
Chapter 12
Detectability Threshold of the Spectral Method
for Graph Partitioning

Tatsuro Kawamoto and Yoshiyuki Kabashima

Abstract Graph partitioning, or community detection, is an important tool for
investigating the structures embedded in real data. The spectral method is a major
algorithm for graph partitioning and is also analytically tractable. In order to analyze
the performance of the spectral method, we consider a regular graph of two loosely
connected clusters, each of which consists of a random graph, i.e., a random graph
with a planted partition. Since we focus on the bisection of regular random graphs,
whether the unnormalized Laplacian, the normalized Laplacian, or the modularity
matrix is used does not make a difference. Using the replica method, which is
often used in the field of spin-glass theory, we estimate the so-called detectability
threshold; that is, the threshold above which the partition obtained by the method is
completely uncorrelated with the planted partition.

12.1 Introduction

Considerable attention has been paid to the graph clustering or community detection
problem and a number of formulations and algorithms have been proposed in the
literature [1–5]. Although the meaning of a module in each detection method may
not be equivalent, we naturally wish to know in what manner the methods perform
typically and the point at which a method fails to detect a certain structure in
principle [6–8]. Otherwise, we need to test all the existing methods, and this clearly
requires a huge cost and is also redundant. Although most studies of the expected
performance were experimental, using benchmark testing [9–11], it is expected that
theoretical analysis will give us a deeper insight.

As frequently done in benchmarks, we consider random graphs having a planted
block structure. The most common model is the so-called stochastic block model
(or the planted partition model) [12]. Although many variants of the stochastic
block model have been proposed in the literature [13–16], in the simplest case, the
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vertices within the same module are connected with a high probability pin, while
the vertices in different modules are connected with a low probability pout. When
the difference between the probabilities is sufficiently large, pin � pout, the graph
has a strong block structure and the spectral method detects almost or exactly the
same partition as the planted partition. As we increase the probability between the
modules pout, the partition obtained by the spectral method tends to very different
from the planted one, and finally, they are completely uncorrelated. The point of
the transition is called the detectability threshold [17–20]. Since we know that the
graph is generated by the stochastic block model, the ultimate limit of this threshold
is given by Bayesian inference and it is known that, in the case of the two-block
model,

cin � cout D 2
p

c; (12.1)

where cin D pinN, cout D poutN and c is the average degree. N is the total number of
vertices in the graph. Equation (12.1) indicates that, even when the vertices are more
densely connected within a module than between modules, unless the difference is
sufficiently large, it is statistically impossible to infer the embedded structure.

It was predicted by Nadakuditi and Newman in [20] that the spectral method with
modularity also has the same detectability threshold as Eq. (12.1). However, it was
numerically shown in [21] that this applies only to the case where the graph is not
sparse. Despite its significance, a precise estimate of the detectability threshold of
the spectral method in the sparse case seems to remain missing.

In this article, we derive an estimate of the detectability threshold of the spectral
method of the two-block regular random graph. It should be noted that the simplest
stochastic block model, which we explained above, has Poisson degree distribution,
while we impose a constraint such that the degree does not fluctuate. Therefore,
our results do not directly provide an answer to the missing part of the problem.
They do, however, provide a fruitful insight into the performance of the spectral
method. Moreover, in the present situation, we do not face the second difficulty of
the spectral method: the localization of the eigenvectors. Although the localization
of eigenvectors is another important factor in the detectability problem, it is outside
the scope of this article.

This article is organized as follows. In Sect. 12.2, we briefly introduce spectral
partitioning of two-block regular random graphs and mention that the eigenvector
corresponding to the second-smallest eigenvalue contains the information of the
modules. In Sect. 12.3, we show the average behavior of the second-smallest
eigenvalue and the corresponding eigenvector as a function of the parameters in
the model. Finally, Sect. 12.4 is devoted to the conclusion.
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12.2 Spectral Partitioning of Regular Random Graphs
With Two-Block Structure

The model parameters in the two-block regular random graph are the total number
of vertices N, the degree of each vertex c, and the fraction of the edges between
modules � D lint=N. The graph is constructed as follows. We first set module indices
on the vertices, each of which has c half edges, or stubs, and randomly connect
the vertices in different modules with lint edges. We connect the rest of the edges
at random within the same module. We repeat the process so that every edge is
connected to a pair of vertices. This random graph is sparse when c D O.1/, because
the number of edges is of the same order as the number of vertices N. We calculate
the degree of correlation between the partition obtained by the spectral method and
the planted partition as � varies.

