
Chapter 4
Signs of Market Orders and Human Dynamics

Joshin Murai

Abstract A time series of signs of market orders was found to exhibit long memory.
There are several proposed explanations for the origin of this phenomenon. A
cogent one is that investors tend to strategically split their large hidden orders into
small pieces before execution to prevent the increase in the trading costs. Several
mathematical models have been proposed under this explanation.

In this paper, taking the bursty nature of the human activity patterns into account,
we present a new mathematical model of order signs that have a long memory
property. In addition, the power law exponent of distribution of a time interval
between order executions is supposed to depend on the size of hidden order. More
precisely, we introduce a discrete time stochastic process for polymer model, and
show it’s scaled process converges to a superposition of a Brownian motion and
countably infinite number of fractional Brownian motions with Hurst exponents
greater than one-half.

4.1 Introduction

Empirical studies [2, 6, 8, 11] on high frequency financial data of stock markets that
employ the continuous double auction method have revealed a time series of signs of
market orders has long memory property. In contrast, a time series of stock returns
is known to have short memory property. A time series of order signs is defined by
changing transactions at the best ask price into C1 and transactions at the best bid
price into �1. The auto-correlation function of the order signs decays as a power
law of the lag and the exponent of the decay is less than 1, which is equivalent to a
Hurst exponent of the time series is greater than one-half.

In this paper, we propose a new mathematical model which takes account of
origin of the long memory in order signs. As a first step, we define a discrete time
stochastic process of cumulative order signs in accordance with some explanation
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for the origin of the phenomenon. Subsequently, we verify increments of the process
has the long memory property. In general, there are three ways to verify a discrete
time process has some property. The first one runs computer simulations. The
second calculates the distribution of the discrete time process directly. And the third,
which we use in this paper, is to show that the scaled discrete time process converges
to a continuous process which has that property.

There are various explanations for the origin of the long memory property of
order sings [3]. A cogent one, which was proposed by Lillo et al. [9], is that investors
tend to strategically split their large hidden orders into small pieces before execution
to prevent the increase in the trading costs. Empirical findings partially support this
explanation. A long memory phenomenon is found in a time series of order signs of
transactions initiated by a single member of the stock market [3, 8]. Investors enter
their orders into the market through one of its members.

Assuming the size of hidden orders distributes as a power law, Lillo et al. [9]
considered a discrete time mathematical model with this explanation. Under an
additional technical assumption that the number of hidden orders is fixed, they
showed rigorously the model has a long memory property. However, this technical
assumption does not seem natural.

Taking account of the bursty nature of human dynamics [1], Kuroda et al. [7]
proposed another theoretical model with this explanation. They assumed that a time
interval between order executions distributes as a power law, and that the power law
exponent does not depend on the size of hidden order. Under an additional technical
assumption that the size of hidden order is bounded above, they showed the scaled
discrete time process converges to a superposition of a Brownian motion and a finite
number of fractional Brownian motions with Hurst exponents greater than one-half.
Moreover, the number of hidden orders is not fixed in their model, and it randomly
varies. Although, the maximum Hurst exponent of obtained process depends on the
largest hidden order.

The Hurst exponent of order signs expected by the theory of splitting large hidden
order is smaller than the value of the empirical study [3]. About stocks with high
liquidity, the fluctuation of Hurst exponents of order signs is small by a stock and
a period [6]. These findings suggest that there might be some other cause about the
long memory of order signs. We can pay attention not only to large hidden orders
but also to small hidden orders. Vázquez et al. found two universality class in human
dynamics [13]. On the other hand, Zhou et al. observed that in an online movie rating
site, a power law exponent of the time interval between user’s postings depends on
user’s activity [15].

In this paper, we propose a new mathematical model with an explanation for
the origin of long memory of order signs that investors split their hidden order
of any size into small pieces before execution. We assumed that the power law
exponent of distribution of a time interval between order executions depends on
the size of hidden order. We showed the scaled discrete time process converges to
a superposition of a Brownian motion and countably infinite number of fractional
Brownian motions with Hurst exponents greater than one-half. We note that the
number of hidden orders randomly varies, that Hurst exponents are not bounded
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above and that the maximum Hurst exponent of obtained process depends on hidden
order of medium size.

