Distributable Interface Design
for Web Applications

Gianni Fenu®™) and Lucio Davide Spano

Dipartimento di Matematica e Informatica,
University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
{fenu,davide.spano}@unica.it

Abstract. The increasing number of devices available for each person
allows to create unconventional interfaces that coordinate more than
one device for supporting the interaction. In this paper, we introduce a
framework for designing distributable web applications, which supports
moving and sharing the different parts of a user interface across different
devices. We depict the architectural solution and we introduce a set of
distribution patterns. In addition, we describe a concrete application of
the framework for a distributable video player application.

Keywords: Distributed interfaces - Web applications - User Interface
Engineering - Development tools

1 Introduction

The wide availability of different types of devices, both stationary and mobile,
is opening the opportunity for creating applications that go beyond a single
device. And this is not only limited to providing the same application in different
versions (e.g. one for desktop environments and one for mobiles), but also to
unconventional interfaces that coordinate more than one device for the same
user interface (UI).

As highlighted in [1], people is more and more developing a multi-screen
behaviour, which results in both the sequential and simultaneous usage of differ-
ent screens at the same time. Therefore, creating applications that exploit such
new interaction habits effectively is an opportunity and a challenge for the HCI
community. On the one hand, applications able to exploit different devices at
once may be able to create experiences that go beyond the simple sum between
the capabilities of each considered device. On the other hand, the device coordi-
nation creates different technical challenges, and poor solutions may affect the
overall usability of the interface.

In this paper, we propose a framework for developing web applications allow-
ing the interface to be distributed across the device we use everyday, for creating
a personal interactive space going beyond the single device. We first introduce a
distribution example scenario, identifying the users’ needs, then we describe the
architecture of the proposed solution, and finally we discuss the implementation
of a first prototype supporting the proposed scenario.

© Springer International Publishing Switzerland 2015
N. Streitz and P. Markopoulos (Eds.): DAPI 2015, LNCS 9189, pp. 25-35, 2015.
DOI: 10.1007/978-3-319-20804-6 -3

26 G. Fenu and L.D. Spano

2 Related Work

Starting from the first applications of the ubiquitous computing concept, differ-
ent techniques related to distributing parts of the user interface (UT) in different
devices started to take place in research work: the user does not own a single
device, but she is empowered with different computing platforms that are perva-
sive in the environment. The different efforts aimed for instance to the migration
of the entire UI state from a device to another [2], or for the adaptation and
configuration of a UT according to the actual device that renders it [3].

Demeure et al. [4] created a reference model for examining a distributed
interface according to 4 dimensions: the computation (which part is distributed),
communication (when the UI is distributed), coordination (who is distributed)
and configuration (from which device to which device the distribution is oper-
ated). Such work opened the space for creating different engineering solutions
and models for supporting the distribution.

In particular, the model-based approaches for user interfaces community pro-
duced different models supporting the distribution of user interfaces. In [5], the
authors exploit a XML format for defining how an interactive application can be
distributed across different dimensions: end user, display device, computing plat-
form, and physical environment. Frosini and Paterno [6] introduce a framework
and the associated runtime support for supporting dynamically the distribution
across different devices, with a peer-to-peer architecture.

Another field where the distribution of user interface gained the attention
of the research community is the creation of shared spaces. A first example is
the collaboration in museum environments [7], where distributed interfaces were
implemented for supporting the collaboration of museum visitors for solving
didactic games through mobile devices.

The second example is related to the information visualization. VIGO [§]
supports the distributed interaction in a multi-surface environment through four
components: Views, Instruments, Governors and Objects. Hugin [9] ia a graph-
ical framework for mixed-presence collaboration settings. In such environment,
the information visualization application is shared between different tabletops,
which should be coordinated over the network for both controlling the data and
making the users aware of each other.

In this paper, we shift the emphasis from a self-contained model or archi-
tecture to a lightweight framework that exploits the usual structure of a web
application for building the support for distributable interfaces. In this way, it
would be possible to adapt existing applications for a distributed setting.

3 Example Scenario

In order to explain the framework concepts with a concrete example, we con-
sider a simple on-demand video streaming application. We detail the envisioned
interaction through a small scenario.

