
Chapter 5
Damped Oscillatory Behaviors in the Ratios
of Stock Market Indices

Ming-Chya Wu

Abstract This article reviews a recent finding on the properties of stock market
indices (Wu, Europhys Lett 97:48009, 2012). A stock market index is an average
of a group of stock prices with equal or unequal weights. Different stock market
indices derived from various combinations of stocks are not expected to have fixed
relations among them. From analyzing the daily index ratios of Dow Jones Industry
Average (DJIA), NASDAQ, and S&P500 from 1971/02/05 to 2011/06/30 using
the empirical mode decomposition, we found that the ratios NASDAQ/DJIA and
S&P500/DJIA, normalized to 1971/02/05, approached and then retained the values
of 2 and 1, respectively. The temporal variations of the ratios consist of global trends
and oscillatory components including a damped oscillation in 8-year cycle and
damping factors of 7183 days (NASDAQ/DJIA) and 138,471 days (S&P500/DJIA).
Anomalies in the ratios, corresponding to significant increases and decreases of
indices, are local events appearing only in the time scale less than 8-year cycle. The
converge of the dominant damped oscillatory component implies that representative
stocks in the pair-markets become more coherent as time evolves.

5.1 Introduction

The study of financial systems using the concepts and theories developed in physics
has attracted much attention in recent years [1–22]. Such study have revealed
interesting properties in financial data, which facilitate deeper understanding of the
underlying mechanisms of the systems and are essential for sequent modelling.
These include financial stylized facts [4, 7–9, 11, 23, 24], such as fat tails in
asset return distributions, absence of autocorrelations of asset returns, aggregational
normality, asymmetry between rises and falls, volatility clustering [10], phase
clustering [13–15], and damped oscillation in ratios of stock market indices [22].
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Successful empirical analysis and modelling of financial criticality have suggested
possible physical pictures for financial crashes and stock market instabilities
[5, 6, 12, 18–21].

In this article, we briefly review our recent study on the damped oscillations in
daily stock market indices of Dow Jones Industry Average (DJIA), NASDAQ, and
S&P500, from 1971/02/05 to 2011/06/30 [22]. The daily data were downloaded
from Yahoo Finance (http://finance.yahoo.com/), and were preprocessed to have
the three indices aligned with the same length by removing three data points in
DJIA and S&P500 (1973/9/26, 1974/10/7, and 1975/10/16) which do not exist in
NASDAQ. There are finally 10,197 data points involved in the study. Figure 5.1a
shows the daily index data of the three stock markets. It is interesting that by
keeping DJIA as a reference and multiplying the NASDAQ index by a factor of
5:2 and S&P500 by 8:5, the curves of the rescaled indices coincide very well in
several epoches, except large deviations in NASDAQ for the periods 1999–2001
and 2009–2011, as shown in Fig. 5.1b. In year 2011, DJIA is the average price of
30 companies (http://www.djaverages.com/), NASDAQ consists of 1197 companies
(http://www.nasdaq.com/), and S&P500 index is an average result of 500 companies
(http://www.standardandpoors.com). Some companies, such as Intel and Microsoft,
are included in all the three markets, but most of their compositions are different.
The relations among the indices are not crucially determined by the common
companies. The coincidence of the three indices via scaling is apparently not trivial,
but may result from some kine of coherence among respective representative stocks
in the markets. The properties of the relations among them deserve further study.

5.2 Data Analysis and Discussions

Let us first consider two indices xi and xj. The ratio between them Rij.tn/ D
xi.tn/=xj.tn/ at time tn can be alternatively formulated as

Rij.tn/ D Rij.tn�1/
1 C gi.tn�1/

1 C gj.tn�1/
; (5.1)

where

gi.tn/ D xi.tnC1/ � xi.tn/

xi.tn/
; (5.2)

is the gain of the index xi. The gain time series of the three indices are shown in
Fig. 5.1c. After normalizing the ratio to the initial value of Rij at t0, we have

