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Abstract. This study explores gesture controlled user interfaces for people with
severe motor function disabilities stemming from cerebral palsy, quadriplegia,
and traumatic brain injury. As a result of their disabilities (involuntary move-
ment and spasticity), it is nearly impossible for these individuals to use con-
ventional interface switches and other input devices to access and use a
computer. The ultimate objective of this work is to provide these users with
user-friendly, cost-effective gesture controlled interfaces that will enable them to
comfortably operate a personal computer. We have now succeeded in devel-
oping a non-contact, non-restraining interface based on an off-the-shelf image
range sensor that recently became available. In addition, we surveyed a large
number of disabled subjects and compiled a fairly exhaustive collection of
gestures that these users are capable of making, and classified these voluntary
movements in terms of the body part involved. Finally, a series of recognition
modules have been developed that are optimized to recognize the gestures
associated with each body part (hand, head, leg, etc.). This paper provides an
overview of the gesture data collection and classification processes, and dis-
cusses the development of the recognition modules.
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1 Introduction

There is a significant number of people who, due to disabilities of one kind or another,
are unable to send and receive email or surf the web using a computer. More specif-
ically, we refer to individuals with severe motor function disabilities who find it dif-
ficult or impossible to use conventional input devices due to spastic or involuntary
motion, or limited range of motion or muscular weakness in the lower limbs. Currently,
no convenient interface exists, and those who are stuck using the increasingly limited
specially customized switch type interface find it extremely cumbersome to use for
operating a computer [8]. Especially for those who are unable to freely venture
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outdoors, an environment that allows them to exchange email, surf the web, make
online purchases, and other net-based activities really holds the key to a more enjoy-
able, fulfilling life. Yet for the disabled who are only able to use a simple switch type
input device, these more sophisticated operations are all but impossible, not to mention
the enormous costs involved in adapting these devices to the user’s evolving disability
or condition as the user gets older. The information gap will only continue to widen as
the information society evolves and the disabled are left further behind.

The goal of this research is to develop a robust gesture controlled user interface that
makes it relatively simple to operate a computer (including character input) for the
motor function disabled who are uncomfortable or unable to use a keyboard or a
mouse. Specifically, we developed a non-contact, non-restraining interface based on a
common off-the-shelf range image sensor that provides a cost-effective interface within
the budget of almost everyone. Most importantly, the technology must be customizable
so it can be readily tailored to the various stages and conditions of the disabled
population at low cost. This we achieved by surveying and collecting the widest
possible range of movements that might be exploited as gestures, categorizing the
movements based on part of the body, and developing modular recognition engines that
recognize and identify the movements.

In pursuing work on a gesture controlled interface for IT purposes that involves
enormous freedom of movement yet is very difficult to standardize, our objective is to
focus first on the most severely disabled where the need is greatest and move toward a
standardized gesture interface in the future that is both versatile and essential for
categorizing the full range of movements that can serve as gestures.

This paper details our efforts to collect and classify gestures obtained from people
with severe motor function disabilities, then develop a basic prototype recognition
module capable of recognizing and identifying the gestures.

As part of an earlier project to aid people with severe disabilities, the authors
developed a head gesture interface system for individuals with severe cerebral palsy
who are unable to operate a wheelchair [1]. The project exploited high-end technology
to finally give handicapped users for whom no input devices had been available with an
interface they could actually use. This was a groundbreaking development for it
brought together intelligence information experts with expertise in cutting-edge intel-
ligence research in collaboration with rehabilitation experts. While this involved
state-of-the-art technology, it had to be implemented within the framework of the
practical equipment used within the disabled community. So, in terms of actual clinical
practice, we gave highest priority to:

• Carefully consulting and listening to the views of patients themselves and their
families from the very beginning and every step of the way all through the
development.

• Mounting sensors near the joystick, and otherwise conforming to the actual settings
of typical electric wheelchairs.

• Ensuring operability indoors or outdoors, in direct sunlight and under tree cover.
• Autonomous self-reliant operation once the caregiver turns the switch.

The work was carried out with these realistic objectives in mind. As a result, the
project gave users the ability to move about safely and autonomously within pubic parks.

Collection and Classification of Gestures from People 59



Yet two major hurdles remained. First, the unique stereo vision sensor hardware
that we developed for generating range images in real time is simply too expensive
(cost could be brought down if mass produced, but initial justification for mass pro-
duction is problematic), and second, it is too costly to tailor the device to accommodate
the full range of symptoms and conditions of the disabled population.

