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Abstract. The Domain Boundary Prediction is a crucial task for functional
classification of proteins, homology-based protein structure prediction and for
high-throughput structural genomics. Each amino acid is represented using a set
of physico-chemical properties. Random Forest Classifier is explored for accurate
prediction of domain regions by training on the curated dataset obtained from
CATH database. The software is tested on proteins of CASP-6, CASP-8, CASP-9
and CASP-10 targets in order to evaluate its prediction accuracy using three fold
cross validation experiments. Finally, a consensus approach is used to combine
results of the classifiers obtained through the cross-validation experiments. The
average recall and precision scores achieved by the developed consensus based
Random Forest classifiers (PDP-RF) are 0.98 and 0.88 respectively for prediction
of CASP targets. The overall accuracy and F-scores of the PDP-RF are observed
as 0.87 and 0.91 respectively.

1 Introduction

A domain is a segment of a polypeptide chain that can fold into a three dimensional
structure irrespective of the presence of other segments of the chain [1]. Some simple
combinations of protein secondary structure elements are referred to as ‘super-secon‐
dary structure’, or ‘motifs’. Several motifs pack together to form compact, local, semi-
independent units called domains. The overall 3D structure of the polypeptide chain is
referred to as the protein’s tertiary structure, whereas the domain is the fundamental
building block of tertiary structure. So, a domain is a structural and functional unit of
protein. To predict the tertiary structure of a protein, it is useful to segment the protein
by identifying domain boundaries in it. A number of methods so far have been devel‐
oped to identify protein domains starting from their primary sequences which are
mainly developed for prediction of multi-domains in protein chains.
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Galzitskaya et al. [2] considered conformational entropy for each amino acid and
searches for a global minimum on an entropy profile constructed for the whole protein
chain from its amino acid sequence. Based on the difference in amino acid compositions
between domain and linker regions, a method DOMCUT [3] has been developed to
predict linker regions among domains. CHOPnet [4] uses evolutionary information,
predicted secondary structure, solvent accessibility, amino acid flexibility and amino
acid composition for predicting domains in protein chains. Armadillo [5], the another
domain predictor uses any amino acid index named as Domain Linker propensity Index
(DLI) to convert a protein sequence to a smoothed numeric profile, from which domains
and domain boundaries may be predicted. The Position Specific Scoring Matrix
(PSSM)of the target protein obtained through PSI-BLAST, has also been used for
domain boundary prediction by PPRODO [6] using Artificial neural network as a clas‐
sifier. A machine learning predictor DOMpro [7] uses a combination of evolutionary
information (in the form of profiles), predicted secondary structures, predicted solvent
accessibility of the protein chains.

In the work of Sikder and Zomaya [8], the performance of DomainDiscovery of
protein domain boundary assignment is improved significantly by including inter
domain linker index value along with PSSM, predicted secondary structures, solvent
accessibility information. Support Vector Machine (SVM) is used to predict possible
domain boundaries for target sequences. Based on the application of secondary structure
element alignment (SSEA) and profile-profile alignment (PPA) in combination with
InterPro pattern searches, a protein domain prediction approach, called SSEP-Domain,
is proposed by Gewehr and Zimmer [9]. Cheng [10] proposed a hybrid domain predic‐
tion web service, called DOMAC, by integrating template-based and ab initio methods.
The template-based method is used in DOMAC to predict domains for proteins having
homologous template structures in protein Data Bank [11]. If no significant homologous
template is found, DOMAC invokes the ab initio domain predictor DOMpro to predict
domains. To achieve a more accurate and stable predictive performance than the existing
state-of –the-art models, a new machine learning based domain predictor, viz., DomNet
[12] is trained using a novel compact domain profile, predicted secondary structure,
solvent accessibility information and inter-domain linker index. FIFEDom [13] is other
type of multi-domain prediction where prediction is done using fuzzy mean operator.
This fuzzy operator assigns a membership value for each residue as belonging to a
domain boundary thus finding contiguous boundary regions. Eickholt et al. propose a
new method DoBo [14] where machine learning approach with evolutionary signals is
used. It first extracts putative domain boundary signals from MSA between sequence
and its homologs. Then those sites are classified by SVM where sequence profiles,
secondary structures or solvent accessibility are used as features. Another SVM
predictor DROP [15] empowered with 25 optimal features distinguish linkers from non-
linkers effectively. In the first step, a random forest algorithm was used to evaluate 3000
features. In the next step, a selection protocol was used to select optimal features. Based
on a creating hinge region strategy, a new approach DomHR [16] predicts domain
boundary by means of constructing profiles of domain Hinge-boundary (DHB) features.
Besides these, improvement in contact prediction provides a new source of domain
boundary prediction. In the work of Sadowski [17], kernel smoothing based method and
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methods based on building alpha carbon models onto this contact information. A recent
template based method on this field is ThreaDom [18] proposed by Xue et al. in which
protein domain boundary information is extracted from multiple threading alignments.
The core of the method is use of domain conservation score that combines information
from template domain structures and terminal and internal alignment gaps.

