
Chapter 9
Do Connections Make Systems Robust? A New
Scenario for the Complexity-Stability Relation

Takashi Shimada, Yohsuke Murase, and Nobuyasu Ito

Abstract Whether interactions among the elements make the system robust or
fragile has been a central issue in broad range of field. Here we introduce a novel
type of mechanism which governs the robustness of open and dynamical systems
such as social and economical systems, based on a very simple mathematical model.
This mechanism suggest a moderate number (� 10) of interactions per element is
optimal to make the system against successive and unpredictable disturbances. The
relation between this very simple model and more detailed nonlinear dynamical
models is discussed, to emphasize the relevance of this newly reported mechanism
to the real phenomena.

9.1 Introduction

Most real complex systems of our interest are ecosystem-like. Good examples are
reaction networks and gene regulatory networks in living organisms in evolutionary
time scale, brain and immune system in developmental timescale, engineering sys-
tems with decentralized control scheme, ecosystems of companies or products, and
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social communities. In those ecosystem-like systems, there is no top-down or cen-
tralized mechanism for the system’s growth and maintenance. And their complexity
emerges as a result of successive introductions of new elements. In the following,
we focus on the universal aspects of robustness of such ecosystem-like systems.

The robustness (or stability, fragility, resilience, etc.) of complex systems itself is
indeed a classical problem [1]. Essential theoretical findings those have been found
on this issue include the general instability of large and densely interacting systems
[2], the self-organized criticality [3], and the relation between the robustness and
the network structure of the systems [4, 5]. However, the key and universal feature
of the real complex systems, openness, has not been well considered. Meanwhile,
theoretical studies on ecosystems using various different models have indicated that
they share universal behaviors independent of the detail of the dynamics [6–10].
Therefore it is natural to ask how can such ecosystem-like system grow to more
complex structure by adding new elements to it, using a simpler model. In the
following, we first introduce a minimal model for this problem and show that it
yields a novel type of transitions, together with its underlying mechanism [11].
Then we show an example of direct relation between the minimal model and the
more detailed nonlinear dynamical models, which corroborates the relevance of the
newly found mechanism to the real phenomena.

9.2 A Universal Relation Between Robustness
and Connection

9.2.1 A Minimal Model of Evolving Open Systems

We here introduce a minimal model of evolving open systems [11]. In this model,
the entire system is structured as a collection of nodes connected by directed and
weighted links (Fig. 9.1). The nodes may represent various kinds of species (e.g.
chemical species, different genes and proteins, neurons, animal species, companies,
products, individuals, etc.). In the following, we simply call them species. Also
the links may represent diverse kinds of interactions (or inputs, signal, influences,
effects, etc.) among them. The directed link from species j to species i with its link
weight denotes the influence of species j on species i. Each species has only one
property, fitness, which is simply determined by the sum of its incoming interaction
weights from other species in the system. Only the rule intrinsic to the system is
that each species can survive as long as its fitness is greater than zero, and otherwise
it goes extinct. If the minimum fitness in the system is non-positive, we delete that
species (therefore totally isolated species cannot survive). Because this extinction
will modify the fitness of the other species, we re-calculate the fitness and re-identify
the least-fit species. We continue this deletion procedure until the minimum fitness
becomes positive, meaning that the system is stable. Once the system gets to a
stable state, nothing will happen in terms of this intrinsic fast process. Therefore
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Fig. 9.1 A snapshot of ecosystem-like system obtained from the minimal model described in the
Sect. 9.2.1. Nodes and links represent the general gspeciesh and ginteractionsh respectively. While
the diameter of each cnode depicts the current fitness, its color is just for visibility

we proceed the time by the order of magnitude of longer unit i.e. the evolutionary
time scale (in some other systems, it corresponds to the developmental time scale
and so on). At each evolutionary time step t, a new species is added into the system.
We establish interactions from and to the newly added species. The interacting
species are chosen randomly from the resident species with equal probability, and
the directions of the interactions are also determined randomly. The link weights are
assigned randomly from a zero-mean distribution (for example, the standard normal
distribution). Then, we re-calculate the fitness of each species to find whether the
system can accommodate the new species or some species should become extinct.
We repeat this addition-and-deletion steps. Note that the behavior of the system after
a sufficiently large number of time steps does not depend on the initial condition.
Therefore, this model has only one relevant parameter: m, the number of interactions
per species. For clarity, we show below the pseudo-code of this model.