At least for indoor use, the first challenge has now been resolved with the avail-
ability of several off-the-shelf range image sensors featuring active pattern projection—
Xtion PRO [9], Xtion PRO LIVE [10], KINECT for Windows [11], Leap Motion [12],
and others—that can be readily obtained by virtually anyone at a modest cost of around
200US$. We are now starting to see accurate consumer-oriented devices on the market
that work just fine over relatively short distances when not exposed to direct sunlight. If
we could come up with a solution to the second challenge of tailoring the system to
different user conditions, we could provide the viable interface that is so earnestly
sought by the disabled community. For indoor environments at least, the only
remaining barrier was to figure out how to adapt the technology to various individual
conditions and disabilities.

This motivated the authors to develop an image range sensor-based cerebral palsy
interface [3] for disabled who are unable to use the common input devices (aside from a
caregiver or other familiar attendant or friend who can interpret some spastic movement
or a particular bodily movement). Based on the notion of “harmony between man and
machine,” we devised an agile scheme over a one-year allotted time frame tailored for a
particular subject, a man disabled with typical cerebral palsy who was unable to use
conventional input devices. The interface mainly involved finger movements, sup-
ported by gyrations of the neck and opening and closing the mouth.

In a similar vein, the authors exploited Microsoft’s Kinect sensor in developing
observation and access with Kinect (OAK) [4] as a solution for assisting the activities
of the severely disabled. The idea was to enable disabled users to directly or more
intuitively operate a computer by combining our scheme with software developed
using the Kinect software development kit (SDK) for Windows. Note that this project
was primarily intended for the children of disabled parents, and was never really
intended as a scheme for organizing and classifying adaptable gestures for the disabled
community as a whole. We would also note that this scheme is based on libraries of
existing games, which raises a fundamental problem: if you haven’t previously cap-
tured the person from the front, then there is no corresponding library in the first place.
Finally there is the problem that this device does not work without a particular type of
sensor.

For the purposes of this work, we assume that all of the modules for recognizing
gestures could be implemented using any of the stereo vision (range image)-based
human sensing technologies available including real-time gesture recognition sys-
tems [5], shape extraction based on 3D information [6], data extraction based on
long-term stereo range images [7], and so on. We also assume that exchanging or
swapping out the range sensor should not affect the usability of interface. Our ulti-
mate objective is automatic adaptation of the system to the widest applicable range of
parts of the body that might be used to make gestures and long-term shifts in how
users make gestures.
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2 Collecting and Classifying Subject Data

Collecting Subject Data. Using the range image sensor, we recorded voluntary ges-
tures for the interface from a range of disabled participants affiliated with the National
Rehabilitation Center for Persons with Disabilities and a number of other agencies and
organizations that deal with disabled individuals in the community. The participants
had a range of different disabilities including:

• Children and adults with cerebral palsy (Spastic, athetoid, mixed types).
• Spinocerebellar degeneration, Parkinson’s disease, and other neurodegenerative

conditions.
• Muscular dystrophy and other muscular disorders.
• Survivors of traumatic brain injury (wounds, injury, stroke).
• Quadriplegics exhibiting spastic or involuntary motion due to genetic factors,

syndromes, or unknown causes.
• High quadriplegics.

All of these subjects exhibited spasticity, spastic involuntary movement, or were
quadriplegics with severe motor function disabilities. Even though they might have the
ability to voluntarily move some part of the body, all subjects had severe motor
function disabilities and were extremely limited in the body parts they could move
voluntarily; they were significantly hindered by spasms and involuntary movements,
and all found it extremely difficult to use existing switch type or other input devices.
With this group of severely handicapped quadriplegics and other disabled individuals,
we used the range image sensor to collect the full range of gestures they thought they
might be able to use.

For these subjects who have great difficulty using an ordinary keyboard or mouse,
the following parts of the body showed promise for making gestures that could be used
for input:

• Hand and arm (arm, elbow, forearm, hand, finger).
• Shoulder.
• Head (motion of entire head, sticking out/retracting the tongue, eye movement).
• Leg movement (exaggerated movement of the foot or leg).

We collected a wide range of gestures from these four basic regions of the body
over an eighteen month period using 33 subjects, while carefully consulting and lis-
tening to the views of the disabled users themselves and their caretakers. Counting
gestures that could be made using multiple sites or regions of the body, we assembled
gestures produced by a total of 104 parts or combinations of body features.