4.2 Model

In this section, we introduce a probability space .˝n; Pn/, where n is a natural
number. In the next section, we will define a discrete time stochastic process in
time interval �n D f1; 2; : : : ; ng which describes cumulative order signs on the
probability space. And we will show the increment of the process has a long memory
property. We note that in this paper we only study the order sign and do not consider
the stock price.

All essential assumptions our model requires for the market is as follows:

• Investors tend to split their hidden orders into small pieces before execution.
• The distribution of a time interval between order executions obeys a power law.
• The power law exponent of the inter-event distribution depends on the size of the

hidden order.

A hidden order of one investor in a stock market and execution times of its small
pieces is denoted by p. Namely, p has two quantities: the order sign s.p/ D s and
the set of times of executions b.p/ D fu1; : : : ; umg, where m � 1 is the number
of small pieces of the hidden order split by the investor. We call p a polymer using
the terminology of a mathematical method called the cluster expansion, which we
will use to prove our main theorem. A method of the cluster expansion is developed
in the study of the statistical physics and is applied for instance to convergence
theorems of the phase separation line of the two dimensional Ising model [4, 12].
Since the cluster expansion is defined in an abstract setting [5], it can be applied to
a financial model [7, 14].

It is known that a time series of trading volume in a stock market exhibits long
memory [10]. However, we do not consider the memory of the trading volume in
this paper; we suppose the volume of each piece is 1 just for the sake of simplicity,
and we emphasize it is not technical assumption. Consequently, the number m of
small pieces is equivalent to the size (or the total volume) of the hidden order. For
any polymer p, we can also regard m as the amount of activity of a investor in time
period of her holding the polymer. Meanwhile, investors often do not split their own
orders and submit it in a stock market at once. This situation is also included in our
model as m D 1. Although the model proposed by Kuroda et al. [7] assumed that
m is bounded above, that is, the maximum value of m is finite, our model does not
require any restriction on the maximum value of m. More precisely, m has an upper
bound log log n, and n tends to infinity in our main theorem.

The order sign s.p/ is assigned to C1 or �1 according to whether the hidden
order is a buy order or a sell order. For any polymer p, its order sign s.p/ is a single
value. Obviously, different valued order signs are possibly assigned to different
polymers possessed by one investor. In our model, the distribution of order signs
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is symmetry:

Pn .s.p/ D C1/ D Pn .s.p/ D �1/ D 1

2
: (4.1)

Each element of the set of times of executions b.p/ D fu1; : : : ; umg is an integer.
Their magnitude relation is given as u1 < u2 < � � � < um, that is, the first piece of
the hidden order is executed at u1, and the last one is executed at um. For any distinct
two polymers p1 and p2, their execution times do not overlap:

b.p1/ \ b.p2/ D ;: (4.2)

Since we will observe the discrete time stochastic process of cumulative order
signs in time interval �n, it is enough to consider only polymers p which satisfy

b.p/ \ �n ¤ ;: (4.3)

Taking the bursty nature of the human activity patterns into account, we assume that
the distribution of a time interval between order executions obeys a power law and
that its exponents ˛.m/ depends on the size (or the activity) of the polymer:

Pn .ui; ui�1 2 b.p/; p is a polymer of size m/ / .ui � ui�1/
�˛.m/: (4.4)

According to an empirical study on human dynamics [15], power law exponents of
the inter-event times are increasing in a parameter of activity. Hence, it suggests that
the exponent ˛.m/ is increasing in m. Our model does not require that the exponent
is increasing, though it requires some condition on the exponent.

In the following, we define our model using the mathematical terminology. Let
n be a natural number and �n D f1; 2; : : : ; ng be an observation time of a discrete
time process. We describe a hidden order and its execution times of small pieces by
a polymer.

Let Pn;1 be the set of all polymers corresponds to hidden order of size 1:

Pn;1 D fp D .s; u/ I s 2 fC1; �1g; u 2 �ng : (4.5)

For each polymer p D .s; u/ 2 Pn;1, we denote the order sign by s.p/ D s, the time
of execution by b.p/ D fug and the size of hidden order by jpj D 1.