The choices of the matrix that can be used in the spectral method is wide.
The popular matrices are the unnormalized Laplacian L, the normalized Laplacian
L , and the modularity matrix B. For the bisection of regular random graphs,
however, all the partitions they yield have shown to be the same [22]. Thus, we
analyze the unnormalized Laplacian L, since it is the simplest. The basic procedure
of the spectral bisection with the unnormalized Laplacian L is quite simple. We
solve for the eigenvector corresponding to the second-smallest eigenvalue of L and
classify each vertex according to the sign of the corresponding component of the
eigenvector; the vertices with the same sign belong to the same module. Therefore,
our goal is to calculate the behavior of the sign of the eigenvector as a function of � .

12.3 Detectability Threshold

We use the so-called replica method, which is often used in the field of spin-glass
theory in statistical physics. The basic methodology here is parallel to that in [23].
Although the final goal is to solve for the eigenvector corresponding to the second-
smallest eigenvalue or the statistics of its components, let us consider estimating the
second-smallest eigenvalue, averaged over the realization of the random graphs.
We denote by Œ: : : �L the random average over the unnormalized Laplacians of
the possible graphs. For this purpose, we introduce the following “Hamiltonian”
H.xjL/, “partition function” Z.ˇjL/, and “free energy density” f .ˇjL/:

H.xjL/ D 1

2
xTLx; (12.2)

Z.ˇjL/ D
Z

dx e�ˇH.xjL/ı.jxj2 � N/ı.1Tx/; (12.3)

f .ˇjL/ D � 1

Nˇ
ln Z.ˇjL/; (12.4)
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where x is an N-dimensional vector, 1 is a vector in which each element equals one,
and T represents the transpose. The delta function ı.jxj2 � N/ in (12.3) is to impose
the norm constraint. It should be noted that the eigenvector corresponding to the
smallest eigenvalue is proportional to 1 and this choice is excluded by the constraint
ı.1Tx/. In the limit of ˇ ! 1, in conjunction with the operation of ı.1Tx/, the
contribution in the integral of the “partition function” Z.ˇjL/ is dominated by the
vector that minimizes the value of the “Hamiltonian” H.xjL/, under the constraint
of being orthogonal to the eigenvector 1 of the smallest eigenvalue. Therefore,
the “partition function” is dominated by the eigenvector of the second-smallest
eigenvalue and the “free energy density” f .ˇjL/ extracts it, i.e.,

�2 D 2 lim
ˇ!1 f .ˇjL/: (12.5)

The quantity we need is Œ�2�L, the second-smallest eigenvalue averaged over the
unnormalized Laplacians. However, because the average of the logarithm of the
“partition function” is difficult to calculate, we recast Œ�2�L as

Œ�2�L D �2 lim
ˇ!1

1

Nˇ
Œln Z.ˇjL/�L

D �2 lim
ˇ!1 lim

n!0

1

Nˇ

@

@n
ln ŒZn.ˇjL/�L : (12.6)

The assessment of ŒZn.ˇjL/�L is also difficult for a general real number n.
However, when n takes positive integer values, ŒZn.ˇjL/�L can be evaluated as
follows. For a positive integer n, ŒZn.ˇjL/�L is expressed as

ŒZn.ˇjL/�L D
Z  

nY
aD1

dxaı.jxaj2 � N/ı.1Txa/

!"
exp

 
�ˇ
2

X
a

xT
a Lxa

!#

L

�
Z  

nY
aD1

dxaı.jxaj2 � N/ı.1Txa/

!
exp .Heff.ˇ; x1; x2; : : : ; xn// :

(12.7)

This means that ŒZn.ˇjL/�L has a meaning of a partition function for a system of
n-replicated variables x1; x2; : : : ; xn that is subject to no quenched randomness.
In addition, the assumption of the graph generation guarantees that the effective
Hamiltonian Heff.ˇ; x1; x2; : : : ; xn/ is of the mean field type. These indicate that
N�1 lnŒZn.ˇjL/�L for n D 1; 2; : : : can be evaluated exactly by the saddle point
method with respect to certain macroscopic variables (order parameters) as N ! 1.
After some calculations, we indeed reach an expression with the saddle point
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evaluation as

1

N
lnŒZn.ˇjL/�L D extr

fQrg;f OQrg;f�ag;f ag;�

(
NKI.Qr; OQr/C ˇ

2

X
a

�a �
X

rD1;2
KIIr.Qr; OQr/

C 1

N

X
rD1;2

ln KIII;r. OQr; f�ag; f ag/C �� � 1

N
lnNG � ln cŠ

)
;

(12.8)

where NG is the total number of graph configurations and

KI.Qr; OQr/ D
X

r;sD1;2

prps

2

Z
d�.r/d�.s/ Qr.�

.r//Qs.�
.s//

� e�.1�ırs/�� ˇ
2

P
a.�

.r/
a ��.s/a /2 ;

