
Chapter 16
A Universal Lifetime Distribution
for Multi-Species Systems

Yohsuke Murase, Takashi Shimada, Nobuyasu Ito, and Per Arne Rikvold

Abstract Lifetime distributions of social entities, such as enterprises, products,
and media contents, are one of the fundamental statistics characterizing the social
dynamics. To investigate the lifetime distribution of mutually interacting systems,
simple models having a rule for additions and deletions of entities are investigated.
We found a quite universal lifetime distribution for various kinds of inter-entity
interactions, and it is well fitted by a stretched-exponential function with an
exponent close to 1/2. We propose a “modified Red-Queen” hypothesis to explain
this distribution. We also review empirical studies on the lifetime distribution of
social entities, and discuss the applicability of the model.
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16.1 Introduction

Society is a system of diverse coexisting entities showing a high turnover of its
membership [1]. Examples of such entities include enterprises, products, and media
contents. Lifetime distributions of these entities are one of the most fundamental
properties of such systems. Thus, understanding of these distributions will reveal
the underlying social dynamics. For example, the lifetime of products would be
strongly related to the market trend, and the lifetime of enterprises can be a crucial
condition for the stability of economic activity and employment. Although several
models have been proposed to fit lifetime distributions, most of these models do
not explicitly take into account the interactions between entities. Lifetime distribu-
tions of mutually interacting systems are not fully understood even though these
interactions often play a significant role in actual society as we see, for example,
in cascading bankruptcies of enterprises. In this short article, we investigate the
lifetime distributions for “ecosystem” like systems, where diverse entities undergo
competition for survival.

Several theoretical models have been proposed for lifetime distributions. The
simplest assumption is that an “extinction” (the elimination of an entity) occurs
randomly with a constant rate, i.e., characterized by a Poisson process [2]. The
lifetime distribution of “species” (a social entity) is then a simple exponential
function. Although this assumption is mathematically simple, it is radical from a
sociological point of view because no evolutionary advantage or aging effect is taken
into account. This hypothesis is known as the Red-Queen hypothesis or Van-Valen’s
law in evolutionary ecology. On the other hand, if mortality rate is dependent on
age, the lifetime distribution deviates from a simple exponential function [3, 4]. If a
long-lived species has an evolutionary advantage, the probability that a species goes
extinct will be a decreasing function of its age. This assumption seems reasonable
because a species which has been successful in surviving is expected to have some
superior properties. The decreasing mortality function yields a lifetime distribution
with a heavier tail than the corresponding exponential function. If a long-lived
species has higher mortality than a younger species, perhaps due to its aging or
degradation, the lifetime distribution will decay faster than the exponential one.
Another simple model is the return-time distribution of random walks [5]. Assuming
that “fitness” of each species, which may be population or any other measure of the
distance from extinction, follows a neutral random walk, the lifetime distribution
will be modeled by a return time distribution, which is known to be approximately
t�3=2. If we assume a critical branching process instead of a random walk, we find
a t�2 power law. A more general theory which combines a random walk and a
branching process was also proposed [6].

All the above models consider a stochastic process of one species. Lifetime
distributions of mutually interacting species have been investigated mainly in the
context of biological coevolution [7, 8]. Among the simplest models of a mutually
interacting system are the so-called self-organized criticality (SOC) models, which
predict power laws [9]. In addition to these simplistic models, population dynamics
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models or individual based models are also proposed with the aim of bridging the
ecological and evolutionary timescales. These include the tangled-nature models
[10–17], the web-world model [18, 19], and others [20, 21]. All those models have
population dynamics of each species (or birth-death process at an individual level)
and rules for the emergence and extinctions of species. Some of these show a
power law lifetime distribution t�2 [12–17] while others show a curved line that
lies somewhere between a power law and an exponential distribution: concave
on a log-log plot and convex on a semi-log plot [17, 20]. Interestingly, these
seem to be classified into a few universality classes regardless of the apparent
diversity of the models [17]. In the models which add new species with randomly
determined interaction coefficients, a skewed lifetime distribution is universally
observed under various population dynamics equations. This type of addition of
new species is called “migration” because a new species is not correlated with the
current species at all. On the other hand, with the “mutation” model, where a new
species appears as a result of a modification of a current species, t�2 power law is
robustly observed. Even though the models have quite different numbers of species,
types of interactions, and network topologies, they share similar species-lifetime
distributions implying the existence of universality.

