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Abstract. Semi-automated Forces (SAFs) are commonly used in training
simulation. SAFs often require human intervention to ensure that appropriate,
individual training opportunities are presented to trainees. We cast this situation
as a supervisory control challenge and are developing automation designed to
support human operators, reduce workload, and improve training outcomes.
This paper summarizes a combined analytic and empirical verification study that
identified specific situations in the overall space of possible scenarios where
automation may be particularly helpful. By bracketing “high performance” and
“low performance” conditions, this method illuminates salient points in the
space of operational performance for future human-in-the-loop studies.

Keywords: Simulation-based training � Semi-automated forces � Cognitive
workload

1 Introduction

Semi-automated Forces (SAFs) are commonly used in training simulation to represent
the behavior of enemy, friendly, and neutral entities within the training exercise. Most
SAFs in current simulations are adaptive to the doctrinal context of the mission, such as
the application of appropriate tactics in the situation. However, they are typically
unaware of the learning context, such as the current training objectives, the estimated
level of skills of the trainee, and assessment of trainee actions, relative to the training
objectives, as the scenario progresses.

When there is a mismatch in the appropriate tactical decision and the learning
context, human intervention is required. For example, a pilot trainee might be expected
to achieve or demonstrate specific competencies within a defined training event. As a
consequence, human intervention during the simulation to enable achievement of
training objectives is often a requirement for effective training.

When variation from pre-programmed SAF behavior is appropriate, whether to
reflect real-world situations or to reinforce instruction (e.g., consequences of an error),
the instructor must recognize this need, choose a course of action, and then issue
direction to operators. The instructor desires to control or “steer” the training scenario
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toward particular milestones and outcomes. The instructor has, by design, limited
control over the trainee, so a dynamic control process is needed to adjust scenario
evolution in response to trainee actions.

For tactical aircraft pilot training, we have developed an instructional support tool,
the Training Executive Agent (TXA), designed to facilitate and simplify this control
problem [1]. This paper describes the results of a software verification experiment to
evaluate the functionality of the TXA. The primary goal of the study was to compare
the relative quality of training experiences without and with the TXA as scenario
complexity increased. In conjunction with this empirical evaluation, analytic methods
were used to estimate anticipated operator workload over routine and non-routine
control profiles. Together, the results provide high-end and low-end expectations
(brackets) for human-in-the-loop experimentation. The importance of this bracketing it
helps to identify salient points in a large space of possible training scenarios and
differing complexities to sample for actual human-in-the-loop experimentation. We
describe goals, methodology and results and consider the potential value of this
combination of analytic and empirical methods in the design of supervisory control
systems more generally.

2 Context and Motivation

As suggested above, today’s training typically requires some direct human control of
SAFs to achieve desired training outcomes. SAFs are reactive to the doctrinal context of
the mission. However, they unaware of the learning context, such as the current training
objectives, the estimated level of skills of the trainee, and an assessment of actions,
relative to the training objectives, as the scenario progresses. When there is a mismatch
in the tactical context and learning context, human intervention is required. For example,
a pilot trainee is expected to achieve or demonstrate specific competencies within a
defined training event. As a consequence, human manipulation of the simulation to
enable the presentation of situations appropriate for the training objectives is a critical
part of the training: a missed bogey (enemy aircraft) may be manually relocated to
support a trainee’s inefficient or misdirected radar search to ensure that the trainee also
has an opportunity to engage (“intercept”) the bogey; an extra bogey may be inserted to
challenge a trainee that is excelling in demonstrating basic intercept tactics.

When deviation from the pre-programmed SAF behavior is appropriate, the
instructor must recognize this need, choose a course of action, and then issue tell
operators to modify the simulation. From a control perspective, the instructor desires to
drive the training scenario toward particular milestones and outcomes. The instructor
has, by design, limited control over the trainee, so a dynamic control process is needed
to adjust scenario evolution in response to trainee actions. Further, the simulation
presents only a tactical summary of the situation to the instructor, which requires the
instructor to maintain a separate mental representation of the learning context and
possible implications of the current situation on the learning context.

From this assessment, the instructor determines which adjustments are necessary and
acts to execute them. In the operational training context, the recommended adjustments
are verbally communicated to a human operator who then issues command to individual
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SAFs, monitors their execution, and makes low-level adjustments to behavior. A con-
sequence of this distribution of control, however, is that the operators may not necessarily
understand the intent of the instructor’s directives because the learning context that
motivates the adjustments may remain implicit (e.g., not verbalized).

