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Abstract. The preservation of attentional resources under mental stress holds
particular importance for the execution of effective performance. Specifically,
the failure to conserve attentional resources could result in an overload of
attentional capacity, the failure to execute critical brain processes, and subop-
timal decision-making for effective motor performance. Therefore, assessment
of attentional resources is particularly important for individuals such as pilots
who must retain adequate attentional reserve to respond to unexpected events
when executing their primary task. This study aims to devise an expert model to
assess an operator’s dynamic cognitive workload in a flight simulator under
various levels of challenge. The results indicate that the operator’s cognitive
workload can be effectively predicted with combined classifiers of neuro-
physiological biomarkers, subjective assessments of perceived cognitive work-
load, and task performance. This work provides conceptual feasibility to
develop a real-time cognitive state monitoring tool that facilitates adaptive
human-computer interaction in operational environments.
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1 Introduction

In a variety of everyday situations, we observe that different people process identical
stimuli in different ways. Specifically, we can focus our attentional resources on par-
ticular parts of a stimulus (e.g., spatial locations or shapes of a target object in visual
scene) for detailed analysis and optimal decision-making, and overlook irrelevant
aspects. Particularly in cognitive-motor performance studies, attention refers to the
allocation of limited cognitive resources to execute a task [1], and our previous works
have confirmed that it is consumed in proportion to task demand [2–4]. From these
findings, three critical facets of attention and task demand can be inferred; (a) attention
is a limited resource that can be focused on a single task or divided among several
tasks, (b) individuals can shift their attentional focus between tasks having different
requirements in terms of the size of the focus, and (c) cognitive-motor performance is
sensitive to these differences including task demands.

It was suggested that attentional reserve (i.e., the unused portion of attentional
capacity) is a main factor to measure mental workload (i.e., the used portion of attentional
capacity) along with task demand [5]. Moreover, many studies have assessed mental
workload by means of various metrics such as subjective ratings, the secondary-task
paradigm, and psychophysiological measures (e.g., heart rate, galvanic skin response,
evoked potentials, and pupil diameter) [2–4, 6, 7]. Overall, these results imply that the
excessive mental workload from a failure to conserve adequate attentional reserve would
result in an overload of attentional capacity, the failure to execute critical brain processes,
and suboptimal decision-making for effective motor performance. As such, assessment
of mental workload and attentional reserve is particularly important for individuals such
as pilots who must retain adequate reserve to respond to unexpected events when exe-
cuting their primary task. In this context, our previous work examined subjective report
(Visual Analog Scale (VAS) and NASA Task Load Index (NASA-TLX)) as well as
electroencephalographic (EEG) and electrocardiographic (ECG) biomarkers in con-
junction with detailed monitoring of task-specific behavioral performance during a flight
simulation task characterized by various task demands [4]. This result revealed that
multiple metrics could index mental workload in ecologically valid situations.

Although this finding identified selective biomarkers to construct a composite
metric sensitive to mental workload, there is still a need to further investigate a set of
quantifiable features to assess the operator’s cognitive workload in a wide variety of
operational situations. However, this is very challenging as the data originates from
various sources and possess different characteristics. Surprisingly, only a handful of
studies have classified multimodal metrics derived from EEG, ECG, or pupillometry,
according to the task demands in a pilot task (e.g., [8, 9]). Although interesting, their
approaches ended up in studying individual classifiers to achieve higher accuracy rather
than examining the relationship between features as well as classifiers.

Therefore, we propose to employ an advanced machine learning algorithm called
ensemble learning to better understand how multiple metrics from various modalities
correlate in feature space, and how the selected heterogeneous features relate to the
operator’s cognitive state. Ensemble learning is a process that creates and combines a
set of independent expert classifiers to improve the prediction performance of a model
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[10]. In other words, if data obtained from multiple sources contain complementary
information (e.g., amplitudes and latencies of event-related potentials (ERP), standard
deviation of the N-N interval (SDNN), the root mean square of the successive differ-
ences (RMSSD) of N-N intervals for heart rate variability (HRV), etc.), a proper fusion
of such information can lead to improved accuracy of the prediction, even if the
predictions from each individual data is less accurate. Thus, this study aims to devise
an ensemble model that is able to select optimal features from multiple metrics for a
more accurate classification according to three levels of task demand to determine an
operator’s current cognitive workload in ecologically valid tasks.

2 Methods

2.1 Data Acquisition

Subjects. Thirty-nine healthy volunteers (35 men and 4 women) between the ages of
19 and 24 years (mean and standard deviation age of 20.79 and 1.18), who were
midshipmen in the United States Naval Academy (USNA), participated in this study.
All subjects had received basic flight training covered in Aviation Preflight Indoctri-
nation before participating in the study.