In this article, we mainly focus on the skewed profile found for migration rules
because it is the simplest model to add a new species. We will show the origin of
the skewed profile by introducing a simple graph model. In the next section, the
model definition and its typical results are given. In Sect. 16.3, the origin of the
skewed profile is explained using what we call the modified Red-Queen hypothesis.
Then, in Sect. 16.4 we review the empirical data observed in society and discuss
their relation with the model. The last section is devoted to conclusions.

16.2 Dynamical Graph Model

In order to investigate the lifetime distributions of mutually interacting systems, we
propose a simple dynamically evolving model which was originally introduced for
biological community assembly [22]. A system is represented by a weighted and
directed network, which self-organizes by successive migrations and eliminations
(extinctions) of nodes. Each node i has a state variable called “fitness” fi, which is
defined as the sum of the weights of incoming links, i.e., fi D P

j aij, where aij is
the weight of a link from node j to i. Node i can survive if its fitness is larger than or
equal to zero, otherwise it is eliminated from the system.

At each time step, a new node is added to the system. New links between existing
nodes and the new node are randomly assigned with probability c, whose weights
are randomly drawn from the Gaussian distribution with mean 0 and variance 1.
After a migration, the species with minimum fitness is identified and is eliminated
from the system if the minimum fitness is negative. Since the extinction of a node
affects the fitness of other species, successive extinctions can happen. This process
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(a) (b) (c)

Fig. 16.1 An example of the model dynamics. Nodes and arrows denote species and interactions,
respectively. (a) Before the migration of species D, species A, B, and C coexist (b) When species
D immigrates into the community, species B goes extinct (c) Then, another resident species A goes
extinct due to the extinction of species B. After extinctions of species A and B, all remaining species
(C and D) have positive fitness values. The figure is taken from [22]

is repeated until all the fitness values in the system become non-negative for each
time step. (See Fig. 16.1.)

This simple model reproduces a characteristic skewed lifetime distribution found
for population dynamics models with migration rules. As shown in Fig. 16.2, the
distribution is neither a simple exponential nor a simple power law distribution. It
is well fitted by a stretched exponential function with an exponent close to 1/2.
Note that the number of species N fluctuates in a finite range and the statistics are
taken from a statistically stationary state. Since this model shares a similar profile
to ones for more complicated population dynamics models, this model is expected
to capture the essential aspects of the skewed lifetime distribution.

16.3 Modified Red-Queen Hypothesis

The lifetime distribution corresponding to a stretched exponential function with
exponent 1=2 is explained by what we call the modified Red-Queen hypothesis.
This hypothesis assumes that the mortality of each species is not dependent on its
age but on the number of species in the system. Let us assume that N fluctuates in a
finite range, and that the probabilities that N increases or decreases are independent
of N. In other words, we assume that N follows a random walk with a negative
drift. (Without a negative drift, we would get a divergence of N.) These assumptions
can be obtained by a mean-field analysis [23, 24]. Based on these assumptions,
the extinction probability of a species is proportional to 1=N, meaning that the
typical species lifetime � is proportional to N. Because a stable distribution of N
is an exponential function under these assumptions, a species-lifetime distribution
is then expressed by a superposition of exponential functions of time scale � with
an exponential weight:
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Fig. 16.2 Species-lifetime distribution on log-log scales and linear-log scales (inset) for the
dynamical graph model. Fitting curves are also shown with a stretched exponential function and a
simple exponential function. In the inset, a fitting with a simple exponential function is also shown
as a guide to the eye. This figure is modified based on a figure in [22]

p.t/ D
Z 1

0

exp.�t=�/

�
b exp.�b�/d� (16.1)

� p
�.bt/�1=4 exp .�2

p
bt/ .t � 1/; (16.2)

where b is a coefficient which depends on the probability that N decreases. This set
of assumptions is called the modified Red-Queen hypothesis because the mortality
is independent of the age of species.

These assumptions are validated by calculating mortality against communities
obtained by simulations. We calculated the probability that each resident species
goes extinct in the next time step by adding a test immigrant to the snapshot of the
simulations. The relationship between mortality and the age of a species is shown
in Fig. 16.3 for several numbers of species N. For all N, mortalities show a sharp
decrease at t � 0 and then converge to a constant value which is approximately
proportional to 1=N. These results are in good agreement with the modified Red-
Queen hypothesis.