// Pseudo-code of the minimal model
Create an initial state with N species
Check the extinctions as described below

FOR t = 0 to t_max
Add a new species



102 T. Shimada et al.

FOR each of m new links
Choose an interacting species randomly
from resident species

Choose the direction of the link randomly
with equal probability 0.5 for each direction

Assign the link weight a_ij randomly
from a 0 mean distribution

ENDFOR

Flag_ext = true
WHILE Flag_ext

FOR each species
f_i = 0
FOREACH incoming links j

f_i += a_ij
ENDFOR

ENDFOR
Find the species k which has minimum fitness f_min
IF f_min <= 0

Delete species k
Delete the links from/to it

ELSE
Flag_ext = false

ENDIF
ENDWHILE
Observe the current stable community

ENDFOR

9.2.2 Transition in Growth Behavior

In the present model, the essential features of the ecosystem-like systems, the
introduction of a new species and the interaction-dependent survival condition for
each species, are took into account. And because the both processes are introduced
in neutral way, i.e. giving no apparent advantage to grow or collapse. Therefore
whether the system can grow under such process will purely illuminate the relation
between the system’s complexity and robustness. Simulation results indeed give a
fascinating answer: both of the growth and collapse can happen, depending on the
only one model parameter m. The system can grow to infinitely large size if the
number of interactions per species is in a moderate range (for the case of taking the
standard distribution for link weights, the range is 5 � m � 18), and, if not, it stays
in a finite size (Fig. 9.2).
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Fig. 9.2 Temporal evolutions of the number of species. The number of species diverges if 5 �
m � 18. For more precise and reliable determination of the transition point in this behavior needs
systematic and longer simulations (see [11])

9.2.3 A Mean-Field Analysis and the Transition Mechanism

The first transition at between m D 4 and 5 turns out to be related to a kind of
percolation threshold: the emergent system with too sparse interactions can have
only tree-and-cycle-like network, and therefore it is too fragile to continue growing.
But then why we have another transition in the denser interaction regime? This
latter transition is non-trivial and novel, and therefore we mainly focus on this in
this paper.

To consider the mechanism of the transition, we first investigate the topology
of the emerging network. We can confirm that there is no strong structure in the
emerging networks (Fig. 9.1). In other words, the structure of the emerging system
remains almost random network with average degree � m. From this observation,
a theoretical analysis based on a mean-field picture has been performed [11, 12].
In this theory, we only treat the distribution function of the fitness of the species in
the entire community. Because the fitness distribution function (FDF) is dependent
on the parameter m, we write the FDF of fitness x as F.m; x/. FDF of the newly
introduced species, which has m=2 incoming links on average, is easily calculated
as the positive half of the normal distribution with variance m

2
:

F0.m; x/ D
(

0 .x � 0/

2G.�m; x/ ensuremath.x � 0/
; �m D

r
m

2
: (9.1)
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Where G.�; x/ denotes the normal distribution with its deviation � . After settling
to the system, the species will experience either obtaining a new link from a
newly introduced species or loosing a link during the extinction of interacting
species. Those processes change the fitness of the species, and hence the distribution
function. This change in FDF is found to be the one step of random walk with
negative drift whose strength is proportional to 1=m. Therefore, writing this process
by an operator OD , the (not normalized) FDF of species those have been experienced
a loss or addition of one incoming link can be calculated from F0 as,

F1.m; x/ D OE ODF0.m; x/; (9.2)

where OE is the extinction operator which cut the negative part of any function:

OE h.x/ D
(

0 .x � 0/

h.x/ .x � 0/
: (9.3)

Note that the operators OD and OE are non-commutative. In the following we call the
suffix g of Fg, the number of incoming link addition/deletion events that species has
experienced, as generation. As we have seen, calculation of the FDF of generation
g needs the FDF of younger generation, g � 1:

Fg.m; x/ D OE ODFg�1.m; x/; (9.4)

Only after performing the iterative calculation, we obtain the probability distribution
function of the fitness of the entire system,

F.m; x/ D

1X
gD0

Fg.m; x/

1X
gD0

ng.m/

�
ng.m/ D

Z 1

0

Fg.m; x/dx

�
; (9.5)

which contains all the information we need under the mean-field approximation. The
most important outcome from the FDF is the average probability of entire resident
species going extinct during one link addition/deletion event E, which is calculated
as

E.m/ D 1 �
Z 1

0

OE ODF.m; x/ dx D

Z 1

0

F0.m; x/ dx

1X
gD0

ng.m/

D 1
1X

gD0

ng.m/

: (9.6)
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From this calculation, we find that E is a decreasing function of m. Therefore the
robustness of each species against the disturbance increases with m.

What should be emphasized, however, is that the robustness of each species does
not directly determine the robustness of the entire system. Let us see this using an
infinitely large graph in which all the nodes have m links. The average number
of species that go extinct directly because of an inclusion of the new species is
simply calculated as mE=2. Because those extinctions may also trigger sequential
extinctions, the expectation value of the total number of extinctions per inclusion of
one species NE is simply calculated from an infinite geometric series as

NE D
1X

nD1

�
mE

2

�n

D mE

2 � mE
: (9.7)

Therefore the robustness of the entire system is a function of mE, not the bare E.
And because NE D 1 means that the average number of extinctions balances with
the number of inclusions in the long time average, that corresponds to the transition
point of the growth behavior. In other words, the following self-consistent condition
should be satisfied for the critical number of interactions per species: m�E.m�/ D 1.