Robert is just back home from work and he decides to watch the last episode of
his favourite TV series, Game of Phones, on DistrFlix. He just started watching

Distributable Interface Design for Web Applications 27

the third episode on his laptop, when his wife Sarah interrupts him. She is a
fan of Game of Phones too, and she would like to see the episode together with
Robert. Therefore, Robert moves the video from the laptop to his Smart TV,
while the information on the episode and the playback buttons are transferred to
his smartphone, in order to be easily controlled from the sofa. While they are
watching the episode, Robert receives different phone calls: one from his mother,
one from his boss and one from the call center of his previous phone company,
advertising discounts if he accepts to be their customer again. Sarah is annoyed
since Robert never pauses the episode before answering the call, so she ask him
to share the video control buttons on her smartwatch.

According to the scenario description, we have four involved devices: a lap-
top, a TV, a smartphone and a smartwatch. All these devices allow to control
the access to the same application during the same session. During the interac-
tion, the interface assumes three configurations across the four devices, which we
summarize in Fig. 1. In the first one, the user accesses all the application func-
tionalities on the laptop. In the second configuration, the Ul is splitted between
the TV (video) and the smartphone (playback controls and additional informa-
tion). In the last one, the smartwatch and the smartphone provide a redundant
control on the video playback.

DistrFlix @ -

Game of Phones

(Game of Phones

Lorem ipsum
dolor sit amet,
consectetur
adipiscing elif.
Nulla quam velit,

Lorem ipsum
dolor sit amet,
consectetur
adipiscing elit.
=0—|

»> o)
©

> [[=0=] = | vus wiputate -

commodo lectus,

® —

(Game of Phones|

Lorem ipsum
dolor sit amet,
consectetur

adipiscing elit.

=0

Fig. 1. Scenario interface mockup.

In Sects. 2, 5 and 6 we describe a framework for supporting the distribution
of the UI components on the different devices and their state management. In
Sect. 7 we show a concrete application of the framework for solving the situation
described in the scenario.

28 G. Fenu and L.D. Spano

Server-side
Model
<<use?)’ \\ <<use>>
Controller ssuse ViewState
) —
FragmentState P et
1 N
Client-side ol H
Fragment DistrClient

Fig. 2. Distribution framework reference architecture

4 Overall Architecture

The framework organisation is based on two main concepts. The first one is the def-
inition of the Ul parts that can be distributed across different devices. We started
from the techniques for creating responsive layouts: the content of a single page
is organised in a set of macro groups (that we call Ul Fragments), which are posi-
tioned inside a grid. How such grid is displayed on a particular device screen (e.g.
its rows and columns) depends on its width. In addition, each fragment has dif-
ferent associated styles according to viewport size. We push further this idea in
order to support the distribution of web interfaces: the developer defines rules not
only for positioning the fragments, but also for distributing them among different
devices.

The second concept that grounds the distribution framework is the defin-
ition and the synchronization of the UI state, which must be shared among
all the devices involved in the distribution process. We propose an abstraction
mechanism for separating the UI element distribution aspect from the UI state
management. Such mechanism is depicted in Fig.2, which applies the separa-
tion concept inside the Model View Controller (MVC) pattern [10], since it is
one of the most applied for organizing web applications. However, the separa-
tion concept we present in this paper is independent from the MVC, and it
may be applied also to other variants (e.g. Presentation Model [11], Model View
Presenter [12] or Model-View View Model [13]).

The component we modified for supporting the Ul distribution is the View.
The framework provides a view state abstraction (the ViewState class) for coor-
dinating the dynamic changes to the state of a fragment. More precisely, the

Distributable Interface Design for Web Applications 29

framework considers the rendering of a fragment on a particular device as a
view on the UI state, which is instead the considered as the model of the frag-
ment. The changes made by the user through a particular view modifies the
values saved on the model (the UI state). They should be in turn reflected on
the other fragments, which are rendered on different devices.

We detail both aspects in the following sections.