KIIr.Qr; OQr/ D pr

Z
d�.r/ OQr.�

.r//Qr.�
.r//;

KIIIr. OQr; f�ag; f ag/ D
Z Y

i2Vr

nY
aD1

dxia

�
Y
i2Vr

 
OQc

r.xi/ exp

"
�ˇ
2

X
a

�
�ax2ia C  axia

�#!
: (12.9)

In the above equations, four functions Qr.�
.r/
1 ; : : : ; �

.r/
n / and OQr.�

.r/
1 ; : : : ; �

.r/
n / .r D

1; 2/ play the roles of order parameters.
Unfortunately, this expression cannot be employed directly for the computation

of (6) as Qr.�
.r/
1 ; : : : ; �

.r/
n / and OQr.�

.r/
1 ; : : : ; �

.r/
n / are defined only for n D 1; 2; : : :.

To overcome this inconvenience, we introduce the following assumption at the
dominant saddle point.

[Replica symmetric assumption] The right hand side of (12.7) is invariant under any
permutation of replica indices a D 1; 2; : : : ; n. We assume that this property, which is
termed the replica symmetry, is also owned by the dominant saddle point of (12.8).

In the current system, this restricts the functional forms of Qr.�
.r/
1 ; : : : ; �

.r/
n / and

OQr.�
.r/
1 ; : : : ; �

.r/
n / as

Qr.�1; : : : ; �n/ D
�

cpr � �

Np2r

�1=2 Z
dAdH qr.A;H/

�
ˇA

2	

� n
2

� exp

"
�ˇA

2

nX
aD1

�
�a � H

A

�2#
;
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OQr.�1; : : : ; �n/ D c

�
cpr � �

Np2r

��1=2 Z
d OAd OH Oqr. OA; OH/

� exp

"
ˇ

2

nX
aD1

� OA�2a C 2 OH�a

�#
; (12.10)

which yields an expression of N�1 lnŒZn.ˇjL/�L that can be extended for n of a real
number. We then substitute that expression into (12.6), which finally provides

Œ�2�L D � extr
fqrg;fOqrg;�; 

(Z
dAdH

Z
dA0dH0
.A;H;A0;H0/

� cp1p2
2

��
p1
p2

C �

�
q1.A;H/q1.A

0;H0/

C
�

p2
p1

C �

�
q2.A;H/q2.A

0;H0/

C 2 .1 � � / q1.A;H/q2.A
0;H0/

�

C �

� c
X

rD1;2
pr

Z
dAdH

Z
d OAd OH qr.A;H/Oqr. OA; OH/

 
.H C OH/2

A � OA � H2

A

!

C
X

rD1;2
pr

Z cY
gD1

�
d OAgd OHg Oqr. OAg; OHg/

� � =2�P
g

OHg

�2

� �P
g

OAg

)
; (12.11)

where we set

� D 1 � �

cp1p2
; (12.12)


.A;H;A0;H0/ D .1C A0/H2 C .1C A/H02 C 2HH0

.1C A/.1C A0/� 1
� H2

A
� H02

A0 : (12.13)

The above procedure is often termed the replica method. Although its mathemati-
cal validity of the replica method has not yet been proved, we see that our assessment
based on the simplest permutation symmetry for the replica indices offers a fairly
accurate prediction for the experimental results below.

Due to the space limitation, we hereafter show only the results, omitting all
the details of the calculation (see [24] for complete calculation including detailed
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Fig. 12.1 Second-smallest
eigenvalue as a function of � .
The solid line represents the
estimate of the average over
the realization of the graphs
Œ�2�L and the dots represent
the results of the numerical
experiment of a single
realization with N D 1000

and c D 4. The module sizes
are set to be equal,
p1 D p2 D 0:5.

N=1000, p
1
=p

2
=0.5, c=4

undetectable

derivation of (12.11)). In the limit of large size N ! 1, the saddle-point analysis
of (12.11) yields the solution

Œ�2�L D
�
.1 � � /

�
c � 1 � 1

�

�
.1=

p
c � 1 � � /;

c � 2pc � 1 otherwise;
(12.14)

where � D 1 � �=.cp1p2/; we set the size of each module as N1 D p1N and
N2 D p2N. The region of constant eigenvalue in (12.14) indicates that the second-
smallest eigenvalue is in the spectral band, i.e., the information of the modules is
lost there and an undetectable region exists. Therefore, the boundary of (12.14) is
the critical point where the phase transition occurs. The plot of the second-smallest
eigenvalue Œ�2�L is shown in Fig. 12.1. Although the dots represent the results of
the numerical experiment of a single realization, the results agree with (12.14) quite
well.