Let us now focus on the relevant parameter in the argument above, mE. We find
that the decrease of E is slower than 1=m (roughly � 1=

p
m). Therefore mE is

a sub-linearly increasing function of m, and it crosses the critical value 1 around
m� D 13. This means that the mean-filed treatment can explain the transition
in the growth behavior of the system. In addition, this theory give us the simple
understanding of the transition mechanism. It originates from the balance of the
two effects: although having more interactions makes each species robust against
the disturbances (addition and extinction of the species relating to that species), it
also increases the impact of the loss of a species. In consistent with this success
in explaining the transition by the mean-field analysis, we can find essentially
same phase diagram in slightly modified models, such as the model with giving
a randomly distributed degrees for the newly added species, the one with different
distribution functions for the link weights, and so on [11].

In the classical diversity-stability relation based on the linear stability of dynam-
ical systems, an intrinsic stability is assumed for each element to ensure the stability
of each element when that has no interactions. For the system to remain stable, each
element may have essentially only one interaction that is not weak comparing to the
given intrinsic stability [2]. In the present mechanism, we do not assume any kind of
intrinsic stability to the elements: an element with no interaction immediately goes
extinct. Even so, the system with 10 or more interactions per element can grow.
In this sense, the condition we have identified is very realistic. Indeed in the real
systems, it is quite often to find moderately sparse networks: the average degree is
in the order of 10, not order of 1, and that seems not dependent on the system size.
This novel relation between the connection in the system and its robustness might
be a origin of this.
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9.3 The Relation with More Complex Dynamical Models

We have reviewed a novel relation between the system’s robustness and the
connections in it using a very simple model. In our simple model, the extinction
condition fi � 0 represents the system’s intrinsic dynamics. The simplicity of the
model is good in terms of universality, and hence especially good for applying to
social and economic systems because it is very hard to obtain precise equation of
motion or evolution rule of those. And the fact that we can find a good agreement
between the model and real systems in their statistics encourages us to put more
emphasis on universality. A good example is lifetime distribution function of the
species [13, 14].

However, for each certain problem, we generally treat more complex models.
Therefore it would be nice if we can argue more directly about the connection
between our simple model and complex models. In the following, we will consider a
certain class of population dynamics models and show that the necessary condition
to have extinctions in it reduces to the extinction rule in the simple model.

9.3.1 The Extinction Condition in Population Dynamics
Models

In many dynamical models, each element has more properties in addition to its
mere existence and the interactions depend on those properties. One of the most
popular class is population dynamics models, in which each element has its property,
population xi. The general form of the dynamical equation of motion of population
dynamics models can be written as,

Pxi D fi.x1; x2; � � � ; xN/; (9.8)

where the dynamical variable fxig denote the population of element i. To know
which species will go extinct is generally a difficult problem, because one needs
to have the trajectory. This is one of the reason why so many studies substitute
the stability of the system for its linear stability, which is, strictly speaking, neither
enough condition nor necessary condition to really determine the fate of the species.
The necessary condition to have an extinction of certain species is relatively easier,
because it is at least describable simply: the necessary condition to go extinct is to
satisfy

lim
xi!0

Pxi D fi.x1; � � � ; xi�1; 0; xiC1; � � � ; xN/ < 0 (9.9)

at somewhere in the xi D 0 surface. Such condition is again generally difficult to
access and also different from the linear stability condition.
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9.3.2 Ratio-Dependent Interactions

The interaction term in the population dynamics with the form of fij
�

xi
xj

�
xj, in which

the predation rate per predator j, fij.�/, is an arbitrary function of the ratio of the
prey to the predator xi=xj, is called ratio-dependent form in theoretical ecology and
regarded as a realistic model of the predation interaction [15]. A typical simple
example of the form of f .�/ is

f .�/ D B�

A C �
; (9.10)

where A and B are constants. If we neglect many-body effects such as the
competition among the predators those attack the same prey, the predator’s choice
on multiple preys, and so on for simplicity (otherwise the dynamical equations may
become implicit), the population dynamics of such systems can be written as

Pxi D
X

j

fij

�
xi

xj

�
xj C

X
k

fki

�
xk

xi

�
xi; (9.11)

where the summations run for the predators and the preys of species i, respectively.