Apparatuses. Three systems were employed: (1) electrocortical and physiological
data acquisition system, (2) a flight simulator cockpit and the Flight Data Recorder
(FDR) known as one part of the black box, and (3) auditory stimuli with synchronous
trigger delivery system. First, EEG and ECG recordings were accomplished using a
single amplifier (g.USBamp®, g.tec medical engineering). Specifically, four active
gel-free EEG electrodes (g.SAHARA electrodes®) were placed on the scalp along the
frontal, frontocentral, central, and parietal midline sites (Fz, FCz, Cz, and Pz respec-
tively) according to the 10–20 System. In addition, one-lead ECG electrode was placed
below the 8th rib for basic heart monitoring. The system was grounded to the right
mastoid and referenced to the left ear (A1); recording from the right ear (A2) was used
for later EEG re-referencing purpose. Second, the simulator cockpit was equipped with
a 22-inch widescreen LCD monitor, a computer with external stereo speakers, a Hands
On Throttle-And-Stick set, and rudder pedals. Prepar3D® (v1.4, Lockheed Martin) was
installed in the simulator computer, and a custom FDR was used to log operating
conditions of the flight such as time, airspeed, and heading that will reflect the pilot’s
motor response and quality of flight operational performance. Finally, Presentation®
(v18.1, Neurobehavioral Systems) delivered auditory probes to the subjects through
earphones [2], and sent digital TTL pulses to the g.USBamp through a parallel port to
mark stimulus-dependent synchronous triggers on the EEG and ECG data. The volume
on the earphones was adjusted to a comfortable and yet audible level for each subject to
ensure that the subjects could hear the engine and other mechanical noises played
through the external speakers.

Scenarios and Task. Three scenarios were selected from the flight training program
and adjusted with advice from naval aviators. Specifically, S1 was to keep straight and
level flight, S2 was to repeat straight descending and climbing flight, and S3 was to
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repeat diving in left turns and climbing in right turns (Fig. 1; [4, 11]). Thus, they
represented relatively low, moderate, and high demand scenarios, respectively. Sce-
nario sequence was counter-balanced. Participants controlled a single-engine turboprop
aircraft (Beechcraft T-6A Texan II). They were instructed to use the primary flight
controls (i.e., the control stick, the rudder pedals, and the throttle), without the use of
secondary flight controls and other controls (e.g., rudder/elevator/aileron trim systems,
etc.; Fig. 2). The flight was programmed to begin at 0900 virtual time, and at an initial
altitude of 4000 feet.

Data Acquisition. Each participant sat in the simulator cockpit and was allowed 5 min
of free practice along with exposure to the novel sounds. After the practice session, they
were prepared for placement of the EEG and ECG sensors. The amplifier was calibrated,
and all electrode impedances were maintained below 5 kΩ during data acquisition. The

Fig. 1. A brief outline of three challenging scenarios; the red aircraft and blue line respectively
depict the manned aircraft and its trajectory for 10 min, and they are represented by gray
shadows. (a) S1 is to maintain straight and level flight. (b) S2 is to repeat straight descending and
climbing flight. (c) S3 is to repeat diving in left turns and climbing in right turns.

Fig. 2. A flight simulation task; (a) EEG, ECG, and flight data were monitored while the
subjects were engaged in the task. (b) the main instrument console in virtual cockpit contains all
instrumentation and systems displays for the aircraft. The cockpit layout is based on the US air
force and navy joint primary aircraft training system training documentation.
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signals were sampled at a rate of 512 Hz with an online Butterworth filter from 0.01 to
60 Hz. Participants were then assigned an initial scenario with relevant instructions. Each
scenario was composed of a 1 min preparation period followed by a 10 min scenario.
During each scenario, up to 30 stimuli were randomly presented with an inter-stimulus
interval randomly ranging from 6 to 30 s, and all relevant flight data were sampled at a
rate of 2 Hz. After the completion of each scenario, participants were provided the five
VAS questions and the NASA-TLX survey to report their subjective experience. The
same order of procedures was followed until all scenarios were completed.

2.2 Preprocessing

EEG. The re-referenced EEG were processed using an IIR filter with a 20-Hz low-pass
cut-off frequency and 48-dB/octave roll-off. Next, each baseline of 1-s epochs that were
time-locked to the auditory stimuli was corrected using the pre-stimulus interval (−100
to 0 ms). Those epochs retaining significant artifacts (e.g., eye-blink, etc.) were
excluded. The remaining epochs were averaged per sensor for each scenario. The
average ERP amplitudes were derived for the novelty P3 (P3a; 270 to 370 ms).