It appears from the above discussion that there are still some scopes for improvement
in protein domain prediction. The rationale behind the choices of the feature sets and
classifiers for prediction of domain boundaries are discussed in the following sections.

2 Materials and Methods

An attempt has been made under the present work to employ Random Forest Classifier
as a machine learning algorithm for protein domain boundary prediction on the basis of
an effective feature set consisting of hydrophobicity, linker index, polarity, ordered or
disordered region of protein sequence and flexibility. Different methods [3, 6, 19] use
different sliding window sizes for domain boundary prediction. Studies say that predic‐
tion within ± 20 residues from the true boundary position are considered as successful
with existing evaluation criteria for boundary prediction methods. These studies moti‐
vate us to test the prediction performance of our domain predictor PDP-RF with optimal
residue windows, since larger window size is useful to predict multi-domain proteins.

Features Set
Five types of features, viz., predicted ordered or disordered region, normalized flexi‐
bility parameters (B-values), polarity, linker index, modified Kyte-Doolittle hydropho‐
bicity scale are used for this work. The last four features for the current experiment are
chosen from (exactly 544 in the selected version) AAIndex database [20] release 9.0
(http://www.genome.jp/aaindex/). From experimental findings, it is known that large
ordered region when they are divided by shorter parts of disordered regions in a protein
chain, are likely to be separate domains [21]. For this reason, ordered or disordered
region predicted by disprot tool [22] is taken as a feature. On the other hand, the presence
of multiple domains in proteins gives rise to a great deal of flexibility and mobility [23].
The Debye-Waller factor (B-value) (ACC No: VINM940101) which measures average
flexibility parameters is used as one of the five features. The distribution of polar and
non-polar side chains is one of the most important factors governing the folding of a
protein into 3D structure [24]. Latest polarity (ACC No: GRAR740102)feature is taken
as a feature in this work. To represent the preference for amino acid residues in linker
or regions, a parameter called the linker index is defined by Sumaya and Ohara [3]. From
the AAINDEX, linker index(Acc No: BAEK050101) is taken as a feature. The more
exposed the linker, the more likely it is to contain hydrophilic residues. Greater hydro‐
phobicity is found in more linker connections between two domains. Modified Kyte-
Doolittle hydrophobicity scale (Acc No: JURD980101) is taken as a feature in the
current work, which is also from the AAIndex dataset.

PDP-RF: Protein Domain Boundary Prediction Using Random Forest Classifier 443

http://www.genome.jp/aaindex/


Experimentation
In this work, we have taken Random Forest (RF) Classifier and a consensus scheme.
Random Forest is a popular ensemble algorithm based on decision trees [25]. It is
commonly used in bioinformatics, as it is relatively easy to apply and robust against
many kinds of noisy and incomplete data characteristic for experimental biological
problems [26]. In this work we trained Random Forest with 100 trees with  attributes
considered for each split (d – number of all attributes). The implementation we used
came from scikit-learn library [27].