From this perspective, the targeted functions of the TXA are two-fold. First, it
provides a more explicit representation of the scenario and learning context to the
instructor and operator. Second, it shifts the manual control process for individual
SAFs to a supervisory control process [2] in which an operator (or instructor/operator)
uses the summary information from the TXA to make comparatively infrequent or
periodic adjustments to the system via a higher-level action representation. In this role,
the TXA acts as a mediator or controller of individual SAFs, similar to the role of a
real-time strategy game player [3]. However, unlike previous SAF control approaches,
the TXA makes decisions and recommendations based on both the tactical situation (as
do most controllers do) and the learning context (uncommon).

The hypothesized relationships between human-control variables in the context of
constructive simulation are illustrated abstractly in Fig. 1. We assume that quality of
training is consonant with meeting instructor intent; that is, if the training scenario
delivers the experiences that the instructor intends to deliver, the training experience is
high quality. Meeting instructor intent is negatively correlated with operator workload:
as workload increases, the ability of the overall system to match instructor intent
decreases. Operator workload is itself a dependent variable. It positively correlates
(goes up) with scenario complexity, and it negatively correlates with number of
operators and operator experience.

Fig. 1. Summary of relationships between independent and dependent variables for constructive
simulation.
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3 Experimental Goals and Methodology

The primary use case for TXA testing and evaluation is a current U.S. Navy program of
instruction. The training focuses on teaching new pilots (i.e., pilots recently graduated
flight school) how to fly a specific platform. The initial stages of training focus on
cockpit familiarization; later stages focus progressively on making good decisions
relative to the platform capabilities; that is, how to use the platform in relatively simple
tactical contexts. The TXA evaluation focuses on the later stages of training where a
mission context is important to the training experience.

Currently, 2–4 people support individual pilot training in a simulation. An instructor
guides the process and directs operators to adapt a training scenario. An expert pilot may
fly as a lead or wing (depending on the training goals) with the trainee pilot when the
trainee has advanced to section-level tactics. In some cases, the expert pilot is also the
instructor. Simulation operators control the pilot simulation and other technology
coordination/interoperation.

Simulation operator(s) also control and guide SAFs and set simulation parameters
and variables to support the training (at direction of the instructor). The TXA is targeted
primarily at reducing the workload of this simulation operator, by improving mis-
sionization and behavior fidelity and reducing the number of interventions needed to
achieve behavioral changes made at the request of the instructor. In other words, the
TXA should enable a high span of control while maintaining high scenario
quality/satisfy instructor’s intent. The TXA is not designed to improve the fidelity that
can be provided by human operators but rather provide force multiplication for the
operator, making it possible for a human operator to maintain high levels of scenario
quality in more complex scenarios than is currently feasible with manual control.

We conducted a software test evaluation to begin to assess the specific relationships
illustrated in Fig. 1. We assumed in this initial test design that the number of available

Fig. 2. The TXA is hypothesized to reduce workload and improve the ability of the training
system to meet instructor’s intent.
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operators and the level of operator experience/capability are scarce resources that
cannot be significantly improved without increasing training costs. The implication
then is that increased scenario complexity will increase operator workload, which in
turn will decrease presentation quality (match with instructor intent), thus decreasing
overall training quality.

The further hypothesis is that the TXA’s functions will positively influence the
quality of presentation or match to instructor intent (Fig. 2). By providing operators and
instructors with high-level control actions, operator workload will decrease which will
improve (or maintain) presentation quality.

We manipulated scenario complexity as the primary independent variable. To
conduct actual tests, we developed 20 aviation-training scenarios, reflecting differences
in subjective complexity as determined by subject matter experts. Each test case sce-
nario was composed from individual setups, representing tactical situations one might
encounter in a training program and the training goals associated with each scenario.
For example, in the example in Fig. 3, the training goal is to give the trainee (blue pilot)
the experience of combating two distinct groups of aggressor (red) aircraft. The
instructor’s goal is to present these groups as two successive but independent
engagements for the trainee.

For each setup, we had subject matter experts define criteria for assessing the
overall quality of the training experience as presented to a trainee. For example, in the
situation illustrated in Fig. 3, maintaining some distance between the groups is

important, but the trailing group needs to remain close enough to the blue aircraft that
when the first engagement is completed the trainee has the experience of a “successive”
engagement. Subject matter experts provided specific criteria and parameters. We used
a scenario monitoring tool, the Goal Constraint System [4] to encode these criteria and
automatically “score” individual setups.