5 Fragment Management

A Fragment is a Ul part that groups together interface elements that are logi-
cally related to each other. In our scenario, for instance, we have three different
fragments: one related to the video, one related to the playback controls and
one related to the TV show information. In order to establish how a UI can be
distributed across two or more devices, the developer assigns a set of fragments
to each of them. A fragment may be rendered in different ways according to the
device type. However, it keeps the semantics of the UI controls: for instance a
drop down list for a desktop interface may be rendered as a list view on mobile
device, but the semantics of the action it supports (and therefore the reaction
of the application back-end) is the selection of a value. The different rendering
is supported through both CSS rules and/or different HTML code generation at
server side.

The same fragment can be assigned to more than one client device. Therefore,
its internal state must be synchronized across all the devices. Such synchronization
is required at two levels: the UI and the application state. At the application level,
the framework relies on the model component of the MVC pattern, which is shared
by different views. In our case, such views are spread among the different devices.
At the Ul element level, the framework splits the state management in two parts.
Such concept is similar to the distinction of abstract and concrete interactors in
model-based approaches for user interfaces (i.e. as reported in [14]).

— The UI element semantics, which is independent from the actual widget
exploited for supporting the user. A widget can support the selection or the
editing of value (text, number, date etc.), it can trigger a specific command, or
it can display information. This part of the state is maintained into the View-
State (see Fig.1). The controller component of the MVC pattern accesses the
ViewState for reading or updating the Ul values, without relying on any infor-
mation about their actual rendering.

— The UI element implementation, which depends on both the device type (e.g.
laptop or smartphone) and the current state of the UI distribution among
the devices. For instance, the control over the video stream position in our
example can be implemented through a slider on the laptop and the smart-
phone, while on the smartwatch we decided to support it through a set of
buttons. The widgets have semantically the same purpose (controlling the
stream position value), but they are implemented differently. Therefore, there
is a part of the state that depends on the actual implementation, which is
maintained into the FragmentState.

30 G. Fenu and L.D. Spano

At the code level, the framework provides the support for such coordination
through a specific javascript object, which has a bidirectional binding with the
UI elements and the server side part. This means that the fragment behaviour
specifies (1) which fragment state variables change when the user interacts with
a UI element, and (2) how the UI elements should be modified for reacting to a
change on the fragment state object.

A fragment state object can be configured for containing different sets of
variables according to the specific fragment. In addition, it includes different
functions for getting and setting the variable values. In these functions, we
encapsulated the synchronization protocol: the object manages a web socket
communication with the application server for receiving and sending updates
from and to other devices. The developer is not in charge of any synchroniza-
tion, and he can specify the behaviour code as if the Ul state was handled locally.
The only requirement is managing it through a fragment state object extension.

The server side code reacts to the changes of all fragment states. The frame-
work provides facilities for managing application and device level sessions. The
application sessions are related to a single user that access an application through
different devices. Therefore, an application session contains many devices sessions.

6 Distribution Management

Besides the classes for managing the view component state in the MVC pattern
displayed in Fig. 1, the framework contains also the classes for managing the
association between the fragments and the devices.

The first class, the DistrClient provides the user support for dynamically
adding or removing a device from the distribution set. The user has a device
management page where she can add all her personal devices. After this opera-
tion, the user can request to add one of her personal devices to the distribution
set for each web application supporting the distribution. Optionally, the applica-
tion developers may also request to specify which fragments they want to include
on the different devices, providing a user-friendly name and description for them
(e.g. playback controls).

Once the user requests to activate (or deactivate) the distribution towards a
particular device, the DistrManager evaluates distribution strategy (in form of a
set of rules coded by developers) and it creates (or destroys) the fragments related
to the selected device, which in turn will receive an update message for display-
ing them.

In a given device, a fragment can be rendered in different modes: supporting
the input, the output or both of them. In the input mode, the fragment contains
only the interface elements that are devoted to collecting values from the user and
those that depend on them (e.g. field labels etc.). In the output mode, the frag-
ment renders only elements that have no interaction capabilities (texts, images,
videos etc.). The mixed mode shows both types of interface elements, as usually
happens in web interfaces. Such configuration allows developers to dynamically
distribute fragments specifying an association between fragments and devices.

