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Abstract. It is observed that traditional clustering methods do not necessarily
perform well on time-series data because of the temporal relationships in the
observed values over a period of time. Another issue with time series is that
databases contain bulk amount of data in terms of dimension and size. Clus-
tering algorithms based on traditional measures of dissimilarity find trade-offs
between efficiency and accuracy. In addition, time series analysis should be
more concerned with the patterns in change and the points of change rather than
the values of change. In this paper a new representation technique and similarity
measure have been proposed for agglomerative hierarchical clustering.
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1 Introduction

Today Time Series data management has become an interesting research topic for the
data miners. Particularly, the clustering of time series has attracted the interest.

Clustering is the process of finding natural groups, called clusters, the grouping
should maximize inter-cluster variance while minimizing intra-cluster variance [1],
most of the clustering techniques can be two major categories, Partition-based clus-
tering and Hierarchical Clustering [2]. Many of the traditional clustering algorithms use
Euclidean distance or Pearson’s correlation coefficient to measure the proximity
between the data points. However, in case of time-series data these parameters involve
the individual magnitudes at each time point therefore the traditional algorithms
perform poorly with time-series expressions data, to overcome these limitations the
proposed work aims to represent the variations in the measurements of the time-series
for fast implementation of an efficient agglomerative nesting algorithm, the focus of
this work is on fast whole sequence similarity search in the changes in respect to time
rather than the values in the time series data.

The rest of the paper is organized as follows: Sect. 2 presents a brief review of
related work. Sections 3 and 4 demonstrates the basic concept and presents the analysis
of the proposed algorithm respectively. In Sects. 5 and 6 experimental and the con-
clusions and some future directions.

© Springer International Publishing Switzerland 2015
M. Kryszkiewicz et al. (Eds.): PReMI 2015, LNCS 9124, pp. 257–267, 2015.
DOI: 10.1007/978-3-319-19941-2_25



2 Related Work

Many clustering algorithms have been proposed such as k-means, DBSCAN, STING,
p-cluster and COD [4–6]. One of the recently proposed algorithms is VCD algorithm
[3] to analyze the trends of expressions based on their variation over time, using cosine
similarity measure with two user inputs, it has been enhanced later in EVCD algorithm
[2] for same purpose with one single user input and provides results in several levels
which allows the user to select the most appropriate level by using different parameters
such as the silhouette coefficient, number of clusters and clusters density. Both algo-
rithms Enhanced Variation Co-expression Detection (EVCD) and (VCD) algorithms
[2, 3] inferred that the cosine similarity measure was the most appropriate similarity
measure for clustering the time varying microarray data.

3 Concepts and Definition

In order to determine the variation patterns in the time series based on the changes in
the values observed at fixed time points binarization of the change has been proposed.
Some related definitions are presented in this section.

3.1 Variation Vector

Given a sequence of n + 1 measurements observed at time periods t0, t1, t2…tn to
denote a univariate time series, say, Y ¼ y0; y1; y2. . .ynh i 2 R

nþ1. A variation vector
Yv 2 R

n of Y is a sequence of the differences denoted by, Yv ¼ d1; d2. . .dnh i, where
di ¼ yi � yi�1, for 1� i� n. The increase in the measurement yi � yi�1ð Þ and its
magnitude is represented by the difference di � 0. Similarly, the decrease yi\yi�1ð Þ is
computed as di < 0.

The trend is the tendency of a continuous process that is measured during a fixed
time interval. The trend analysis may traditionally be carried out by plotting a trend
curve or a trend line and by monitoring the increase (decrease) in the values. Thus trend
analyses involve observation of the tendencies of the values by way of analyzing the
changes that occur in terms of the quantum of the change and/or the nature of the
changes. The pattern of increase or decrease in the values of the measurements may
play a significant role in the trend analyses. Variation vectors quantify the difference in
measurements at two consecutive time periods say ti and ti+1 in terms. The directions of
change, increase or decrease, may be captured by the positive or negative sign of the
magnitude of difference di respectively. Therefore, a binary representation of the
direction of change is suitable for computational efficiency. Binarization of the change
for any time-series has been proposed by a direction vector. Further, the trend similarity
based on the distance metric of the n-dimensional binary vectors has been defined.

