Chapter 14
Geographic Dependency of Population
Distribution
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and Tsutomu Watanabe

Abstract The agglomeration effect of population, which explains why many
people live near places where many other people also live, is one important
interaction that influences human population. We examine the agglomeration effect
by measuring the distribution of the logarithmic differences between populations
living in two places separated by some distance. The shapes of the distributions of
the logarithmic differences closely resemble each other without depending on the
regions or the country in cases of small scale of separation distance. This result
suggests a unified explanation to understand the population distributions of various
regions.
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14.1 Introduction

Population distribution has been studied for many decades. Zipf’s law [1], which
argues that the size distribution of a city’s population is a power-law, is known
well [2-6]. However, a problem exists: how to define the area of cities when we
observe population distributions. The tail of a power-law distribution is composed of
megacities. By dividing megacities into several smaller cities, the distribution’s tail
becomes thin. Because of the different definitions of a city, population distribution
is not a power-law distribution but a log-normal one [7-9]. City areas have been
decided by geographical, historical, and administrative factors. Rozenfeld et al.
proposed a method that decided a city’s area by a city clustering algorithm [10]. In
this research, we divide spatial regions by a method that ignores the shape of cities
to find the properties of population distribution that do not depend on countries or
local regions.

We investigated population distribution using a spatial division method by
identically sized squares. This approach resembles a previous method [9]. In our
case, we control the scale of the spatial division by changing the size of the squares
and clarify the universal properties concerned with population agglomeration.
Population’s universal properties can be observed by changing the scale of the
spatial division.

We introduce logarithmic differences between the nearest neighbor two square
blocks in terms of population. The regional dependence of these values in terms
of the shape of the distributions vanishes for small size scales. The property of the
distribution of logarithmic differences is concerned with the correlation coefficient
of the population in two squares. This correlation is one index to measure population
agglomeration.

In this research, we investigate Japanese population data. In Sect. 14.2, we
introduce eight regions to investigate local properties inside Japan. In Sect. 14.3, we
compare several distributions concerned with population among these eight regions.
Next we compare Japan and Europe in Sect. 14.5 and show the universal properties
concerned with population in both cases.

14.2 Basic Information of Japanese Population

The Statistics Bureau of the Japanese Ministry of Internal Affairs and Communi-
cations conducts a census every five years. Much census data can be obtained in
a mesh data format from its websites [11], including population data from 2000,
2005, and 2010. The mesh data are raster data that are obtained by equally dividing
latitudes and longitudes. A mesh size of about 500x500m? provides the highest
accuracy for population. Mesh codes are assigned to each bit of data, and we can
specify the data’s position on the map from this code.
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Table 14.1 Land use code assignment

Code : land use description Code : land use description
1 : Paddy fields A : Other land
2 : Other agricultural land B : Rivers and lakes
5 : Forest E : Beach
6 : Wasteland F : Body of seawater
7 : Land for building G : Golf course
9 : Trunk transportation land 0 : outside of the analysis range
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The Japanese Ministry of Land, Infrastructure, Transport and Tourism provides
land use data on its website [12]. Such data are also provided in a mesh data format.
A mesh of about 100 [m]x100[m] provides the highest accuracy for land use. In
these data, a land use code (see Table 14.1) is assigned to each mesh. An inhabitable
place is defined as any place that is fit for humans to live in. Inhabitable areas can be
estimated by subtracting such uninhabitable areas as forests and lakes from the land
area. We estimated the inhabitable areas by totaling the areas whose land use codes
are 1,2,7,9, A, and G. Only about 33 % of Japan’s land area is inhabitable because
it has many mountainous areas. This percentage is smaller than European countries.
For example, the inhabitable area percentages of Germany, France, and the United
Kingdom are 68 %, 71 %, and 88 %, respectively. We have to use inhabitable areas
instead of land areas to more precisely evaluate population density.