For any m, .2 � m � log log n/, we define the set of all polymers corresponds to
hidden order of size m by

Pn;m D fp D .s; u1; : : : ; um/ I s 2 fC1; �1g; fu1; : : : ; umg \ �n ¤ ;;

1 � ui � ui�1 � n .i D 2; : : : ; m/g :



4 Signs of Market Orders and Human Dynamics 43

For each polymer p D .s; u1; : : : ; um/ 2 Pn;m, we denote the order sign by s.p/ D s,
the set of times of executions by b.p/ D fu1; : : : ; umg and the size of hidden order
by jpj D m. The set of all polymers is denoted by

Pn D
log log n[

mD1

Pn;m: (4.6)

The configuration space is denoted by

˝n D
n[

kD1

˚
! D fp1; : : : ; pkg � Pn I b.pi/ \ b.pj/ D ;; .1 � i < j � k/

�
:

(4.7)

Example 1 We consider the case that n D 10 and ! D fp1; p2; p3; p4g 2 ˝10. Each
polymer has order sings and the set of execution times as follows:

Polymer Order sign The set of execution times Size

p1 s.p1/ D �1 b.p1/ D f�1; 3g m D 2

p2 s.p2/ D C1 b.p2/ D f2; 5; 6g m D 3

p3 s.p3/ D �1 b.p3/ D f4; 9; 11; 13g m D 4

p4 s.p4/ D C1 b.p4/ D f8g m D 1

We note that the sets of execution times intersect with �10 and do not intersect
each other (see Fig. 4.1).

The power law exponent ˛.m/ of distribution of a time interval between order
executions depends on the size m of hidden order, and satisfies

1 � 1

m � 1
< ˛.m/ < 1 � 1

m

�
3

4

�m

: (4.8)

time
− 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

p1 (− 1)

p2 (+ 1)

p3 (− 1)

p4 (+ 1)
Λ10

Fig. 4.1 Configuration of Example 1. The configuration consists of four polymers p1, p2, p3 and
p4. Numbers C1 or �1 in parentheses are order signs of polymers. Black circles are times of
executions. A discrete time stochastic process of cumulative order signs will be defined in time
interval �10
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A probability intensity function of a polymer p 2 Pn is given by

'.p/ D

8
ˆ̂̂
<

ˆ̂̂
:

d.n; 1/ .p D .s; u/ 2 Pn;1/

d.n; m/

mY

iD2

.ui � ui�1/
�˛.m/ .p D .s; u1; : : : ; um/ 2 Pn;m;

2 � m � log log n/;

(4.9)

where scale factors d.n; 1/ and d.n; m/ are given by

d.n; 1/ D c .log n/�4 ;

d.n; m/ D d.n; 1/

�
c � .1 � ˛.m//

e � n1�˛.m/

� m�1

;

and c .0 < c < 1/ is a constant. We define a probability measure on ˝n by

Pn.!/ D 1

�n

Y

p2!

'.p/; .! 2 ˝n/;

where �n D
X

!2˝n

Y

p2!

'.p/ is a normalization constant.

4.3 Main Theorem

We define a discrete time stochastic process of cumulative order signs by

Su.!/ D
X

p2!

s.p/

uX

vD1

1fv2b.p/g; .u 2 �n; ! 2 ˝n/: (4.10)

We note that the increment Su.!/ � Su�1.!/ of the process is order signs. In order
to verify that the increment exhibits long memory, we show that the scaled process
of the discrete time process converges to a continuous time stochastic process, the
increment of which has a long memory property.

Example 2 Let n D 10 and the configuration ! D fp1; p2; p3; p4g be the same one
given in Example 1. The discrete time stochastic process is as follows:

Time u 1 2 3 4 5 6 7 8 9 10

Order sign C1 �1 �1 C1 C1 C1 �1

Su.!/ 0 C1 0 �1 0 C1 C1 C2 C1 C1
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A scaled process of Su.!/ is given by

X.n/
t .!/ D 1

c.n/

X

p2!

SŒnt�.p/; .0 � t � 1; ! 2 ˝n/; (4.11)

where c.n/ D p
n � d.n; 1/ D p

cn1=2 .log n/�2 is a scale function, and Œnt� indicates
the greatest integer less than or equal to nt.