NRij.tn/ � Rij.tn/

Rij.t0/
D

nY

mD1

1 C gi.tm�1/

1 C gj.tm�1/
: (5.3)

http://finance.yahoo.com/
http://www.djaverages.com/
http://www.nasdaq.com/
http://www.standardandpoors.com
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Fig. 5.1 (a) Daily indices of Dow Jones Industry Average (DJIA), NASDAQ, and S&P500. (b)
Rescaled indices ax.t/. (c) The gains of the three indices. (d) Ratios of paired indices, normalized
to the values on 1971/02/05. (Reproduced from Fig. 1 of [22])
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Here, 1971/02/05 is the initial time for the three indices, and NRij.tn/ (hereafter
abbreviated as NR.t/ for simplicity) of NASDAQ/DJIA and S&P500/DJIA are
shown in Fig. 5.1d. The normalized ratio of NASDAQ/DJIA increases before 1982
from 1 to 2, and then saturated with fluctuations. While there was a sharp peak
in 2000, it returned to 1:5 in 2003 and then grew up to 2 gradually. On the
other hand, the normalized ratio S&P500/DJIA varied around 1 with variation
magnitudes within ˙0:3. Consequently, the general feature of the normalized ratio
is that it approached and then retained the values of 2 and 1 for NASDAQ/DJIA
and S&P500/DJIA, respectively. The choice of initial dates for normalization is
irrelevant. The scenario is similar to a mechanical system with a “restoring force”
acting on it: when the ratio becomes too large or small, it inclines to retain an
equilibrium state.

To explore the evolution of the ratios, we analyze the variations of NR.t/ in
different time scales using the empirical mode decomposition (EMD) [25]. The
EMD method assumes that any time series consists of simple intrinsic modes of
oscillations [25]. The decomposition explicitly utilizes the actual time series for the
construction of the decomposition base rather than decomposing it into a prescribed
set of base functions. The decomposition is achieved by iterative “sifting” processes
for extracting modes by identification of local extremes and subtraction of local
means [25]. The iterations are terminated by a criterion of convergence. Under
the procedures of EMD [25, 26], the ratio time series NR.t/ is decomposed into
n intrinsic mode functions (IMFs) ck’s and a residue rn,

NR .t/ D
nX

kD1

ck .t/ C rn .t/ : (5.4)

The IMFs are symmetric with respect to the local zero mean and have the same
numbers of zero crossings and extremes, or a difference of 1, and all the IMFs are
orthogonal to each other [25]. According to the algorithm of EMD, c1 is the highest
frequency component, c2 has a frequency about half of c1, and so on. Ideally, the
frequency content of each component is not overlapped with others such that the
characteristic frequencies of all components are distinct. Thus one component can
then be characterized by its own range of periods in time domain. Here, both the NR
of NASDAQ/DJIA and S&P500/DJIA are decomposed into ten components. Using
the property that each component has a distinct period, we summed over different
components to assess the behaviors of the ratios in different time scales. Among
others, IMFs c6 to c9 are of special interest for their average time scales estimated
by zero-crossing calculations are larger than 1 year (about 250 transaction days,
which is a suitable time scale to analyze the behaviors in Fig. 5.1d. Figures 5.2a
and 5.3a show the comparisons of NR, residue r9 and combinations of the residue
and IMFs, c9 C r9 and c.6�9/ C r9 (here c6 C c7 C c8 C c9 has been abbreviated as
c.6�9/ for simplicity). For the current case, we are more interested in the residue r9

and IMFs c8 and c9, shown in Figs. 5.2b and 5.3b. The residue r9 is the trend of the
ratio NASDAQ/DJIA which approaches 2 gradually from 1:2 (Fig. 5.2b), while r9 of
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Fig. 5.2 Empirical mode decomposition (EMD) of the ratio NR for NASDAQ/DJIA. (a) Com-
parisons of NR, IMFs and IMF combinations. (b) IMFs c8, c9, and residue r9. (c) The data of
NR � c6 � c7 � c8 � c9 � r9 . (Reproduced from Fig. 2 of [22])

S&P500/DJIA grows up from 1 to 1:2 and then decreases back to 1 (Fig. 5.3b). With
the aid of zero-crossing calculations and fitting, the IMF c9 reveals that the variations
of the ratios in the scale of 8-year cycle behave as a damped oscillation in the
form of exp Œ�.tn � t0/=�� with damping factors � � 7183 days (NASDAQ/DJIA)
and 138,471 days (S&P500/DJIA) determined from the local minima of IMF c9.
Thus, the combination of c9 and r9 shows the converge of oscillations to values 2

and 1 for NASDAQ/DJIA and S&P500/DJIA, respectively. Meanwhile, the IMF c8

corresponding to (2–4)-year cycle is accompanied with frequency modulation in late
of 1990s, implying the trigger of the anomaly in amplitude change and its recovery
to regular situation lasts 1:5 oscillatory cycles, about 4–6 years. Since this anomaly
does not appear in IMF c9, it is a local event in time with time scale less than 8-year
cycle. Here we should remark that the nature of the EMD method is adaptive. It
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Fig. 5.3 Empirical mode decomposition (EMD) of the ratio NR for S&P500/DJIA. (a) Com-
parisons of NR, IMFs and IMF combinations. (b) IMFs c8, c9, and residue r9. (c) The data of
NR � c6 � c7 � c8 � c9 � r9 . (Reproduced from Fig. 3 of [22])

catches intrinsic oscillations in a time series, such that the number of IMFs depends
on the properties of the data itself (i.e., the index of IMFs may change). The above-
discussed behaviors can be observed no matter the data used here is considered as a
whole or is split into two or more segments (if long enough to see components with
particular time scales) for the same analysis.