The reason that the mortality does not depend on the age t but on N is explained
by the time evolution of the fitness distribution. Let us calculate the probability
distribution of the fitness of a species at age t, Pt. f /, under the assumption that N is
fixed, i.e., one immigrant comes to the system and one resident species goes extinct
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Fig. 16.3 Average probability that a species goes extinct (mortality) as a function of the age for
communities of N D 5, 10, 20, 40, 80, and 160. This figure is taken from [22]

at each time step. For simplicity, we discuss the case that c D 1. The distribution of
the fitness of a newcomer which succeeded in migrating, P0. f /, is given by

P0. f / D
�

2N .0; N/ . f � 0/

0 . f < 0/
; (16.3)

where N .0; N/ denotes the Gaussian distribution with mean 0 and variance N,
because the fitness is the sum of N Gaussian random numbers. At the next
time step, the fitness changes due to the migration and the extinction. While
the interaction coefficient with an immigrant species is given by N .0; 1/, the
interaction coefficient with the resident species should have a positive mean because
the sum of the incoming links is positive. Therefore, we assume that the distribution
of the interaction with the resident species is N .�t=N; 1/ where �t is the mean
of Pt. f /. In total, the distribution of total change in fitness for each time step
is the convolution of N .0; 1/ and N .��t=N; 1/, i.e., N .��t=N; 2/. Under this
assumption, the time evolution of Pt. f / is calculated as follows:

PtC1. f / D
�

CtC1 � ŒPt � N .��t=N; 2/� . f / . f � 0/

0 . f < 0/
; (16.4)
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Fig. 16.4 (left) Time evolution of the probability density function of the fitness, Pt. f /, under the
fixed-N approximation for N D 10. (right) The probability of the species that goes extinct as a
function of age. The probability is calculated under the fixed-N approximation for several N

where Ct is the normalization coefficients and the operator � denotes the convolu-
tion. The coefficient Ct is determined so that the positive part of the convolution
function is normalized. From this equation, mortality at each time step, m.t/ is also
calculated as the ratio of the negative part of the convolution function. Numerically
calculated time evolution of Pt. f / and m.t/ are shown in Fig. 16.4. As t increases,
Pt. f / and m.t/ approach a constant profile and a constant value, respectively. The
value to which m.t/ converges is inversely proportional to N. All these are consistent
with the simulation results and the modified Red-Queen hypothesis.

While the mortality converges to a constant value for large t, it shows a
sudden drop at t � 0. It means species that have just entered the system are
more susceptible to extinctions than long-lived species. This fact implies that the
species compositions depend on the way they are constructed. For example, let
us prepare an initial state with one thousand species whose coupling constants are
randomly assigned from a Gaussian distribution with mean zero. After starting the
dynamics of extinction, the community immediately loses approximately half of
the species, while the rest of the species can coexist. The community constructed
in this way (here, we call it “prepared” community) is qualitatively different from
the communities constructed by repetitive migration-extinction processes (here, we
call it “trial-and-error” community). This difference is observed in the robustness
against the migrations of new species. Figure 16.5 shows the time evolution of
N for a prepared community which starts from N D 1000. Although 423 species
survived at t D 0, most of these species went extinct as soon as migrations of
new species were started. Thus, prepared communities are fragile against migration
of new species because the fitness distribution in prepared communities has a
peak at around zero. On the other hand, the trial-and-error communities are robust
against migrations. The number of species N for the trial-and-error communities
keeps fluctuating around a constant value under successive migrations. This is an
important implication that the model for the society should include a kind of trial-
and-error construction process, otherwise we might miss an important point.
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Fig. 16.5 Time development of the number of species. A community with one thousand species
whose interactions were randomly assigned was used as an initial state. The number of coexisting
species was 423 after eliminating the unfit species from the initial state. Then, migrations are
applied. Due to the migrations, the number of species drops immediately. Connectance c D 0:2

was used

Finally, it should be emphasized that the modified Red-Queen hypothesis is
quite different from the assumption of age-dependent mortality. Actually, assuming
the mortality function proportional to t�1=2 can yield a Weibull distribution with
exponent 1=2, thus a similar lifetime distribution is obtained [4]. However, these
two assumptions have a crucial difference when predicting the extinction risk of
a species. The extinction risk can be estimated based on species age if an age-
dependent mortality is valid, although this is not the case under the modified
Red-Queen hypothesis. Furthermore, the modified Red-Queen hypothesis answers
why the exponent is 1=2 while the age-dependent mortality can assume an arbitrary
exponent.

16.4 Relation with Empirical Data

In this section, we review several empirical data sets and discuss the applicability of
our models.