ECG. HRV was measured through the following methods along with average heart
rate, which are appropriate for short 5 min samples from the middle section of the whole
10 min experiment: (1) SDNN, (2) RMSSD, (3) the low (LF; 0.04 to 0.15 Hz) and high
frequency (HF; 0.15 to 0.4 Hz) ratio (LF/HF) of R-R intervals using a Welch’s method.

FDR. Acceptable operational performance was defined as deviations from the toler-
ance limits of the target goals: at most ±200 feet of altitude, ±10 knots of airspeed, ±5°
of heading, ±5° of bank angle, and ±500 fpm of ascent/descent rate. Each deviation was
bounded above and below the acceptable decision boundary. The performance was
calculated once a minute using the area under bounded curves, and normalized in the
early (0 to 2 min), middle (4 to 6 min), and late (8 to 10 min) segments of the tests.

Subjective Response. All VAS and NASA-TLX variables were measured to range
from 0 to 100, where greater value indicates the respondent felt relatively more efforts
in the corresponding scenario.

2.3 Classification

First, attribute sets were constructed by joining preprocessed metrics. This allows each
data to be expressed uniquely as a combination of basis vectors (i.e., selective attri-
butes), which means that the attributes for the optimal classifier can better represent the
relationship between the data and the task demands. Five individual classifiers were
examined: classification trees (CTREE), k-nearest neighbors (kNN), quadratic dis-
criminant analysis (QDA), naïve Bayes (NB), and error-correcting output codes using
support vector machine (ECOC-SVM). For an ensemble of classifiers, bagging,
boosting, stacking, and voting algorithms were scrutinized. Specifically, bagging
derived the final prediction through a simple majority rule from multiple CTREEs.
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Boosting combined weak CTREEs using a weighted majority rule, where each clas-
sifier was sequentially built as a better model than previous classifiers by considering
misclassified observations. Unlike bagging and boosting, stacking employed a higher
level model (CTREE) to combine five base learners (i.e., individual classifiers) rather
than using one algebraic rule, and voting averaged the predictions of the five base
learners. For each classifier, various tests were simulated to find the optimal parame-
ters, and to determine the optimal classifier. Specifically, the optimal model was
selected by taking the minimum balance (BAL) error (εBAL) to balance large biases due
to a small sample size [12], which is a convex combination of resubstitution (RESB)
and cross-validation (CV) errors. Lastly, the classifiers were assessed using the con-
fusion matrix and the Receiver-Operating Characteristic (ROC) curve, and the rank of
attributes was assessed through the ReliefF algorithm.

3 Results

Up to 117 samples (39 subjects in 3 scenarios) with 35 attributes (EEG, SDNN,
Airspeed, etc.) from 4 metrics (P3a Amplitude, HRV, FDR, and Subjective Response)
including missing data were used to train and test the classifiers.

3.1 Individual Classification

Each optimal classifier was constructed by exhaustively searching various possible
parameters and CV settings (Table 1). According to our empirical tests, ECOC-SVM
outperformed other classifiers in terms of RESB error (εRESB), but leave-one-out

Table 1. Optimal individual classifiers for each metric

Metric Assessment CTREE kNN QDA NB ECOC-SVM

P3a
Amplitude

εRESB 0.2105 0.2807 0.5088 0.4912 0.0351
εCV 0.6316 0.4211 0.7018 0.5789 0.5439
εBAL 0.4211 0.3509 0.6053 0.5351 0.2895
Accuracy 0.5000 0.7143 0.3750 0.5714 0.8571

HRV εRESB 0.2464 0.4348 0.6667 0.4928 0.0290
εCV 0.7826 0.5797 0.6812 0.8986 0.7681
εBAL 0.5145 0.5072 0.6740 0.6957 0.3986
Accuracy 0.6667 0.5000 0.3333 0.3333 0.7500

FDR εRESB 0.0601 0.1021 0.2583 0.2763 0.0601
εCV 0.1862 0.1411 0.2583 0.2973 0.2823
εBAL 0.1232 0.1216 0.2583 0.2868 0.1712
Accuracy 0.8000 0.9333 0.8333 0.8333 0.8667

Subjective
Response

εRESB 0.1282 0.2478 0.2112 0.2821 0.0769
εCV 0.3590 0.2743 0.4431 0.3419 0.3846
εBAL 0.2436 0.2611 0.3272 0.3120 0.2308
Accuracy 0.7333 0.7333 0.6000 0.8000 0.8667
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cross-validated kNN surpassed all the other classifiers regarding CV error (εCV). Thus,
no single classifier can unvaryingly outperform the others over all datasets. Each
algorithm has its unique strengths, so it is difficult to decide which method is most
appropriate on each dataset. However, the results revealed that εBAL could be a
reliable indicator to select the optimal model, although the predictive accuracy is not
proportional.