The components of the ratios in the cycle less than half year (about 125 days) are
derived by subtracting c.6�9/ C r9 from NR. The data of ıNR D NR � c.6�9/ � r9 are
shown in Figs. 5.2c and 5.3c for NASDAQ/DJIA and S&P500, respectively. Within
cycles less than 1 year, there are no explicit repeat patterns in the data. Thus, we
analyze their statistical properties by the detrended fluctuation analysis (DFA) [27–
29] and the multiscale entropy (MSE) [30] analysis, and the results are presented in
Fig. 5.4. The DFA analysis measures the fluctuation F.n/ of ıNR with respect to a
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Fig. 5.4 Statistical properties of NR � c.6�9/ � r9. (a) Detrended fluctuation analysis (DFA). The
numbers indicate the ˛ values of the linear segments. (b) Multiscale entropy (MSE) analysis. The
shuffled data are generated by randomizing NR � c.6�9/ � r9 using normal distribution. (Edited
from Fig. 4 of [22])

linear fit of the data (ıNRn) in a time window n, and use an index ˛ defined from

F.n/ D
s

1

T

X

t

ŒıNR.t/ � ıNRn.t/�2 � n˛ (5.5)

to describe the correlation property of the data [27–29]. The results of ˛ D 1:4851

for NASDAQ/DJIA and ˛ D 1:3859 for S&P500/DJIA in Fig. 5.4a suggest that the
property of NR � c.6�9/ � r9 is similar to a Brownian motion with more negative
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correlation (<1.5) in the time scale less than half year (125 days) in Fig. 5.4a,
indicating the anti-persistent behaviors in the ratios. For reference, the DFA analysis
for the shuffled NR � c.6�9/ � r9 data of NASDAQ/DJIA and S&P500/DJIA is also
shown in Fig. 5.4a. The shuffled data manifests the property of Brownian motion
with ˛ D 1:5. The relatively stronger anti-persistent behavior in S&P500/DJIA than
in NASDAQ/DJIA is considered as a signature of more significant self-adjustment
in the ratio of S&P500/DJIA. The change of slope at 125 days is due to the
removal of high-order IMFs (c.6�9/ and r9). The slopes in this regime indicate that
effective changes of the ratios in S&P500/DJIA (˛ D 0:4084) is smaller than in
NASDAQ/DJIA (˛ D 0:5643).

Next, the MSE analysis measures the scale dependence of the complexity in
the data [30]. Higher complexity corresponds to a higher information content or
a superiority of system control [31]. The analysis is implemented by calculating the
entropies of a set of resampled data in different window sizes, which is to be a scale
factor in MSE plot, according to

sn.t/ D
X

ıNRn.t/

P.ıNRn.t// logŒP.ıNRn.t//�; (5.6)

ıNRn.t/ D 1

n

n�1X

iD1

ıNR.t C i/; 1 � i � T

n
; (5.7)

where P.ıNRn.t// is the occurrence probability of the value ıNRn.t/. MSE is an
average of successive difference of sn.t/ over time. The analysis is finally presented
by the curve of MSE as a function of n. Here, the relative complexity of the data
is evaluated with respect to a reference defined from the corresponding shuffled
data or some standard noises. The results in Fig. 5.4b show that the information
content of NR � c.6�9/ � r9 of NASDAQ/DJIA is richer than that of S&P500/DJIA
in all time scales. Remarkably, both of the MSE curves reach maxima at about 14
days, implying reassessments on ratios are relatively more active in this time scale.
The entropy of NR � c.6�9/ � r9 for NASDAQ/DJIA is lower than the shuffled
data, generated by randomizing the time series of NR � c.6�9/ � r9 using normal
distribution, in the scale less than 60 days, and that for S&P500/DJIA is less than
the shuffled data in the scale less than 7 days. Interestingly, the information content
in NR � c.6�9/ � r9 for NASDAQ/DJIA is relatively lower than the corresponding
shuffled data resembling to a white noise. There is a weaker correlation between
NASDAQ and DJIA than between S&P500 and DJIA. As a result, larger deviations
of the rescaled indices in Fig. 5.1b for DJIA and NASDAQ than DJIA and S&P500
can be observed in the period from 1999 to 2002. Here for reference, the same
analysis applied to NR � c.6�9/ � r9 of NASDAQ/S&P500 is also presented in
Fig. 5.4b, which shows that the data for NASDAQ/S&P500 also reaches maximum
at about 14 days and is less than its shuffled data in the scale less than 12 days.