We then developed (simple) computational models of trainees, representing “nor-
mal” or expected trainee actions and “novice” trainee actions that could diverge from
the pre-programmed scenario assumptions. For example, in the situation illustrated in

Fig. 3. Experimental testcases are composed from relatively simple tactical situations
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Fig. 3, a “normal” trainee would directly engage the first group. A “novice” trainee
might take doctrinally unnecessary evasive action to attempt to separate the two
groups. The role of these models is to provide some sampling of the variation one
might expect to encounter in the training program.

Finally, based on the setups and testcases, we developed analytic models of the
workload demands for each setup. We used the Goals, Operators, Methods, and
Selection Rules (GOMS) modeling paradigm [5, 6]. We developed a methodology and
estimates of workload for each setup and testcase [7]. For the purposes of this paper,
the results of this analysis provided estimates of the time it would take an operator to
monitor a setup and to intervene under certain anomalous conditions. Table 1 sum-
marizes the prediction for the setup illustrated in Fig. 3. It says the minimum amount of
time the operator can attend to the setup and it remain close to 100 % of its perfor-
mance quality is about 22 s over the course of 1 min of execution time. Based on this
lower bound, the analysis tells us that the operator could successfully manage up to two
of these setups simultaneously (i.e., managing three setups perfectly would require 66 s
of operator monitoring and action/minute).

4 Empirical Test Results

The overall results of the experiment are depicted in Fig. 4. Numbers on the X-axis
identify each test case scenario, in order of estimated scenario complexity. The Y-axis
value represents the presentation quality from observed behavior for that test case, for
the control (No TXA) and test (TXA) conditions. This graph indicates confirmation of
both experimental hypotheses. First, with some minor variation, the observed pre-
sentation quality for each scenario in the “No TXA” condition correlates negatively
with the estimated complexity for the scenario. Second, the observed presentation
quality for each scenario in the TXA condition is largely independent of scenario
complexity and maintains an overall high value. This result indicates the contribution
of the TXA in dynamically managing and tailoring entity behaviors to maintain an
instructor’s goal for the exercise in response to variations (e.g., mistakes) in trainee
actions.

Figure 5 presents the experimental results organized by estimated complexity.
These figures also contain the quantitative presentation quality scores omitted in Fig. 4.
For these summaries, we divided the test-case results into three categories. Low
complexity test cases are those test cases that we predict a human operator would find
manageable to perform the same types of tailoring as the TXA performed to maintain
high presentation qualities. That is, in a future experiment with humans in the loop, we
predict human performance to be comparable to automated TXA performance.

We predict medium complexity scenarios to be near the edge of manageability for
human operators. We predict that human operators would, for the most part, not be able

Table 1. Example operator performance bounds predicted by GOMS for Fig. 3 setup

Lower bound Max. number of manageable setups

Successive intercepts 22.2 s 2
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to produce the same quality of presentation as TXA is able to produce, for these test
cases, although human performance results in this band may differ widely based on
expertise and innate capacities. However, high complexity test cases are predicted to be
of such significant complexity that they are completely beyond the abilities of human
operators to manage them. We predict low presentation quality scores by human
operators for these scenarios.

We see that relatively high quality scores are observed even without the assistance
of the TXA for the low-complexity scenarios (Fig. 5a). For the medium-complexity
scenarios, we see larger differences in presentation quality for most of the scenarios
(Fig. 5b). For the high-complexity scenarios, there is a significantly large difference in
quality between the No TXA and TXA conditions (Fig. 5c). The most complex sce-
nario (Scenario 20) produces the worst possible quality score in the No TXA condition,
and the best possible quality score in the TXA condition.

5 Bracketing for Human-in-the-Loop Experimentation

The results of these experiments suggest some potential value of automation. However,
comparing a system that requires intervention to achieve its goals without the means to
deploy interventions, as in the “No TXA” case, offers little insight for estimating the
operational impact of the automation. Further, replicating this experiment with human
operators, across all the scenarios, would be prohibitively costly. Instead, we can
combine the empirical results and some additional analysis using the GOMS approach
to attempt to “bracket” expected human performance. This bracketing heuristic is
adopted from Kieras and Meyer [8]. The intention is that the GOMS analysis provides a
priori predictions of expected performance across the range of scenarios. We can then

Fig. 4. Overall summary of the verification results with and without TXA automation
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choose specific scenarios to test the predictions. But we choose scenarios that would
also help most fully contrast the impact of automation without exploring the full set of
scenarios.