Distributable Interface Design for Web Applications 31

The mode is considered an attribute of such association by the fragment and its
rendering is controlled accordingly.

Different patterns exist for defining such association. In our framework we
considered the well-known CARE properties for the defining multimodal user
interfaces [15]:

— Complementarity: two fragments are complementary if they are assigned to
two different devices, but none of them is able to complete their corresponding
task without the other. For instance, the video and the playback controls when
split between the TV and the smartphone are complementary: the video is
useless without the controls and the vice-versa.

— Assignment: a given fragment is assigned to only one device. In our scenario,
the video fragment is assigned to the TV after the first device change.

— Redundancy: the same fragment is displayed in two (or more) devices and its
functionalities should be confirmed in all of them for being executed.

— Fquivalence: a fragment is displayed on more than one device. The user can
activate its functionalities from anyone of them. In our scenario, the playback
controls may be activated from both the smartphone and the smartwatch.

Developers may both select a single specific pattern for distributing the Ul across
the devices or require the users to select one of the patterns for a subset of
fragments. In this case, the DistrClient allows two select among two or more
distribution patterns, providing a user-friendly description for each choice.

7 Scenario Support

In this section we provide some technical details on the implementation of a
Java prototype supporting the scenario described in Sect. 3 through the proposed
framework. The starting point is the usual desktop interface for a video player, as
shown in Fig. 3, which consists of three fragments: the larger part of the screen
is dedicated to the video, with the controls displayed below it. The right bar
contains the plot description.

The current state of this simple UI contains: the current position in the video
stream, the player state (playing/paused), the volume level and the reading
position in the description sidebar. All these variables are maintained in the
ViewState, and they are valid independently from the UI elements we selected
for interacting with the user. The FragmentState performs the mapping between
such values and the UI elements in both directions. For instance, if the user
changes the position of the slider knob for rewinding the video, the fragment
state receives the new position of the knob and maps it to the correct time,
notifying the ViewState object.

In our scenario, at a certain point Robert decides to continue watching the
video on the TV, controlling its state from his smartphone. In order to do this,
Robert needs a way for requesting the distribution, accessing the functionali-
ties of the distribution client (DistrClient). The framework provides a reusable
JSP which can be simply included into all the web application that require the
support for the distribution.

32 G. Fenu and L.D. Spano

. . Videos Favortes = Search Submit
DistrFlix A distributable video player : " .

Game of Phones

UGAME (3 PHOINES

Fig. 3. Laptop interface for the distributable video player.

In our example, we chose to insert a small arrow button at the bottom of
the page (with a fixed positioning) that allows to access the distribution client
UI. The button is visible in Fig. 3 in the bottom-left corner. Once pressed, the
application shows the sidebar in Fig. 4 (left part), which displays the list of user’s
personal devices (after an authentication step). The panel contains a button for
each one of them. In the example, we have four devices: the laptop (Davide
Air), the smartphone (Nexus 5), the TV (Samsung TV) and the smartwatch
(Gear S). Through these buttons, the user can select or deselect each device for
the distribution: the green devices are currently active (they contain at least a
fragment), while the other ones are not in use with the current web application.

In order to distribute the interface, the user presses the button of an inactive
device. If the application has a configurable distribution policy for that kind of
device (as in our example for smartphones), the user is requested to select the
fragments to be included in the new device through the interface shown in Fig. 4
(right part): he simply clicks on a content, which is highlighted with a green box
and a check icon on the top right corner. The user can de-select them clicking
on the highlighted area again. In our scenario, we suppose that the user selects
the smartphone, clicking on the video control and description fragments.

Once the selection is completed, the laptop DistrClient sends a request to the
DistrManager, which in turn creates the new instances for the FragmentState,
which registers for receiving updates from the ViewState. After that, the Distr-
Manager notifies the smartphone DistrClient, which loads the web application
interface. We implemented this push protocol in the prototype through a browser
tab, which remains open as long as the device participates to the Ul distribution

Distributable Interface Design for Web Applications

33

Device Panel

Share the access to this website
with your other personal devices

=
1]

O sosmev e

o Qear S (<]

Add a new device...