Theorem 1 The distribution of X.n/
t weakly converges to the distribution of

Xt D p
c1Bt C

1X

mD2

m�1X

`D1

p
c2.m; `/B

Hm;`
t ; .0 � t � 1/; (4.12)

where

c1 D 2

1X

mD1

m
�c

e

�m�1

;

c2.m; `/ D 4 .1 � ˛.m//`�1 .m � `/B`.˛.m//

` f.1 � ˛.m// ` C 1g
�c

e

�m�1

;

B`.˛.m// D � .1 � ˛.m//`

� .`.1 � ˛.m///
;

Bt is a standard Brownian motion, B
Hm;`
t is a fractional Brownian motion with Hurst

exponent

Hm;` D 1

2
f.1 � ˛.m//` C 1g (4.13)

and
n
Bt; B

Hm;`
t I m � 2; 1 � ` � m � 1

o
are independent.

Remark 1 For any m � 2 and 1 � ` � m � 1, it follows from the condition

1 � 1

m � 1
< ˛.m/ (4.14)

that Hm;` < 1. And it follows from the condition

˛.m/ < 1 � 1

m

�
3

4

�m

(4.15)

that

1X

mD2

m�1X

`D1

c2.m; `/ < 1: (4.16)
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Remark 2 Let us consider a continuous time stochastic process Zt of a superposition
of two independent (fractional) Brownian motions BH

t and B QH
t with Hurst exponents

1
2

� H < QH < 1:

Zt D aBH
t C QaB QH

t (4.17)

where a; Qa are constants. We note that when H D 1
2
, since B1=2

t is a Brownian
motion, the process Zt is a superposition of a Brownian motion and a fractional
Brownian motion. We define an increment of the process by �Zt D Zt � Zt�1. Since
EŒ�Zt� D 0 and Var.�Zt/ D a2 C Qa2, the auto-correlation function of the increment
is

�Z.�/ D EŒ�Zt �ZtC� �

a2 C Qa2
D a2

a2 C Qa2
E

	
�BH

t �BH
tC�


 C Qa2

a2 C Qa2
E

h
�B QH

t �B QH
tC�

i

� Qa2

a2 C Qa2
QH.2 QH � 1/�2 QH�2 .� ! 1/: (4.18)

Hence, we see that the Hurst exponent of Zt is QH D max
˚
H; QH�

. In a similar way,
it can be verified that the Hurst exponent of the process Xt in Theorem 1 is

Hmax D max fHm;` I m � 2; 1 � ` � m � 1g

D max
m�2

1

2
f.1 � ˛.m//.m � 1/ C 1g : (4.19)

Remark 3 In the model of Kuroda et al. [7], since they assume that the exponent of
inter-event time distribution is a constant ˛.m/ D ˛, they need to put a limitation
on the size of hidden order: m � mmax where mmax is a positive number. Then,
they derive finite number of fractional Brownian motions. And the maximum Hurst
exponents Hmax is attained by the largest size mmax of hidden orders.

In our model, we set no limitation on the size m of hidden orders. As a result,
we derive countably infinite number of fractional Brownian motions. On the other
hand in the empirical study the size of the hidden order has some limitation, and the
upper bound of the size possibly depends on markets or stocks. A finite number of
fractional Brownian motions appears in the case.

If exponents ˛.m/ is increasing in size m [15], then

1

2
f.1 � ˛.m//.m � 1/ C 1g (4.20)

is not monotone function in m. Hence the maximum Hurst exponents in (4.19) is
attained by middle size m� of hidden orders.
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4.4 Outline of the Proof of Theorem 1

In order to prove the main theorem, we show a convergence of a finite dimensional
distribution, and show the tightness. In this section, we give an outline of the proof of
Theorem 1. The detail of the proof is complicated. The interested reader is referred
to Kuroda et al. [7].