We further calculate the dynamical cross-correlations for pairs of the stock mar-
ket indices using logarithmic return, lri.tn/ D log Œxi.tnC1/=xi.tn/�. The dynamical
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cross-correlation between returns of two indices is defined as

�ij.tn/ D .lri � hlrii/
�
lrj � hlrji

�

�i�j
; (5.8)

with �2
i D hlr2

i �hlrii2i the variance of the index, and h� � � i indicates an average over
a time window T. Despite of phase differences in short time scale, the variations of
the indices in large time scale are generally positive correlated (more in phase).
Figure 5.5a shows the window size dependence of the average correlation of the
stock indices. The average correlation between S&P500 and DJIA is stronger than
NASDAQ and DJIA for all window sizes, consistent with inference from the MSE
analysis in Fig. 5.4b that the information content in &P500/DJIA in the cycle less
than half-year is richer than NASDAQ/DJIA. DJIA and NASDAQ have the strongest
correlation at T D 60 days, while the correlation strength between DJIA and
S&P500 grows gradually with time and saturates at T > 1000 days.

Note that the normalized ratio NRij.tn/ in Eq. (5.3) can be rewritten as

NRij.tn/ D 1 C Pn
kD1 G.k/

i

1 C Pn
kD1 G.k/

j

; (5.9)

with

G.k/
i D 1

kŠ

X

tm1 ¤tm2 ���

kY

lD1

gi.tml/: (5.10)

The term G.1/
i is a sum of all the gains. The means of the grains are 0:00032095,

0:00040822, and 0:00031729 for DJIA, NASDAQ, and S&P500, respectively,
and the value of G.1/

i is in the order of 1. The term G.2/
i is proportional to the

autocorrelation function of the gain, defined as C.�/ D R tN ��

t0
ıg.t/ıg.t C �/dt=�2,

with variance �2 D hg2 �hgi2i, and its value is also in the order of 1. The G.k/
i ’s with

k � 3 are combinations of the sum of gains and autocorrelation functions. Further
calculations of G.k/

i show that the values of all G.k/
i ’s of Eq. (5.10) are in the order of

1. Consequently, all G.k/
i ’s have equal contributions to the ratios. We then calculate

the autocorrelation of the absolute gain and the results are shown in Fig. 5.5b. Using
exponential decay model to fit the autocorrelation function, the correlation length
is determined to be 194 days for DJIA, 766 days for NASDAQ, and 238 days
for S&P500, which are less than 4 years. Consequently, from above analysis, we
confirmed that the damped oscillation in 8-year cycle is not a consequence of cross-
correlation and autocorrelation of the indices.
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Fig. 5.5 (a) Window size dependence of the average dynamic cross-correlation stock market
indices. DJIA and NASDAQ has the strongest correlation at T D 60 days, and the correlation
between DJIA and S&P500 grows gradually with time and saturates at T > 1000 days. (Edited
from Fig. 5c of [22]) (b) Autocorrelation functions of the absolute gains. The correlation length
is 194 days for DJIA, 766 days for NASDAQ, and 238 days for S&P500. (Edited from Fig. 6b of
[22])

5.3 Conclusion

In conclusion, from analyzing the ratios of the daily index data of DJIA, NASDAQ,
and S&P500 from 1971/02/05 to 2011/06/30, it can be shown that though three
indices are distinct from one another, using suitable scaling factors, the indices
can be made coincidence very well in several epoches, except NASDAQ in the
periods 1999–2001 and 2009–2011. Sophisticated time series analysis based on
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EMD method further shows that the ratios NASDAQ/DJIA and S&P500/DJIA,
normalized to 1971/02/05, approached and then retained 2 and 1, respectively,
from 1971 to 2011, through damped oscillatory components in 8-year cycle and
damping factors of about 29 years (7183 days for NASDAQ/DJIA) and 554 years
(138,471 days for S&P500/DJIA). Note that the damped oscillation of 8-year cycle
is not associated with the characteristic time scales in the auto-correlation of the
gains and cross-correlation of the returns of the indices. Furthermore, the peak of
NASDAQ/DJIA in the period from 1998 to 2002, which is considered as an anomaly
in the ratio, is a local event that does not appear in the 8-year cycle. The converge
of the damped oscillatory component implies that representative stocks in the pair-
markets become more coherent as time evolves. For the components with cycles
less than half-year, behaviors of self-adjustments are observed in the ratios, and
there is a relatively active reassessment on the ratio in the time scale of 14-days
according to the results of MSE analysis. The behavior of self-adjustment in the
ratio for S&P500/DJIA is more significant than in NASDAQ/DJIA.

Finally we would like to remark that the damped components found in the study
set reasonable bounds to the variations of the indices. It may be informative for risk
evaluation of the markets. This requires further investigations.
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