@

Game of Phones

Game of Phones roughly follows the three
storylines of A Song of Apple and Google.
18] Set in the fictional Seven Kingdoms of
Westeros, the series chronicles the violent
dynastic struggles among the realm's noble
families for control of the Iron Throne. As
the series opens, additional threats emerge
in the icy North and in the easter continent
of Essos.?!

The novels and their adaptation derive
aspects of their settings, characters and
plot from various events of European
history.”] A principal inspiration for the
novels is the English Wars of the Rosest®!
(1455-85) between the houses of Lancaster
and York, reflected in Martin's houses of
Lannister and Stark. Most of Westeros,
with its casties and knightly tournaments, is
reminiscent of High Medieval Westem

Fig. 4. Distribution client (left part) and fragment selection interface (right part).

DistrFlix A distributable video player

Al 130

192.168.1.72:8080/Djestl =

u— o

Game of Phones

Game of Phones roughly follows the three
storylines of A Song of Apple and Google.!

Set in the fictional Seven Kingdoms of

Westeros, the series chronicles the violent

dynastic struggles among the realm’s
noble families for control of the Iron

Throne. As the series opens, additional

threats emerge in the icy North and in the

eastern continent of Essos./?!

The novels and their adaptation derive

aspects of their settings, characters and

\m from various events of European

istory.] A principal inspiration for the

Fig.5. The web application UI distributed on a smartphone (left part) and a smart-

watch (right part).

and receives the updates through a websocket. However, this step should be
supported by the browser or by a dedicated application, in order to provide the
user with a reliable and trustworthy mechanism. Finally, the smartphone shows
the interface in Fig. 5 (left part).

Robert follows the same process for managing the devices when he wants to dis-
tribute the interface from the laptop to the TV (this time he selects only the video)
and from the smartphone to the smartwatch. The interesting part in the final con-
figuration is the equivalent video playback control from two devices. The appli-
cation needs to coordinate the values entered by Robert through the smartphone

34 G. Fenu and L.D. Spano

and by Sarah from the smartwatch. The framework supports such combination
as follows: when, for instance, Sarah presses the rewind button, the video control
Fragment on the smartphone sends the update to the associated FragmentState,
which writes the new value (e.g. the previous position minus five seconds) in the
ViewState. The ViewState notifies the value change to all the other registered
FragmentStates. One of them is associated to the phone that, again through a
websocket, sends the notification to its associated Fragment, which is updated
accordingly.

In addition, as shown in Fig. 5, the two interfaces provide different Ul elements
for the same action (same semantics, different implementation): the slider and the
rewind and forward buttons allow the user to edit the same value (the video posi-
tion) but the interaction is supported in different ways for different devices.

Finally, it is worth pointing out that the prototype implementation for the
smartwatch interface is a native Android Wear application, which needs the
support of an handheld for the network communication. The device limitations
still does not allow to create web interfaces in such kind of devices, however we
think that it will be possible soon.

8 Conclusion and Future Work

In this paper we introduced a framework for supporting the distribution of web-
based user interfaces across different devices. We introduced the architecture of
a device coordination solution that allows to separate the interface management
aspect for the application logic. In addition, we described how it is possible to
isolate the process of Ul switching and splitting through a dedicated software
component. Finally, we presented a distributed video player application as sam-
ple for the proposed framework.

In future work, we aim to provide a software library containing the reusable
components for developing this type of applications. Our scope is to support
the distribution as a specific aspect of Ul development, which can be addressed
injecting specific code even into existing applications. Moreover, we aim to merge
the research in distribution with the solutions for developing multimodal inter-
faces, in order to go beyond the simple screen interaction for distributed Uls.

Acknoledgments. Lucio Davide Spano gratefully acknowledges Sardinia Regional
Government for the financial support (P.O.R. Sardegna F.S.E. Operational Programme
of the Autonomous Region of Sardinia, European Social Fund 2007-2013 - Axis IV
Human Resources, Objective 1.3, Line of Activity 1.3.1 Avviso di chiamata per il finanzi-
amento di Assegni di Ricerca.