The first example is product life cycles in a Japanese convenience store chain
[25]. It was found that the lifetime distributions of noodles, juice, and sandwiches
show similar curves. Interestingly, these curves are fitted by the Weibull distribution
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with an exponent close to 1=2, which is quite similar to the distribution found in
our model. Moreover, this skewed profile is found also in biological coevolution.
The data estimated from the fossil record show a skewed profile [3]. Although a
q-exponential fit is proposed in [3], the stretched exponential function fits the data
as well. It indicates the universality shared by sociological and biological systems.

The second example is the lifetime distribution of Japanese firms. The lifetime
distribution of Japanese firms which went bankrupt in 1997 is well approximated
by a simple exponential function [26], hence it seems consistent with the (non-
modified) Red-Queen picture. Thus, we can conclude that the age-dependent
mortality picture is not valid at least for Japanese firms. On the other hand, these
data are not sufficient to reject the modified Red-Queen hypothesis even though
the distribution is not skewed. This is because the period of the measurement is
only one year, which is much shorter than the typical lifetime. A measurement on
longer time scales will deepen our understanding of the bankruptcy dynamics of
enterprises. Another possible reason for the inconsistency with our model is that
the model assumes that the migration frequency of new species is independent of
N. If we assume an N-dependent migration rate, we will get a different lifetime
distribution. Data on the occurrence frequency of new enterprises would clarify this
point.

Several lifetime distributions of media contents have also been investigated.
Media contents can be interacting with each other as most of these are competing
for the attention of potential consumers.

The first data set of media contents is movie popularity [27]. The cumulative
distribution of the persistence time of a movie fits a stretched exponential form
with an exponent about 1:6, indicating that it decays faster than exponentially. This
quick decay is explained by a few observed stylized facts and an assumptions that a
movie is withdrawn when the gross income per theater gets below a threshold value.
The observed statistics shows a 1=t decay in gross income of a movie per theater,
indicating that the mortality of a movie increases with age due to aging. That is why
we see a faster decay than a simple exponential function.

Another example of media contents is comic series. Figure 16.6 shows the
cumulative lifetime distributions of comic series that have run in three major
Japanese weekly comic magazines. We defined the lifetime of each comic series
as the duration between the first and the final issues, and collected data from a
Wikipedia article which contains the list of the start and end dates for each series.
Since the termination of a series should strongly depend on its popularity, the series
are competing with each other for a limited number of concurrent series. As we see
in the figure, all these distributions show approximate exponential decays. Thus, the
Red-Queen picture looks the most reasonable hypothesis for comic series. This is
clearly different from the movie duration. We conjecture the reason of the difference
is that the comic series has a new story every week while a movie is not renewed.
One of the possible reasons that the dynamical graph model is not applicable is that
the number of concurrent series does not show fluctuations, which is a key for the
modified Red-Queen hypothesis.
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Fig. 16.6 The cumulative distribution functions of lifetimes of the series that have run in Weekly
ShNonen Jump, Weekly ShNonen Magazine, and Weekly ShNonen Sunday. The lists were obtained
from the Japanese pages of [28–30] in December 2009. Currently running series are not included
in the statistics

Another data set of persistence in social media can be found for Twitter [31].
A recent study showed that the length of a topic sequence follows an approximate
t�2 power law. This is the most heavy-tailed distribution among the above. One
of the characteristic points of Twitter trends is that a trend can be recurrent, i.e., the
trends appear more than once. The dynamical graph model clearly misses this point.
Therefore, the model is not appropriate for Twitter trends.

16.5 Conclusion

In this article, we investigated the lifetime distribution for an interacting systems. A
skewed lifetime distribution is robustly observed for a wide range of models, and it
fits a stretched exponential function with exponent 1=2. We proposed the dynamical
graph model and revealed that this profile is explained by the modified Red-
Queen hypothesis. This hypothesis is a novel idea and its meaning is completely
different from the age-dependent mortality assumption even though both yield
similar profiles.

We also reviewed empirical data sets and discussed the applicability of the model.
While some data sets are similar to our model, dissimilar data sets are also common.
It is clear that the dynamical graph model is one of the simplest models for mutually
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interacting systems, hence it is not applicable to all the data. Based on this study, we
expect further exploration both of theoretical models and empirical data.

A theoretically important question is to find other universality classes and
identify key factors which change these classes. For example, it is not clear what
is the fundamental difference between the dynamical graph and the SOC models.
Effects of the network topology is another big open question. The dynamical graph
model is essentially described by an Erdös-Rényi random network, however real-
world networks have internal structures. Studies of scale-free networks or modular
networks are expected. We will get a much deeper insight into the dynamics of
diverse and open systems, when these questions are answered.
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