In terms of � , the boundary of Eq. (12.14) can be recast as

� D cf .c/p1p2; (12.15)

where

f .c/ D 1 � 1p
c � 1

: (12.16)

Since cp1p2 is the value of � in a uniform (i.e., one-block) regular random graph,
the factor f .c/ represents the low value of the threshold as compared to that in the
uniform random case.

The distribution of the components of the corresponding eigenvector can also
be obtained through this calculation. Although it cannot be written analytically, we
can solve for it by iterating a set of integral equations that result from the saddle-
point evaluation of the right hand side of (12.6). As shown in Fig. 12.2, the results
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P(x)

x

Fig. 12.2 Distributions of the elements in the eigenvector corresponding to the second-smallest
eigenvector. Each plot shows the distribution of elements in each module, i.e., the distribution
on the left corresponds to the module that is supposed to have negative sign elements and the
distribution on the right corresponds to the module that is supposed to have positive sign elements,
respectively. The dots represent the average results of the numerical experiments, taken over 100
samples. The ratio of the modules are set to be p1 D 0:6 and p2 D 0:4
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Fig. 12.3 Fraction of misclassified vertices in each module. As the parameter � increases, the
number of misclassified vertices increases polynomially

of our analysis agree with the corresponding numerical experiment excellently. In
Fig. 12.2, the dots represent the average over 100 realizations of the random graphs.
The ratio of misclassified vertices are shown in Fig. 12.3. It increases polynomially
with respect to � and saturates at the detectability threshold.

It should be note that, even when the number of vertices is infinity, the fraction
of misclassified vertices remains finite. The misclassification of the vertices occurs
because the planted partition is not the optimum in the sense of the spectral
bisection. The spectral method with the unnormalized Laplacian L constitute
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the continuous relaxation of the discrete minimization problem of the so-called
RatioCut. The RatioCut is lower for a partition with a sparse cut, while it penalizes
for unbalanced partitions in the sense of the number of the vertices within a module;
there may always exist a better cut in the sense of the RatioCut than the planted
partition in the graph when � is large.

Finally, let us compare our estimate with results of studies in the literature. In the
following, we focus on the case of equal size modules, i.e., p1 D p2 D 0:5. Let the
total degree within a module be Kin and let the total degree from one module to the
others be Kout. Since we have K D cN D 2.Kin C Kout/ and Kout D �N, Eq. (12.15)
reads

Kin � Kout D N

2

cp
c � 1 : (12.17)

In addition, in the limit N ! 1, we have

Kin D N2

4
pin D N

4
cin; (12.18)

Kout D N2

4
pout D N

4
cout: (12.19)

Therefore, (12.17) can be recast as

cin � cout D 2 cp
c�1 : (12.20)

This condition converges to the ultimate detectability threshold (12.1) in the dense
limit c ! 1. There exists, however, a huge gap between (12.1) and (12.20) when
the degree c is small; considering the fact that the upper bound of the parameter
cin � cout is 2c, this gap is not negligible at all. Thus, the implication of our results
is that we cannot expect the spectral threshold to detect modules all the way down
to the ultimate detectability threshold, even in regular random graphs, where the
localization of the eigenvectors is absent.

12.4 Conclusion

In summary, we derived an estimate of the detectability threshold (12.20) of
the spectral method of the two-block regular random graphs. The threshold we
obtained agrees with the results of the numerical experiment excellently and is
expected to be asymptotically exact in the limit N ! 1. Our results indicate
that the spectral method cannot detect modules all the way down to the ultimate
detectability threshold (12.1), even when the degree is fixed to a constant. Since the
threshold (12.20) converges to (12.1) as the degree c increases, this gap becomes
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negligible in the case where the degree is sufficiently large and this supports the
results obtained by Nadakuditi and Newman [20].

A method for achieving the ultimate detectability threshold with the spectral
method has already been proposed by Krzakala et al. [25]. They proposed using
a matrix called the non-backtracking matrix, which avoids the elements of eigen-
vectors to be localized at a few vertices. A question about this formalism is: to
what extent is the gap in the detectability in fact closed by the non-backtracking
matrix as compared to the Laplacians? Our estimate gives a clue to the answer to
this question. In order to gain further insight, we need to analyze the case of graphs
with degree fluctuation. In that case, the methods using the unnormalized Laplacian
and the normalized Laplacian will no longer be equivalent. Moreover, it is important
to verify the effect of the localization of eigenvectors on the detectability. These
problems remain as future work.
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