References

1. Google: The new multi-screen world: Understanding cross-platform consumer
behavior. Technical report (2012). Retrieved from: https://ssl.gstatic.com/
think/docs/the-new-multi-screen-world-study _research-studies.pdf. Accessed 08
October 2014

https://ssl.gstatic.com/think/docs/the-new-multi-screen-world-study_research-studies.pdf
https://ssl.gstatic.com/think/docs/the-new-multi-screen-world-study_research-studies.pdf

10.

11.

12.

13.

14.

15.

Distributable Interface Design for Web Applications 35

Bandelloni, R., Paterno, F.: Flexible interface migration. In: Proceedings of the
9th International Conference on Intelligent User Interfaces, TUT 2004, pp. 148-155.
ACM, New York (2004)

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A unifying reference framework for multi-target user interfaces. Interact. Com-
put. 15(3), 289-308 (2003)

Demeure, A., Sottet, J.S., Calvary, G., Coutaz, J., Ganneau, V., Vanderdonckt,
J.: The 4C reference model for distributed user interfaces. In: Fourth International
Conference on Autonomic and Autonomous Systems, ICAS 2008, pp. 61-69, March
2008

Melchior, J., Vanderdonckt, J., Van Roy, P.: A model-based approach for dis-
tributed user interfaces. In: Proceedings of the 3rd ACM SIGCHI Symposium
on Engineering Interactive Computing Systems, EICS 2011, pp. 11-20. ACM,
New York (2011)

Frosini, L., Paterno, F.: User interface distribution in multi-device and multi-user
environments with dynamically migrating engines. In: Proceedings of the 2014
ACM SIGCHI Symposium on Engineering Interactive Computing Systems, EICS
2014, pp. 55-64. ACM, New York (2014)

Ghiani, G., Patern, F., Santoro, C., Spano, L.: A location-aware guide based on
active rfids in multi-device environments. In: Lopez Jaquero, V., Montero Simarro,
F., Molina Masso, J.P., Vanderdonckt, J. (eds.) Computer-Aided Design of User
Interfaces VI, pp. 59-70. Springer, London (2009)

Klokmose, C.N., Beaudouin-Lafon, M.: Vigo: Instrumental interaction in multi-
surface environments. In: Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, CHI 2009, pp. 869-878. ACM, New York (2009)
Kim, K., Javed, W., Williams, C., Elmqvist, N., Irani, P.: Hugin: A framework for
awareness and coordination in mixed-presence collaborative information visualiza-
tion. In: ACM International Conference on Interactive Tabletops and Surfaces, ITS
2010, pp. 231-240. ACM, New York (2010)

Krasner, G.E., Pope, S.T., et al.: A description of the model-view-controller user
interface paradigm in the smalltalk-80 system. J. Object Oriented Prog. 1(3), 26—
49 (1988)

Fowler, M.: Presentation model Retrieved from: http://martinfowler.com/eaaDev/
PresentationModel.html. Accessed 08 October 2014

Potel, M.: Mvp: Model-view-presenter the taligent programming model for c++
and java (1996). Retrieved from: http://www.wildcrest.com/Potel/Portfolio/mvp.
pdf. Accessed 08 February 2015

Smith, J.: Wpf apps with the model-view-viewmodel design pattern. Retrieved
from: http://msdn.microsoft.com/en-us/magazine/dd419663.aspx. Accessed 08
October 2014

Paterno, F., Santoro, C., Spano, L.D.: MARIA: A universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environ-
ments. ACM Trans. Comput. Human Interact. 16(4), 19:1-19:30 (2009)

Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., Young, R.: Four easy
pieces for assessing the usability of multimodal interaction: the CARE properties.
In: Proceedings of INTERACT, vol. 95, pp. 115-120 (1995)

http://martinfowler.com/eaaDev/PresentationModel.html
http://martinfowler.com/eaaDev/PresentationModel.html
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://msdn.microsoft.com/en-us/magazine/dd419663.aspx

	Distributable Interface Design for Web Applications
	1 Introduction
	2 Related Work
	3 Example Scenario
	4 Overall Architecture
	5 Fragment Management
	6 Distribution Management
	7 Scenario Support
	8 Conclusion and Future Work
	References