It is conducted in two stages. In the first stage 354 protein chains of the CATH data‐
base (version 2.5.1) are used to perform a three-fold cross validation experiment where in
each experimental fold, 67% of the positive/negative samples are used for training and the
rest of the samples for testing. Each domain region residue is considered a positive sample,
and non-domain residues are considered negatives. RF based classifiers are trained to
generate three trained classifiers from three cross-validated experiments.

In the second stage of the experiment, we consider a consensus approach on the
basis of the trained classifiers to generate test results on 19 protein sequences, taken
from the CASP-6 dataset [28], 109 protein sequences from the CASP-8 dataset
[29], 100 protein sequences from the CASP-9 dataset [30] and 59 protein sequences
from CASP-10 dataset [31]. According to the consensus strategy, for each classi‐
fier, ,  and  consensus classifiers are designed. At next step,
a  consensus strategy (here, n = 3, as number of classifiers are 3) is applied
[32] to three classifiers. Thus we obtained ,  and  classi‐
fiers. As a result, 3 consensus classifiers are also designed to achieve improved
performance. Here we define a 3-star quality consensus scheme as , where N is
the number of classifiers of a particular type participating in the specific consensus
strategy, and n ( ) is the quality of prediction [32]. More specifically,

 prediction says that any one of possible N classifiers predicts the test
sequence to be positive for the domain region under consideration, and 
represents that all classifiers agreed to the decision. Along this principle, we define
the  consensus over 3-variations of training on three fold cross-validation
data of a special type classifier. Subsequently,  is defined as the consensus among
three classifiers. Question arises as to how  consensus relates to Random
Forest, which is already an ensemble algorithm. In Random Forest decision is made
through weighted voting. Our consensus approach is equivalent to standard (equal
weights) voting with a variable threshold. This allows choosing a tradeoff between
precision and recall of the ensemble.

3 Results and Discussion

The current experiment is conducted in two stages. In the first stage 354 protein chains
of the CATH database (version 2.5.1) are used to perform a three-fold cross validation
experiment where in each experimental fold, 67% of the positive/negative samples are
used for training and the rest of the samples for testing. RF based classifiers are trained
to generate three trained classifiers from three cross-validated experiments. In the second
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stage of the experiment, we consider a consensus approach on the basis of the trained
classifiers to generate test results on 19 protein sequences, taken from the CASP-6
dataset [28], 109 protein sequences from the CASP-8 dataset [29],100 protein sequences
from the CASP-9 dataset [30] and 59 protein sequences from CASP-10 dataset [31].
According to the consensus strategy, for three classifiers of each classifier, , 

 and  consensus classifiers, namely, PDP-RF-1,PDP-RF-2 and PDP-
RF-3 are designed. In case of sequence based prediction, the length of sequence fragment
whose central amino acid is being predicted as domain or linker region is very crucial.
Different methods use different sliding window sizes for domain boundary prediction.
Studies say that prediction within ± 20 residues from the true boundary prediction are
considered as successful with existing evaluation criteria for domain boundary predic‐
tion methods. To determine the length of the sequence fragment or window, prediction
results are observed for classifiers only on a single fold among three cross validated
datasets. Among 13, 15, 17, 19, 21, 25 and 29 window sizes, performance of classifier
at 17 window size is the best. So, this window size is made fixed for this work.

Table 1. Performance of three RF single Classifiers

Performance (single

classifiers)