We obtained the consent of the subjects to undertake this work after explaining the
nature of this project and had the approval of the Ergonomic Experimental Committee
of the National Institute of Advanced Industrial Science and Technology and the
Ethical Review Committee of the National Rehabilitation Center for Persons with
Disabilities.

Classification of Gestures for Each Part of the Body. 3D movements collected from
the disabled subjects are systematized as they are classified, assuming that they can be
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recognized from the range images. By systemization, we mean essentially the same
kind of motion, a gesture classification that can be recognized by a recognition module
that serves as a base. In other words, we assume that a module can be created that can
recognize gestures for each and every region of the body based on the data that was
collected. With this approach, since we are focusing on the operation of a computer in a
quiet indoor environment with no movement [2], assuming that high-resolution range
images are available, the body region of interest can be captured with excellent
accuracy without having to use an advanced object model or image features that require
significant computational resources. The results are shown in Table 1.

Based on the data collected from the 33 subjects in this project, we classified 3
areas of the body for hand, 3 areas for head, 1 area for shoulder, and 3 areas for the
legs. The camera is set up in such a way that is doesn’t disturb the subjects and is
ideally located to recognize gestures, so the classification is done on the assumption
that gestures can be recognized with a single model.

Only 33 subjects were recruited for the study, but we shot the same subject several
times on different days to increase the number of regions or parts of the body that were
filmed. We found that by reshooting the same subject on different dates, we were able
to capture a number of different variations or alternative forms. This proved to be
invaluable data for assessing day-to-day variation in the movement of the subjects.
Counting these variations, we came up with a total of 112 gesture sites including the
alternative forms, as shown in Table 1.

Table 1. Classifications of gestures

Move 1 finger 15
Hand Move wrist 12

Move hand 13
Shoulder

Up/down                 5
Forward/backward 1

6

Move entire head 17
Head Stick out/retract tongue 1

Eyes
Blinking 10
Movement of eyes  3
Open eyes wide    2

15

Legs Point foot from ankle 3
Move one leg from knee down 1
Extend/retract knee 1

Other Currently unclassified 12

Total body sites 104
Total sites including alternative 
forms 112
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3 Recognition Modules for Different Parts of the Body

In order to recognize or identify the gesture movements that have been assembled so
far, a series of prototype recognition modules was developed on the assumption that a
single module can accommodate multiple subjects by manually tweaking parameters
and other adjustments.

Finger Gesture Recognition Module. For finger gesture recognition, we adopted the
following specifications to determine whether a single finger was bent or not and to
apply a colored finger cot (single finger of a colored glove).

• Determine if a finger is bent or not.
• Apply finger cot to any 1 of 5 fingers.
• Select red, green, or blue finger cot (choose color that contrasts with clothing).

The prototype implemented for this project is built with recognition parameters set
for a particular user, but as one can see from the screenshot shown in Fig. 1, the
parameters can be manually tuned for a different user (eventually, this feature will be
automated so day-to-day fluctuations are handled automatically).

The parameters that can be manually adjusted are listed in Table 2.
The recognition algorithm first detects a finger in the specified range space, then

extracts a hand based on the position of the finger, and finally calculates the degree the
finger is bent from the relationship between finger and hand. Basic steps of the algo-
rithm are as follows:

Fig. 1. Screenshot of finger gesture recognition module
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Detect a finger

– Set 3D space that includes hand
– Extract 3D texture image
– Extract same color as the finger cot from texture image
– Label range of extraction
– Finger is recognized as portion marked by maximum label

Detect a hand

– Extract skin colored region from 3D extracted texture image adjacent to the finger
– Label range of extraction
– Object closest to the finger is recognized as the hand

Determine degree finger is bent

– Calculate moment of finger and hand. Calculate point group for both finger and
hand as a 3D moment. Since facing the screen, next, calculate 2D screen

– Calculate 2 axes angle from the moment
– Calculate difference between angles of finger and hand; determine finger is bent

when difference exceeds the threshold

Arm Gesture Recognition Module. For arm gesture recognition, we adopted the
following specifications to identify swinging the whole forearm from the elbow (see
Fig. 2).