To investigate locality and universality, we divided Japan into the following
eight regions based on traditional ways of combining several prefectures (see
Fig. 14.1): Hokkaido, Tohoku, Kanto, Chubu, Kansai, Chugoku, Shikoku, and
Kyushu. Table 14.2 shows the basic information of the eight regions. Population
densities depend on the regions for various reasons.
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Table 14.2 Basic information of eight Japanese regions

Population Land area Inhabitable area Density
Region in 2010 km? km? /km?
All JP data 128,045,367 372,907 121,941 1050.1
Hokkaido 5,506,197 83,456 27,046 203.6
Tohoku 9,337,024 66,890 20,306 459.8
Kanto 42,608,322 32,424 18,256 2333.9
Chubu 21,721,795 66,799 22,970 945.7
Kansai 22,758,142 33,118 8,495 2679.0
Chugoku 7,563,164 31,920 8,427 897.5
Shikoku 3,977,562 18, 805 4,860 818.4
Kyushu 4,589,693 44,455 16,542 882.0

Each region’s population density is estimated by population per inhabitable area

14.3 Population Distribution in Japan

How to divide space is critical when examining population’s size distribution.
Dividing space by municipal level is standard for investigating the size distributions
of cities. In this study we do not use such spatial division method. We adopted square
blocks of the same size as a spatial division method and divided a particular region
into identical sized square lattices. Then we aggregated the population inside the
square blocks and observed its population distribution. We can control the spatial
division’s scale using this method. We use parameter BS [km], which denotes the
size of one side of the square blocks.
Figure 14.2 shows a complementary cumulative distribution function (CCDF)

Pr{X > x} (14.1)

of Japan’s population in 2010. The distributions of the regions with high-density
populations such as Kanto and Kansai are plotted on the right side compared to
other regions. The distributions of the regions with low-density populations such as
Hokkaido are plotted on the left side compared to other regions. These properties
denote the distribution locality. The population distributions vary by region.

To find the distribution quantities that do not depend on the region, we focused
on the population distribution’s shape. For a small scale (BS = 0.5 [km]), the
right tail of the distributions rapidly falls. As BS becomes larger, the right tail of
the distributions becomes gentler. The slopes of the right tail seem close to each
other for a small BS. The value of the logarithmic differences between populations
whose values are close to each other seems to share similar quantities of population
distribution slopes.'

't is possible to confirm of this expectation by left figure of Fig. 14.6.
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Fig. 14.2 Log-log plot of population distributions. Left figure is for BS = 0.5 [km]. Right figure
is for BS = 10 [km]. Thick black curves show all Japanese distributions in 2010. Thin colored
curves show all distributions of eight regions in 2010

We use S(x, y) to denote the population inside a square whose vertex coordinates
are (x,y), (x +BS,y), (x+BS, y+ BS), and (x, y + BS). The logarithmic difference
between the populations of nearest neighbors in x-direction is represented by

InS(x 4+ BS,y) —InS(x,y), (14.2)
and the logarithmic difference in y-direction is represented by
InS(x,y + BS) — InS(x, y). (14.3)

The logarithmic difference is a value that is frequently used in such time-series
analyses as stock prices [13]. In this paper we apply it to spatial directions. The
effects of the differences are the same regardless whether the difference direction
is positive or negative in terms of the spatial direction. Next we investigate the
distributions of the absolute value of the logarithmic differences.

Figure 14.3 shows the CCDF of the absolute value of the logarithmic differences
between the nearest neighbor populations in Japan in 2010. For small scale (BS =
0.5 [km]), the distributions almost overlap. As BS becomes larger, the right tail of
the distributions becomes gentler, and they no longer overlap.

Figure 14.4 shows the BS dependence of the moments values of the distributions
of absolute value of logarithmic differences. Where n-th order moments is defined
by mean of n-th powered of the stochastic variable. These values are one of the
quantitative index of the overlapping of the distributions.
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Fig. 14.3 Distributions of absolute value of logarithmic differences between nearest neighbor
populations. Top figures are semi-log plot. Bottom figures are non-log plot. Left figures are for
BS = 0.5[km]. Right figures are for BS = 10[km]. Thick black curves show all Japanese
distribution in 2010. Thin colored curves show distributions of all eight regions in 2010

Figure 14.5 compares the observed distribution and the distributions represented
by analytic functions. The red lines show an exponential distribution whose CCDF
is defined by

Pr{X > x} = /oo iexp (—i) dr. (14.4)