CASP

targets

Recall Precision Accuracy F-Scores

RF1 CASP-6 0.996 0.949 0.944 0.971

CASP-8 0.998 0.913 0.912 0.950

CASP-9 0.997 0.897 0.894 0.933

CASP-10 0.993 0.793 0.799 0.849

RF2 CASP-6 0.989 0.948 0.938 0.967

CASP-8 0.914 0.913 0.911 0.950

CASP-9 0.993 0.897 0.891 0.932

CASP-10 0.985 0.793 0.802 0.847

RF3 CASP-6 0.937 0.948 0.890 0.940

CASP-8 0.977 0.918 0.901 0.943

CASP-9 0.962 0.902 0.869 0.917

CASP-10 0.941 0.797 0.800 0.838

Average CASP-6 0.974 0.948 0.924 0.954

CASP-8 0.963 0.915 0.908 0.927

CASP-9 0.984 0.899 0.885 0.904

CASP-10 0.973 0.794 0.8 0.82
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From three cross validated experiments, three classifiers are designed and their
performance is observed. Outstanding performance is observed in Random Forest Clas‐
sifiers in prediction of CASP-6, CASP-8, CASP-9 and CASP-10 targets. For CASP-6,
CASP-8 and CASP-9 targets its behavior is found to be consistent whereas prediction
results are somewhat less in CASP-10 targets. Table 1 shows the average performance
of 3 classifiers.

As three classifiers are taken, so, , ,  consensus strategy
may be adopted as already defined in the previous section. The performance of consensus
classifier must demand the good predictive accuracy in comparison to single classifier.
From Table 2, it can be observed that with the introduction of consensus classifier, the
performance of each type classifier is increased in a large scale.

Table 2. Average Performance of consensus RF Classifiers

Average performance

(consensus classifiers)

CASP targets Recall Precision Accuracy F-Scores

PDP- RF-1 CASP-6 0.997 0.949 0.997 0.971

CASP-8 0.999 0.913 0.913 0.950

CASP-9 0.998 0.900 0.895 0.934

CASP-10 0.995 0.800 0.800 0.849

PDP- RF-2 CASP-6 0.989 0.948 0.988 0.967

CASP-8 0.996 0.914 0.912 0.950

CASP-9 0.993 0.900 0.900 0.932

CASP-10 0.985 0.794 0.803 0.848

PDP- RF-3 CASP-6 0.937 0.948 0.937 0.940

CASP-8 0.977 0.918 0.901 0.943

CASP-9 0.962 0.903 0.869 0.917

CASP-10 0.941 0.798 0.801 0.838

As performance of single RF classifier is found to be the best whereas consensus
classifier uplifts its accuracy up to its highest limit. Table 2 shows overall performance
of consensus classifiers of RF. In case of RF classifiers, performance of , 

 and  consensus schemes are found to be the same which indicate the
prediction decisions among three classifiers at higher confidence. In Table 3, it is seen
that consensus classifier improves the accuracy of single classifier a little.
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Table 3. Improved performance of PDP-RFs over single RF Classifiers

Improved performance

(consensus classifiers)

CASP targets Recall Precision Accuracy F-Scores

PDP- RF-1 CASP-6 0.001 0 0.053 0

CASP-8 0.001 0 0.001 0

CASP-9 0.001 0.003 0.001 0.001

CASP-10 0.002 0.007 0.001 0

PDP- RF-2 CASP-6 0 0 0.05 0

CASP-8 0.082 0.001 0.001 0

CASP-9 0 0.003 0.009 0

CASP-10 0 0.001 0.001 0.001

PDP- RF-3 CASP-6 0 0 0.047 0

CASP-8 0 0 0 0

CASP-9 0 0.001 0 0

CASP-10 0 0.001 0.001 0

As mentioned earlier, we have taken domain as positive class and linker as negative
class. Since the proportion of domain and linker in our dataset is not equal i.e., domain
residue represents majority class and non-domain or linker residue represents minority
class, the prediction results may turn out to be biased towards majority class. For this
reason, we reverse the role of domain and linker residue by taking linker residue as
positive and domain residue as negative class. The overall performance of PDP-RF is
found to be the somewhat less compared to former performance (Accuracy in prediction
of CASP targets using majority class training is 0.88 whereas is 0.85 using minority
class training).

A Robust Consensus Classifier
In this work, an attempt has been done to choose random Forest, as effective machine
learning classifier, to exploit strong multi facet feature sets and by applying a novel
consensus approach. Thus objective is to design a strong robust classifier which enables
the system to predict targets very efficiently and effectively. In prediction of CASP
targets, in most of the cases, RF classifier offers the best predictive ability. Inclusion of
the novel  consensus approaches further improves the classifiers’ performances.