Figure 1 illustrated the prediction that a training scenario’s presentation quality will
decrease as the estimate of the operator’s workload increases for a particular scenario.
However, there is a “workload threshold” below which the operator will be able to
maintain a close to perfect presentation quality. We would like to determine where this
threshold occurs because testing scenarios “below the threshold” is unlikely to show
much value for automation. According to the GOMS analysis, this threshold can be
determined primarily by “the number of times an operator switches attention between
setups.” This specific value for any individual is dependent on the switching strategy
they choose for that individual testcase as well as operator expertise and tendencies. For

Fig. 5. Quantitative experimental results for low-complexity test cases (a), medium-complexity
(b) and high complexity (c).
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example, some operators might cycle deliberately thru each testcase while others might
attempt to anticipate time-critical events in individual setups. These factors are targets
for a future more refined GOMS analysis.

Rather than attempt to explicitly model the impact of these different strategies (as is
done by Kieras and Meyer), we instead generated thresholds based on pilot-study
observations of operator performance (both on the test cases and more generally).
Figure 6 illustrates the predicted operator performance bracket from the GOMS anal-
ysis for the “No TXA” condition. The brackets were generated from the workload
analysis illustrated in Table 1. The upper bound assumes that an operator can perfectly
use all available time (60 s). Thus, if a testcase with three setups had limits of 20 s, 30 s,
and 10 s, the upper bound assumes that the operator would manage all of these cases
without error. We expect that most operators will use some time within each minute to
perform switching. Thus, this upper bound is likely to be liberal in its estimate of
operator performance. The lower bound assumes that the operator is half as efficient as
the high bound (30 s of work per 60 s of simulation time).

The brackets suggest that even for the “medium” complexity cases, some operators
may be able to maintain very high presentation quality. Pilot studies focused on test
cases between 11 and 6 (11, 16, 19, 6) should help to determine how optimistic the
upper performance bound is and localize the actual “bend in the curve” in human
performance data. Our expectation is that the operator’s sense of subjective workload
would be quite high under these conditions in comparison to the low workload con-
ditions, even if presentation quality differences were not evident. As they stand prior to
any pilot testing, the brackets suggest that human in the loop studies should focus
primarily on the high complexity cases. Further, we should work with subject matter
experts to evaluate points in the curriculum that require or would benefit from pre-
sentation of scenarios with comparable levels of complexity.

Fig. 6. Bracketing predictions of expected human performance
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6 Discussion and Conclusions

The primary conclusions of this experimental analysis are that the two experimental
hypotheses are tentatively confirmed: presentation quality in the No TXA case is
generally negatively correlated with scenario complexity, and presentation quality in
the TXA case is consistently high. This analysis also provides corroborative evidence
that the GOMS-based complexity estimates are reasonable. They allow us to predict
results for future human-in-the-loop experiments using the same set of test-case sce-
narios. As a consequence of these verification and bracketing steps, subsequent
human-in-the-loop studies can be targeted to the most important and salient scenarios
and experimentation conditions, which will save time and reduce experimentation cost,
especially in comparison to a human-in-the-loop study over all the usage conditions.
Thus, in addition to the specific experimental results, the experimental methodology we
document may also be a contribution for future evaluations of automation over a large
space of potential usage conditions.

Although the experimental results suggest the validity of the primary hypotheses,
they also provide useful information for improving the technology, experiments, and
analyses in future work. For example, the quality measures in the experimental results
do not completely correlate with the test-case complexity scores. It is not necessarily
the case that these two measures must correlate, but the fact that there are inconsis-
tencies between the mappings and the subsequent results point to potential opportu-
nities to examine assumptions. These assumptions include the criteria for scoring
presentation quality, as well as assumptions about estimating scenario complexity.
Although we worked with SMEs to generate the presentation quality criteria, the
rationale for some of the scoring formulas was not always straightforward. For
example, we conceived of presentation quality as a continuous function, but some types
of setups are more “binary” in nature (“perfect” or “unacceptable” was the way the
SME framed the scoring in this case). Because there are both “binary” and “continu-
ous” forms of presentation quality in the setups, some additional effort to analyze the
qualitative differences between these two classes of setups may be justified, which
would potentially result in refinements to the scoring criteria. Additionally, we should
further analyze the question of whether presentation quality ought to correlate nega-
tively with scenario complexity in all cases. It may be that complexity and cognitive
workload manifest themselves in different ways for different types of setups.
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