Here parameter p is the distribution’s mean. The estimated values from the data are
u = 1.1022 for BS = 0.5 and u© = 1.5629 for BS = 10. The blue curves show
truncated normal distribution, whose CCDF is defined by

oo 2 t2
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Fig. 14.4 BS dependence of the moments values of the distributions of absolute value of
logarithmic differences. Left figure shows the 1st order moments. Right figure shows the 2nd order
moments. Black symbols show the moments values of the Japanese distributions. Colored symbols
show the moments values of the distributions of eight regions
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Fig. 14.5 Distributions of absolute value of logarithmic differences between nearest neighbor
populations. Left figure is for BS = 0.5 [km]. Right figure is for BS = 10 [km]. Black circles show
distributions observed from all Japanese data in 2010. Red lines show exponential distributions
whose means match observed data. Blue curves show truncated normal distributions whose
standard deviations match observed data. Green curves show intermediate distributions between
red curves and blue curves

Here parameter o is the standard deviation from the x = 0 of the distribution. The
estimated values from the data are 0 = 1.4853 for BS = 0.5 and 0 = 2.0944
for BS = 10. The shape of the distributions seems to be intermediate between
the exponential and the truncated normal distributions. The distributions resemble
a truncated normal distribution in a small BS scale. As BS becomes larger, the
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distribution becomes an exponential distribution. Intermediate distribution between
Eq.(14.4) and Eq. (14.5) is represented by

Pr(X > x} = / ~ %(1) exp (—%) d. (14.6)

Where « is a shape parameter and A is a scale parameter. If « = 1, Eq.(14.6)
corresponds to Eq. (14.4). If « = 2, Eq. (14.6) corresponds to Eq. (14.5). The green
curves in Fig. 14.5 show distributions of Eq. (14.6). We selected the parameters ¢ =
1.6,A=09forBS=05anda = 1.2,1 = 0.9 for BS = 10.

The shape of the distributions of the logarithmic differences of two values is
concerned with the correlation between those two values. The left side of Fig. 14.6
shows a scatter plot of In S(x, y) versus In S(x + BS, y) or In S(x, y + BS). From this
figure, we observe agglomeration effect that many people live near places where
many other people also live. The correlation coefficient is able to interpret as an
index of agglomeration effect. The right side figure’s data are transformed from
the left side figure’s data by dilating both axis data +/2 and rotating clockwise
45°. The horizontal axis of the right side figure is the logarithmic summation
between the nearest neighbor populations. The vertical axis of the right side figure
is the logarithmic difference between the nearest neighbor populations. The red
bars are the standard deviation inside each segment, which is equally divided by
the horizontal axis. The correlation of the left side figure represents the correlation
between the population and the nearest neighbor population. If this correlation is
strong, the population near the large population is large. It is considered that the
strengthen of this correlation is one of the indices which represents degree of the
agglomeration of population. The deviation of the distribution of the vertical axis of

InS{x+BS.y) or InS{x.y+BS)

-InS(x y+InS(x+BS y) or -InS(x,y)+InS(x y+BS)
0
L

] 2 4 [} & 0 5 10 15

InS(x.y) InS(x.y)+InS(x+BS.y) or InS{x.y)}+InS(x,y+BS)
2010 Japan, BS=0.5 2010 Japan, BS=0.5

Fig. 14.6 Left side figure shows scatter plot of In S(x, y) versus InS(x + BS, y) or In S(x, y + BS).
Correlation coefficient of these data is 0.69. Right side figure’s data are transformed from left side
figure’s data by expansion and rotation. Red circles are means inside each segment that is equally
divided by horizontal axis. Red bars are standard deviation inside each segment
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Table 14.3 Basic information of top seven European countries by population

Population Land area Inhabitable area Density

Region in 2011 km? km? /km?
All EU data 514,988,832

Germany 80,122,036 348,560 237,800 336.9
France 62,623,425 547,557 387,537 161.6
U.K. 62,583,331 241,930 213,048 293.8
Italy 59,315,222 294,140 201,870 293.8
Spain 46,802,562 498,800 315,307 148.4
Poland 38,449,414 306,230 212,586 180.9
Romania 16,609,793 230,170 164,076 101.2

Population density in each region is estimated by population per inhabitable area

the right side figure concerns the correlation of the left side figure. The deviation
of the distribution of the vertical axis of the right side figure shrinks when the
correlation of the left side figure becomes strong. It is possible to estimate the degree
of agglomeration of the population by observing the deviation of the distribution of
the logarithmic difference.