– Determine if forearm of one hand is swinging
– Set up camera so the arm to be recognized fits easily within the angle of view

Basic steps of the algorithm are set forth as follows:
Detect arm

– Set 3D space that includes arm
– Extract arm range image against 3D base

Table 2. Parameters that can be manually adjusted

Setting Description

Parameter settings Feature to be recognized
・ min-depth Min range image setting
・ max-depth Max range image setting
・ hue Hue
・ bright Brightness
Hue hand and finger Specify min and max saturation values of hand

Specify color of finger cot
Finger base Threshold for determining finger is bent
Check Specify action to take when finger is bent

(click; sound is made when pressing the ‘a’ key)
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Track arm

– Track with particle filter
– Determine likelihood of particle from inter-frame difference
– Now possible to track moving body part (the arm)

Determine swing of arm

– Estimate state of the arm from length of shifts on sway of center of gravity of set of
particles

– Classify based on “exaggerated swinging of the arm” and “no movement”

4 Head Gesture Recognition Module

For head gesture recognition, first the normal direction is derived from the range image
area centering on the nose, then this orientation is used as the orientation for the face.
The user can employ any motion or movement he or she wants to trigger the switch.

– Estimate direction of face in real time
– Operate as switch when setup is oriented toward the face in a particular direction
– Facing to the right generates a click event

The light blue bar near the eyebrow of the subject in Fig. 3 shows the normal
direction of the face. By changing the normal direction for turning on the switch, this
can be used to describe an action.

The sequence of algorithm steps for estimating head orientation is as follows: face
tracking, nose tracking, then calculate the normal area of the face.

Head tracking

– Calculate approximate area of head based on distance information
– Extract just face label using labeling

Fig. 2. Screenshot of arm gesture recognition module
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Nose tracking

– Normalize zoomed, rotated, positioned extracted face image
– Nose is closest point to the camera

Calculate normal area of face

– Calculate face normalization (orientation) from the range image area centering on
the nose.

Tongue Gesture Recognition Module. For tongue gesture recognition, we simply
determine whether the subject is sticking out her tongue deliberately or not; the switch
is turned on when the tongue remains out for more than a certain number of seconds.
Moreover, the user can assign any motion or movement to trigger the switch. Currently,
in setting the color threshold to match the color of individual’s tongue and lighting
environment, the individual and the lighting environment are highly dependent.

Tongue Gesture Recognition Algorithm

– As with the head recognition algorithm, this algorithm also starts by tracking the
face

– Convert RGB information to HSV information in the face label
– Perform filtering based on the tongue hue threshold setting
– Tongue is recognized when the label exceeds a certain size

Knee Gesture Recognition Module. The finger, head, and tongue gestures can all be
recognized simultaneously by camera settings, but the camera is set up differently to
recognize knee gestures. For recording knee gestures, an extension arm is used to
mount the camera up above the display looking down so the knees are caught at the
center of the image (see Fig. 4)

Fig. 3. Screenshot of head pose recognition module
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– Estimate position of knees in real time
– Switch is triggered by moving the knees together or closing the knees

Basic steps of the knee position estimation algorithm essentially consist of first
extracting the knee region, then estimating the knee position on the left and right sides
with the hill-climbing method. This particular user defined the act of holding both
knees together beyond a certain interval as triggering the switch.

5 Conclusions and Future Work

We began this project with the idea of developing gesture controlled user interfaces to
enable people with disabilities to freely access and use information devices using
simple gestures. To achieve this goal, the first stage is to compile and classify a
collection of 3D actions or gestures that disabled users are capable of making using an
economical off-the-shelf image range sensor. In this work, we gathered gesture data
from 33 subjects, based on 104 different sites or parts of the body. We systematically
categorized this data in terms of 10 total parts of the body that disabled users can
employ to make voluntary movements that could be exploited as gestures: 3 areas of
the body for hand, 3 areas for head, 1 area for shoulder, and 3 areas for the legs.

In addition, we constructed a series of prototype recognition modules and dem-
onstrated their ability to recognize 5 types of movement among these 10 parts of the
body: hands and arms (finger bending and arm waving), head (head swinging and
sticking out and retracting the tongue), and legs (opening and closing the knees).
Parameters are adjusted manually on the prototype modules, but ultimately we assume
such adjustments will be done automatically to easily accommodate a wide range of
disabled users.

For this current project we dealt with 33 subjects and 104 parts of the body, but a
somewhat larger scale initiative involving around 50 subjects is needed to build a more
robust modular gesture recognition platform that we envision. Since we have only

Fig. 4. Screenshot of knee gesture recognition module
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tested the recognition modules developed so far on just a few subjects, we still have not
gotten beyond the prototype stage. By increasing the number of subjects and the
number of body part sites, we are confident that the approach we advocate here will
lead to the development of gesture recognition modules with greater classification
accuracy and wider scope.
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