The predictive accuracy rates were 85.71 % for P3a Amplitude; 75.00 % for HRV;
93.33 % for FDR; 86.67 % for Subjective Response. However, to exaggerate, the three
weaker classifiers have no contribution to assessing overall mental workload, because
the assessment will be still robust with accuracy of 93.33 % even if three less accurate
classifiers and corresponding data are excluded from the system. On the other hand, it
will be impractical to mix all mutually unrelated metrics into one container to construct
a single individual classifier that generates precise and accurate results for all datasets,
because it will increase the overall complexity concerning system architecture as well
as data representation, classification, and interpretation.

3.2 Ensemble Classification

There is no clear and comprehensive picture of which ensemble methods are optimal.
In Table 2, bagging, boosting, and stacking respectively reached an accuracy of 88.0,
95.7, and 94.0 %, while voting had the highest 97.44 %.

The bagging showed that the ensemble learning did not guarantee good perfor-
mance all the time, although it was still reasonable. Possible reasons may include
several missing values on some variables (e.g., certain subjects skipped some VASs),
small data sizes, unexpectedly correlated classifiers, noise in samples, and suboptimal
parameters. Another critical reason may be due to ill-conditioned data, because some
subjects were overwhelmed during high demanding scenarios and had given up half-
way through the task. However, the boosting, stacking, and voting showed very reli-
able performance as expected. In particular, stacking and voting could be easily
extensible through a hierarchical structure particularly when any new feature set is
included in the future to produce more reliable results.

Table 2. Optimal ensemble classifiers and assessment measurements
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ReliefF evaluator showed that most of the attributes related to FDR and self-reports
better represent task demands in the optimal ensemble classifier (Table 3). It is no
wonder that both features are strongly related with task demands, because FDR directly
reflects how the operators are performing to achieve a given task, and subjective
responses quantify their internal status about the task demands. Interestingly, this result
revealed that the P3a Amplitudes (7.5 %) and RMSSD (1.1 %) had a fair amount of
contribution to the assessment of the operator’s mental workload even considering
strong attributes such as FDR (34.36 %) and self-reports (6.78 %). In addition, this
revealed that there is a proportional relationship between the importance of attributes
and their statistical significance according to our previous work [4].

4 Discussion

This study proposed a novel approach to assess the operator’s mental workload under
various task demands in ecologically valid situations. Although other research groups
have reported the feasibility of mental workload assessment with specific classifiers for
each metric, they have mainly focused on individual-level analysis instead of providing
results for combined classification [9, 13]. Moreover, only a few studies have examined
even individual-level classifiers using multimodal data from operational environments
(e.g., [9, 14]). Thus, this study complements previous efforts in that both individual and
ensemble learning of multiple classifiers were employed to examine the relationship
between mental workload and various feature vectors in an ecologically valid task.
Particularly, compared to other methods, while providing accurate and reliable clas-
sification accuracy, our approach is able to handle diverse new datasets (e.g., functional
near-infrared spectroscopy) and other task specific performance measurements by
combining them with existing classification models considering the characteristics of
ensemble learning.

We showed that mental workload is a predictable variable with high accuracy if
ensemble classifiers are optimally configured. Specifically, high classification accuracy
can be achieved when each expert detects distinct but common directional patterns
from each feature set, and the final arbiter of classification makes a decision consid-
ering a majority vote from each expert. Moreover, the ReliefF indicates that even

Table 3. Importance of selective attributes by means of ReliefF algorithm using 8-fold CV

98 H. Oh et al.



statistically non-significant metrics (e.g., HRV in our previous study [4]) could
contribute to constructing the correct classification if they are discriminable.

Our current research efforts were limited to classification, where the model could
predict categorical dependent variables. This method could not predict graded cognitive
states, because the task demand and mental workload are intrinsically continuous.
Thus, ensemble regression is worth considering in the future. However, constructing
such approximation models require highly complex computation, but such a burden
can be alleviated by constructing surrogate models. Other possible future work is to
pursue more practical approaches. For example, current ERP analysis was highly
dependent on the novel sounds, which will be inappropriate when cognitive tasks
include auditory stimulus or a silent environment such that the introduction of extra-
neous sounds could be destructive. One solution is to employ the eye-tracking tech-
nology to extract the fixation-related potential (FRP) on the areas of interest, while
another solution is to use other signal processing methods that do not rely on ERPs as
suggested by our colleagues at the USNA [11].

In summary, the results revealed that both individual and combined classifiers
could effectively assess properly constructed feature sets that were extracted from
multimodal data. Particularly, ensemble classifiers are expected to outperform indi-
vidual classifiers, because a single strong referee of classification could merge infor-
mation collected from multiple weaker experts. As a long-term goal, this work provides
conceptual feasibility to develop a real-time cognitive state monitoring tool that
facilitates adaptive human-computer interaction in operational environments.
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