14.4 Basic Information of European Populations

The European Union provides several kinds of statistical data from eurostat. The
GEOSTAT project provides European countries’ population dataset representing
in a 1 km? grid dataset. Population data for 2006 and 2011 are available on their
website [14].

The food and agriculture organization of the United Nations statistics division
(FOSTAT) [15] provides land and forest area data from most countries. We can
roughly estimate the inhabitable areas by subtracting forest areas from land areas.

Table 14.3 shows the basic information of the top seven European countries
by population. Their population density is lower than Japan. The variation of the
population density of each country is smaller than the variation of all eight Japanese
regions.

14.5 Comparison between Japan and European Countries

In this section we compare Japan and European countries in terms of the distribution
of log differences of population. Figure 14.7 shows the CCDF of the absolute value
of the logarithmic differences between the nearest neighbor population of Japan
and EU countries. The results are almost the same as those among Japan’s eight
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Fig. 14.7 Distributions of absolute value of logarithmic differences between nearest neighbor
populations. Top figures are semi-log plot. Bottom figures are non-log plot. Left figures are for
BS = 0.5. Right figures are for BS = 10. Thick black curves show all EU distributions in 2011.
Thick red curves show Japanese distribution in 2010. Thin colored curves show all seven European
countries’ distributions in 2011

regions. As BS becomes larger, the right tail of the distributions becomes gentler.
The overlapping of the distributions for BS = 1 is better than for BS = 10. If
we observed data whose scale BS = 0.5, the overlapping would be better than for
BS=1.

The transitions of the distributions due to changes by BS are shown in Fig. 14.8.
Japan’s distribution shape is almost the same as that of EU at a small BS. The
difference of Japan and EU becomes larger as BS increases.



14 Geographic Dependency of Population Distribution 161

CCDF

| 10°
— BS=0.5 — BS=1
— BS=10 — BS=10
T T T T T T T T T T T T
0 2 4 6 8 10 12 0 2 4 6 g 10 12
abs log difference of N.N. Population abs log difference of N.N. Population
ND=P2010, MS= 500, THP= 1 EU2011

Fig. 14.8 Distributions of absolute value of logarithmic differences between nearest neighbor
populations. Color gradation of curves represents size of BS. Red, green, and blue curvesl show
small, intermediate, and large sizes, respectively. Left figure shows distributions of Japan with BS
from 0.5 to 10 by 0.5 increments. Right figure shows distribution of all EU with BS from 1 to 10
by 1

14.6 Conclusion

We investigated population distributions using Japan and EU data. Using a spatial
division method with same size squares, we can easily control the division scale.
The shape of the population distribution differs by country or region. We introduce
logarithmic differences between nearest neighbor populations to identify distribu-
tions that do not depend on country or region. When the division scale is large, the
distribution of logarithmic differences depends on the country or region. The local
dependence of the distribution disappears as the division scale becomes smaller. The
distribution’s shape closely resembles a normal distribution when the division scale
is small; it is close to exponential distribution when the division scale is large.

This study investigated population distributions from a universal standpoint that
does not depend on country or region. In general, various interactions determine
population distribution. These interactions can be divided into two types. One is
internal interactions, and the other is external interactions. External interactions are
such environmental elements as topography and habitability. Internal interactions
are interactions between people. Our results suggest that a universal feature exists
for interaction with a small-scale neighboring population.

The next stage of our study will reproduce the results of Fig. 14.8 using a simple
model. If we generate population data randomly, BS dependence of the shape
of the distributions of logarithmic differences are quite different from Fig. 14.8.
To reproduce the BS dependence of Fig.14.8, we have to generate population
configuration which satisfy the left figures of Fig. 14.6. We will have to introduce
interactions between people to generate the agglomeration effect.
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It would be interesting if the local features of population distribution could be
explained by the interaction between people and environmental factors. We consider
that the inhabitable area is most important in the environmental factor. We expect
that the interaction between people and geometrical environmental factor is to be
detected from relations between fluctuation of the population and the population
density per inhabitable area.
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