For any 0 < t1 < : : : < tk � 1 and any z D .z1; : : : ; zk/ 2 Rk, we define

Y.n/.!/ D Y.n/
t;z .!/ D

Y

p2!

kX

iD1

ziX
.n/
ti .p/; .! 2 ˝n/: (4.21)

Its characteristic function is denoted by

	
.n/
t .z/ D En

h
e

p�1Y.n/
i

(4.22)

Using the method of the cluster expansion [5, 12], we have

log 	
.n/
t .z/ D

X

A2An

�
e

p�1Y.n/.A/ � 1
�

'.A/
˛T.A/

AŠ
(4.23)

where An D fA W Pn ! f0; 1; 2; : : :gg , and for any A 2 An, AŠ D
Y

p2Pn

A.p/Š ,

Y.n/.A/ D
X

p2Pn

Y.n/.p/A.p/ D
X

p2Pn

kX

iD1

ziX
.n/
ti .p/A.p/;

'.A/ D
Y

p2Pn

'.p/A.p/;

˛.A/ D
(

1 AŠ D 1 and supp .A/ 2 ˝n

0 o:w:;

supp .A/ D fpg and ˛T .A/ D Log ˛.A/. Applying the Taylor’s expansion, we obtain

log 	
.n/
t .z/ D p�1I1.n/ � 1

2

n
I2.n/ C OI2.n/

o
�

p�1

3Š

n
I3.n/ C OI3.n/

o
(4.24)

where

I1.n/ D
X

A2An

Y.n/.A/'.A/
˛T.A/

AŠ
;
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I2.n/ D
X

p2Pn

˚
Y.n/.p/

�2
'.p/; OI2.n/ D

X

A2An;jAj�2

˚
Y.n/.A/

�2
'.A/

˛T.A/

AŠ
;

I3.n/ D
X

p2Pn

˚
Y.n/.p/

�3
e

p�1
Y.n/.p/'.p/;

OI3.n/ D
X

A2An;jAj�2

˚
Y.n/.A/

�3
e

p�1
Y.n/.A/'.A/
˛T .A/

AŠ

for some 
 2 .0; 1/ and jAj D
X

p2Pn

A.p/ for any A 2 An. From the symmetry

property of the model, we have

I1.n/ D 0: (4.25)

It is easy to see that

lim
n!1 I3.n/ D 0: (4.26)

It follows from the theory of Kotecký and Preiss [5] and the Cauchy formula that

lim
n!1

OI2.n/ D 0; lim
n!1

OI3.n/ D 0: (4.27)

It can be seen that

lim
n!1 I2.n/ D c1

kX

iD1

kX

jD1

zizj minfti; tjg

C
kX

iD1

kX

jD1

zizj

1X

mD2

m�1X

`D1

c2.m; `/
1

2

n
t
Hm;`

i C t
Hm;`

j � ˇ̌
ti � tj

ˇ̌Hm;`
o

:

Hence we have shown a convergence of the finite dimensional distribution.
Using Pfister’s lemma (Lemma 3.5 in [12]), it can be shown that there are a

positive constant c3 > 0 and a positive number n0 2 N such that for any n � n0 and
any 0 � r � s � t � 1,

En

��
X.n/

s � X.n/
r


2
�

X.n/
t � X.n/

s

�2
�

� c3.t � r/2: (4.28)

Hence we have shown the tightness condition. Therefore we complete the proof of
Theorem 1.
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4.5 Conclusion

Using a method of the cluster expansion developed in the study of the statistical
physics, we introduced a new mathematical model with the explanation for the
origin of long memory of order signs that investors split their hidden order of any
size into small pieces before execution. The power law exponent of distribution of
a time interval between order executions was supposed to depend on the size of
hidden order. The limit process of the scaled discrete time process was found to be
a superposition of a Brownian motion and countably infinite number of fractional
Brownian motions with Hurst exponents greater than one-half. Namely, increments
of the limit process have a long memory property. The maximum Hurst exponent of
obtained process was described as

Hmax D max
m�2

1

2
f.1 � ˛.m// .m � 1/ C 1g : (4.29)

The power law exponent ˛.m/ of distribution of a time interval between order
executions was supposed to be increasing, cf. [15]. Thus, investors having a hidden
order of medium size m�, which attains the maximum in (4.29), have an influence
on the Hurst exponent of order signs. It should be noted that in the empirical study,
the power law exponent of the auto-correlation function �.`/ of order signs is
determined by middle region of lag `. Hence, investors who have an influence on
the Hurst exponent of order signs depends on size m of their hidden order, the power
law exponent ˛.m/ and the distribution of investors.
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