9.3.3 The Necessary Condition to Have an Extinction Under
“natural” Ratio-Dependent Interactions

Let us next limit the case by postulating the following relatively natural features to
the ratio-dependent predation rate. That is, f .�/ must go to 0 as the population of
the prey goes to 0 and that must saturate at a certain value when the population of
the prey is abundant, i.e.

lim
�!0

fij.�/ D 0 \ lim
�!1 fij.�/ D bij; (9.12)

where bij represents the maximum predation rate on that interaction. The example
we have seen in Eq. (9.10) satisfies these both features. And if we suppose it does
not have any singularity around 0, we can obtain its Maclaurin series as,

fij

�
xi

xj

�
xj D

" 1X
nD1

cij
n

�
xi

xj

�n
#

xj: (9.13)
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Where

cij
n D 1

nŠ
� dnfij.�/

d�n

ˇ̌̌
ˇ
�!0

(9.14)

is the coefficient of Taylor series expansion at 0. This means that the necessary
condition for the extinction [Eq. (9.9)] of species i in this model is indeed not
dependent on the populations of the surrounding species:

lim
xi!0

Pxi D lim
xi!0

2
4X

j

( 1X
nD1

cij
n

�
xi

xj

�n

xj

)
C

X
k

fki

�
xk

xi

�
xi

3
5

D
2
4X

j

cij
1 C

X
k

bki

3
5 xi < 0: (9.15)

And this condition,
P

j cij
1 C P

k bki < 0, that says summation of the population-
independent coefficients assigned to the interacting links should be negative, is
exactly in the same class with the minimal model we introduced in Sect. 9.2.1.

9.4 Conclusion

We have reviewed the simple and universal mechanism of determining the robust-
ness, and therefore its ability to grow, of ecosystem-like systems by introducing a
simple model. It has been also shown that the necessary condition for extinctions
in a certain type of dynamical models essentially result in the same condition with
that of the simple model. This supports our future approach to verify the relevance
of the newly found mechanism to the real phenomena.

Acknowledgements This work was partially supported by JSPS Grant-in-Aid for Scientific
Research (C) Grant Number 15K05202.

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.



9 Do Connections Make Systems Robust? 109

References

1. MacAuthor R (1955) Fluctuations of animal populations, and a measure of community
stability. Ecology 36:533–535

2. Gardner MR, Ashby WR (1970) Connectance of large dynamic (cybernetic) systems: critical
values for stability. Nature 228:784

3. Bak P, Sneppen K (1993) Punctuated equilibrium and criticality in a simple model of evolution.
Phys Rev Lett 71:4083–4086

4. Albert RJ, Jeong H, Barabási A-L (2000) Error and attack tolerance of complex networks.
Nature 406:378–382

5. Herrmann HJ, Schneider CM, Moreira AA, Andrade JS, Havlin S (2011) Onion-like network
topology enhances robustness against malicious attacks. J Stat Mech 2011:P01027

6. Taylor PJ (1988) Consistent scaling and parameter choice for linear and generalized lotka-
volterra models used in community ecology. J Theor Biol 135:543–568

7. Caldarelli G, Higgs PG, McKane AJ (1988) Modelling coevolution in multispecies communi-
ties. J Theor Biol 193:345–358

8. Shimada T, Yukawa S, Ito N (2002) Self-organization in an ecosystem. Artif Life Robotics
6:78–81

9. Perotti JI, Billoni OV, Tamarit FA, Chialvo DR, Canna SA (2009) Emergent self-organized
complex network topology out of stability constraints. Phys Rev Lett 103:108701

10. Murase Y, Shimada T, Ito N, Rikvold PA (2010) Random walk in genome space: a key
ingredient of intermittent dynamics of community assembly J Theor Biol 264:663–672

11. Shimada T (2014) A universal transition in the robustness of evolving open systems. Sci Rep
4:4082

12. Shimada T (2015) In: Mathematical approaches to biological systems. Ohira T, Uzawa T (eds)
Springer, Japan, pp 95–117

13. Shimada T, Yukawa S, Ito N (2003) Life-span of families in fossil data forms q-exponential
distribution Int J Mod Phys C 14:1267–1271

14. Murase Y, Shimada T, Ito N (2010) A simple model for skewed species-lifetime distributions
New J Phys 12:063021

15. Drossel B, Higgs PG, Mckane AJ (2001) The influence of predator prey population dynamics
on the long-term evolution of food web structure. J Theor Biol 208:91–107


	9 Do Connections Make Systems Robust? A New Scenario for the Complexity-Stability Relation
	9.1 Introduction
	9.2 A Universal Relation Between Robustness and Connection
	9.2.1 A Minimal Model of Evolving Open Systems
	9.2.2 Transition in Growth Behavior
	9.2.3 A Mean-Field Analysis and the Transition Mechanism

	9.3 The Relation with More Complex Dynamical Models
	9.3.1 The Extinction Condition in Population Dynamics Models
	9.3.2 Ratio-Dependent Interactions
	9.3.3 The Necessary Condition to Have an Extinction Under ``natural'' Ratio-Dependent Interactions

	9.4 Conclusion
	References


