the motor response. We first smoothed the
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Fig. 1. Time course of experiment dynamics and measurable physiological and behavioral
changes associated with target onset, detection, and reporting.


http://www.seeingmachines.com

216 S.M. Gordon et al.

eye tracking data and then performed threshold-based saccade detection. For our
current analysis we used the saccade as the trigger mechanism. We then used the
probability of response given a saccade as the likelihood function, which was empir-
ically estimated from the available training data.

We analyzed subsets of this data by stepping the BCI system over the analysis
window. The analysis window extended from the onset of the saccade for 1.5 s. We
limited our analysis to this window because no motor responses occurred outside of
this time range for any subject. For each participant a set of classifiers were trained
using different subsets of the available training data to predict the motor response. The
classifiers were each trained using one second of data. We then stepped these classifiers
over the analysis window in 100 ms increments and for each of these analysis points we
summed the output from this ensemble of classifiers to obtain a single value. We used
the distribution of reaction times given a saccadic eye movement to combine the
outputs within a single analysis window.

Eye Tracking Quality. Eye tracking quality was determined using the baseline sac-
cade task. As previously stated, the task required participants to saccade to different
points on the screen. For each trial, the minimum distance between the gaze coordinates
measured by the eye tracker and the known screen coordinates for the current point was
used to create an error for that trial. These errors were z-scored and then averaged over
all trials for each participant and used to compute a total quality for each subject. We
standardized these values before averaging because we found that the errors produced
at the end of the experiment were significantly larger than those produced before the
experiment.

4 Results

4.1 Epoch BCI

The top row in Table 1 shows the classification results for all subjects when BCI
training and testing was performed using knowledge of the exact timing for each finger
movement, i.e. precisely timed, epoched data. These results are presented as a baseline
since there was no need to incorporate trigger events or the likelihood function. The
bottom row in Table 1 shows the standardized eye tracking error as computed using the
baseline saccade tasks.

Table 1. BCI classification accuracy and eye tracker error for each subject. Top row:
classification accuracy for each subject when the BCI system was trained and tested on precisely
timed, epoched data. Bottom row: standardized mean-square error for each subject’s eye tracking
data.

S S§2 |83 S4 |S5 |S6 S7 S8 S9 S10 | S11 |S12 |S13
BCI| 0.75/0.80| 0.83]/0.64/0.84 0.77| 0.74| 0.76| 0.85/0.83| 0.84| 0.710.73
Eye | -0.39]0.56 | -0.17 | 1.35 |0.47 | -0.39 | =0.73 | =0.77 | =0.25 | 0.30 | =0.41 | —0.58 | 1.22
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4.2 Contextualized BCI

Next, we performed asynchronous BCI detection using the same data that was used to
generate the results in Table 1. As described previously, we focused on analysis
windows starting with the onset of the saccade, but we removed all experimental
information describing the timing of those events within the analysis window. We
performed two types of asynchronous detection. First we used the continuous fire
approach where we obtained final BCI output by integrating the individual outputs
computed over the entire analysis window. Second, we used the likelihood function
that related the probability of a motor response to the onset of the saccade. We applied
these likelihood values to the individual outputs produced at each analysis point in the
analysis window. This likelihood function was determined using the same training data
that was used to develop the BCI classifiers. Finally, we compared the performance of
both approaches by analyzing how the accuracy varied as a function of confidence
level.
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Fig. 2. Percent improvement in classification for the contextualized BCI over the
non-contextualized approach. For each subject the differences have been normalized by the
baseline classification level achieved with the epoch-based classifiers from Sect. 4.1.

Figure 2 shows the performance differences between the contextualized approach
and the non-contextualized approach for each subject as we iteratively relaxed the
decision criteria to capture more of the motor events. The x-axis shows the percent of
data classified based on selecting the data with the strongest confidence values. The
y-axis shows performance differences between the two approaches, normalized for
each subject by the baseline classification levels achieved in Table 1. Positive values
indicate that the contextualized approach performed better.

As can be seen from Fig. 2, the results are mixed. Four subjects showed substantial
improvement and had, generally, monotonically decreasing curves indicating that the
confidence metrics were functioning properly. One subject performed substantially
worse and the remaining eight subjects were distributed within the approximately
+15 % range, indicating a net zero effect on performance across these subjects.
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To better understand the performance differences we next analyzed the extent to
which these differences were a function of eye tracker quality as well as baseline
performance on the epoch-based BCI. These results are presented in Fig. 3. The x-axis
shows the standardized eye tracker error (from Table 1), while the y-axis shows the
standardized averaged performance gains (from Fig. 2). Blue o’s indicate the top six
performers on the baseline epoch-based BCI (from Table 1). Black x’s indicate the
bottom seven performers on the baseline epoch-based BCI. While the conclusions that
can be drawn from such a small data set are limited, there appears to be general trend
among the best performers (blue 0’s) that the performance gains are a negative function
of eye tracker error. In other words, as the quality of the eye tracking data decreases the
utility of our approach also decreases. For the worst performers (black x’s) the trend is
less clear. It is unclear the extent to which the performance differences are a function of
eye tracking quality, poor BCI classifiability (as measured using the epoch-based BCI),
other factors not discussed here, such as EEG quality, or some combination of multiple
factors.
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Fig. 3. Performance differences between the contextualized BCI and the non-contextualized BCI
as a function of eye tracker error. Both axes have been standardized. Higher values indicate the
contextualized BCI performed better. Data points marked by (o) indicate the six best performers
on the epoch-based BCI. Data points marked by (x) indicate the seven worst performers on the
epoch-based BCI (Color figure online).

5 Discussion

The results presented here suggest that, under the right circumstances, physiological and
behavioral signals can be used to improve online BCI performance. While the results
comparing the performance of the contextualized approach to the non-contextualized
approach for all subjects were mixed, a more detailed analysis showed a possible trend
between the quality of the contextualizing information and the performance gains for
those subjects with better baseline BCI performance. We believe that this can be
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explained, in part, by the fact that these subjects had more robust BCI classifiers
allowing us to see the trend in eye tracking quality. However, further data is needed to
substantiate this claim.

In addition, we did not focus on comparing different types of BCI classifiers. We
attempted to optimize an SVM-based classifier for each subject, but future work should
compare performance gains with our approach across a range of different classifier
methods. In addition, future work should also attempt to model, to the extent possible,
the moment-to-moment variations in signal quality for both the EEG and contextualize
resources. As these sources of variability become better understood, this can pave the
way for more comprehensive systems that incorporate multiple forms of trigger events
as well as multivariate probability distributions.

As BClI research and development extends into more complex domains, we believe
that approaches, such as the one presented here in which contextual information is
incorporated into the BCI problem, will provide the best opportunities to build func-
tioning, reliable systems. This represents a new challenge for traditional BCI but it is
also an opportunity to expand towards a more comprehensive view of
brain-body-behavior modeling.
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