We have taken PPRODO [6], DomPro [7], DROP [15], FIFEDom [13], ThreaDom
[18] as existing methods for comparison because most of the methods are freely avail‐
able. PPRODO, DomPro are not recent but they are based on machine learning method.
DROP is recent machine learning method as well. On the other hand, Threadom is recent
template based method which predicts multi domain proteins of CASP targets very well.
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Overall, the successful performance of most of the classifiers in CASP competition is
found. Performances of PDP-RF classifiers are analyzed with ThreaDom1, ThreaDom2
[18], FIFEDom [13], Pfam [33], DROP [15], DOMPro [7], PPRODO [6], DoBo [14] in
prediction of CASP-9 targets and CASP-10 targets. Finding the appropriate robust
machine learning classifier, use of significant feature set, selection of optimal window
and finally incorporation of consensus approach into three classifiers of each type of
classifier is a very challenging task in prediction of domain boundaries along protein
sequences. Learning patterns is a very challenging issue for any classifier in case of
binary classification where proportion of positive and negative samples is not equal.
Moreover, a novel  consensus approach is applied to further improve the
prediction accuracy. We finally conclude that the designed feature set; alongside with
Random Forest based classifier based consensus approach effectively predicts the
domain regions in multi-domain protein chains. The cross-validated experimental setup
with standard CATH database establishes our claims. Prediction decisions from the three
experimental folds are combined to design  quality consensus strategies. Here,

 quality consensus is designed by combining the decisions of the three classifiers
from each of the three sets of cross validation experiments. The consensus strategy is
found to be superior in comparison with the performances of the best single classifier.

Prediction is done on residue level i.e. whether a residue belongs to domain or linker
region but not on domain boundary based. Domain prediction methods vary in the
procedure, i.e. either they are template based (e.g., Threadom or FIFEDOM) or ab initio
based (e.g. DomPro, DROP etc.). Some Predictors predicts domain boundary
(DOMPRo, Threadom) and some of them predicts linkers. The goal of the current state
of the art and our proposed method is more or less same but difference lies in the domain
boundary definition (e.g. DomPro considers the residues in the range of 20 residues
around the center of domain region the domain boundary residues from the CATH
assignment). In this work, we take domain regions from CATH by considering domain
number starting/end positions of each domain sequentially. As a result, our dataset
contains domain residue serving as majority class. So, it cannot be compared with current
state of the art in terms of performance metrics. Here, recall scores of PDP-RFs on
CASP-9 and CASP-10 targets are 0.98 and 0.97 whereas precision scores of PDP-RFs
on the same are 0.89 and 0.79. Template based method Threadom2, Threadom1,
FIFEDOM predicts CASP-9 targets at 0.534, 0.397, 0.233 recall scores and 0.764, 0.636,
0.34 precision scores. PFAM, DROP (linker based), and DomPro, PPRODO (ab initio)
predict CASP9-targets at recall of 0.548, 0.26, 0.219, 0.397 and precision of 0.5,0. 679,
0.727 and 0.56.

In prediction of CASP-10 targets, Threadom2 and Threadom1 predict targets well
(recall score: 0.625, 0.625 and precision score: 0.796, 0.732). But FIFEDOM predict
targets at low recall and precision score (0.188, 0.28). On the other hand, PFAM, DROP
(linker based), and DomPro, PPRODO (ab initio) predict CASP10-targets at recall of
0.547, 0.156, 0.109 and 0.406 and precision of 0.466, 0.714, 0.44 and 0.591which is
better than that of CASP-9 targets. Recall and precision score of PDP-RF are reported
but not compared with these methods as it is not fair to compare a residue based predic‐
tion scheme with domain boundary based or linker based prediction method or with
template based method where there lies a difference in evaluation criteria.
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Methods for building feature importance rankings based on Random Forest can also
be used to gain more insights into amino acid properties correlated with domain boun‐
daries. To support validity of our method we also plan to include comparison with other
machine learning algorithms in our next work.
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