3.2 Direction Vector

For a variation vector, Yv ¼ v1; v2; . . .; vnh i 2 R
n, a direction vector Yd 2 0; 1f gn is

defined as Yd ¼ b1; b2; . . .; bnh i,
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where,

bi ¼
0 if vi � 0
1 if vi\0

�
: ð1Þ

Example 1: Consider two time series T1 ¼ 3; 7; 2; 0; 4; 5; 9; 7; 2h i and T2 ¼ 10; 15;h
11; 5; 19; 25; 27; 24; 13i. The corresponding variation vectors are, V1 ¼ 4;�5;h
�2; 4; 1; 4;�2;�5i and V2 ¼ 5;�4;�6; 14; 6; 2;�3;�11h i. The direction vectors of
T1 and T2 are D1 ¼ 0; 1; 1; 0; 0; 0; 1; 1h i and D1 ¼ 0; 1; 1; 0; 0; 0; 1; 1h i respectively.

3.3 Trend Similarity

Let two time series X ¼ x0; x1; x2; . . .; xnh i and Y ¼ y0; y1; y2; . . .; ynh i be measured at
the time t0, t1,…,tn. Let Xv ¼ v1; v2; . . .; vnh i and Yv ¼ u1; u2; . . .; unh i be the corre-
sponding variation vectors and Xd ¼ l1; l2; . . .; lnh i and Yd ¼ s1; s2; . . .. . .snh i be the
corresponding direction vectors. Then X and Y are said to be similar in trend if and
only if li = si for 1 ≤ i ≤ n.

Both direction vectors Xd and Yd are n-bit binary vectors. For each i if xi ≥ xi−1 in
series X i.e. vi ≥ 0 then li = 0 and li = 1 for vice versa. In case of the time series Y the
bit value of si would depict the increase if the value at ti from the values at ti−i as ui ≥ 0
and correspondingly, si = 0, and vice versa. If for each i, li = si then Y is said to be trend
similar to X. It may be noted that for the definition of similarity the magnitude of
difference in the two time-series has not been considered. However, only the concept of
direction of change i.e. increase or decrease, has been considered. The information in
the direction vector may be utilized to determine the degree of similarity.

Example 2: Consider the direction vectors D1 and D2 in the above example corre-
sponding the two time-series T1 and T2 each of length 9. The magnitude of the
differences are represented by the variation vectors V1 and V2. It may be noted that for
each i, 1� i� 8, V1i 6¼ V2i. However, D1 and D2 are bit-wise equal, i.e. D1i = D2i, for
1� i� 8, therefore, the two series T1 and T2 are observed to be similar in trend.

The following metric to measure the distance between two n-dimensional binary
vectors has been considered in this work. Let b ¼ 0; 1f g and In ¼ 0; 1; 2. . .nf g then
the binary function dbinary : b� b ! b. For b1; b2 2 b,

dbinary b1; b2ð Þ ¼ 0 if b1 ¼ b2
1 otherwise

�
ð2Þ

Then the distance function between a pair of n-dimensional binary vectors is dn :
bn � bn ! In Consider two n-dimensional binary vectors say D1;D2 2 bn.

dn D1;D2ð Þ ¼
Xn

j¼1
dbinary b1j; b2j

� �
ð3Þ
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Let dn D1;D2ð Þ ¼ k. Then k = 0 if
Pn

i¼1 dbinary b1i; b2ið Þ ¼ 0 and k = n ifPn
i¼1 dbinary b1i; b2ið Þ ¼ n. Therefore 0� k� n

Example 3: Consider the following two sequences as time series, T1 ¼ 3; 7;h
2; 0; 4; 5; 9; 7; 2i and T3 ¼ 45; 80; 22; 10; 40; 63; 45; 90; 10h i, then variation vectors V1

and V3 of T1 and T3 are, V1 ¼ 4;�5;�2; 4; 1; 4;�2;�5h i and V3 ¼ 35;�58;�12;h
30; 23;�18; 45;�80i, the direction vectors D1 and D3 are D1 ¼ 0; 1; 1; 0; 0; 0; 1; 1h i
and D3 ¼ 0; 1; 1; 0; 0; 1; 0; 1h i.

For D1;D3 2 B8, the dissimilarity between D1 and D3 may be computed using the
distance function d8,

d8 D1;D3ð Þ ¼ 2 ð4Þ

where,

dbinary b1i; b2ið Þ ¼ 1 for i 2 6; 7f g ð5Þ

and

dbinary b1i; b2ið Þ ¼ 0 for i 2 1; 2; 3; 4; 5; 8f g ð6Þ

To allow difference in trends at the certain bits out of the n-bits, the concept of trend
dissimilarity of degree-k has been considered where k ≤ n may be the number of bits at
which the two n-dimensional direction vectors encounter bit-mismatch.

3.4 Trend Dissimilarity of Degree K

Given two n-dimensional time series Ti and Tj, and their respective direction vectors Di

and Dj, Ti and Tj are said to have dissimilarity of degree k, if dn Di;Dj
� �

¼ k,
for 1� k� n.

The clusters at level-0 may contain identical objects. Consider any two arbitrary
objects x and y, and the Euclidian distance function d, the traditional measure of

dissimilarity. Then dðx; yÞ ¼ 0, i.e.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

xi; yið Þ2
q

¼ 0 if the two objects are identical.

Therefore, the objects x and y must be grouped in the same cluster at level-0, say ith
cluster denoted by, C0,i. Let Ci,j denote cluster-id j at level-i. Then the m clusters at
level-0 are C0,1, C0,2, C0,3,…,C0,m. Let a measure of dissimilarity at 1 bit represented by
distance metric d1 be associated to the clusters at level-1, dissimilarity at 2 bits rep-
resented by d2 and so on. Then any two arbitrary objects x, y may be in the same cluster
at level-1, C1,j, only if, 0\d x; yð Þ� d1. In this section the concept of Trend Cluster of
level-k using the dissimilarity of degree-k is defined.

3.5 Trend Cluster of Level-K

For T ¼ fT1;T2; . . .;Tmg, a set of n-dimensional time series of cardinality m, and the
set of corresponding direction vectors C ¼ fD1;D2; . . .;Dmg, a trend cluster of level-k,
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Ck,j would include all time-series Ti and Tj in the same cluster if dn Di;Dj
� �

¼ k.
However, if dn Di;Dj

� �
6¼ k0 for all k0; 0� k0\k, then Ti and Tj will be allocated to

distinct trend clusters of level-0, level-1, up to level-k′, say Ck′,i and Ck′,j, but would be
grouped in the same trend clusters of level-k, say Ck,i.

Example 4: Consider time series T1, T2 and T3 as in the Examples 1 and 3. The
direction vectors of each is D1 ¼ 0; 1; 1; 0; 0; 0; 1; 1h i, and D2 ¼ 0; 1; 1; 0; 0; 0; 1; 1h i
D3 ¼ 0; 1; 1; 0; 0; 1; 0; 1h i. Consider D1 and D2, d8 D1;D2ð Þ ¼ 0 therefore, T1 and T2

must be grouped in the same cluster of level-0. Consider D1 and D3, d8 D1;D3ð Þ ¼ 2.
i.e. the series T1 and T3 have the trend dissimilarity of degree-2. Therefore, T1 and T3

must be grouped in different trend clusters of level-0 and level-1 say C0,1 and C0,3, and
C1,1 and C1,3 respectively. However, the two must be grouped in the same trend cluster
of level-2 say, C2,1.

Example 5: Consider the 5-dimensional view of the four gene expressions a, b, c and
d, as shown in Fig. 1. The direction vectors Da and Dc are identical therefore genes
a and c are trend similar. Even visually the vectors a and c are the most similar to each
other than to the vectors b and d.

An advantage of this approach is the simplicity of representation of the objects of m-
dimensional time series database, using only one bit to represent the change in value
from time ti to ti+1,

bi ¼
0 xiþ1 � xi
1 xiþ1\xi

�
; 0\ i \ m� 1 ð7Þ

The direction vectors are loss transformation of the original data from which no
original values can be retrieved. Thus it is a novel representation from the perspective
of security and privacy preservation of the original data.

4 Fast Trend Similarity-Based Clustering (FTSC) Algorithm

FTSC algorithm starts with generating the variation vectors, second is binarization of
the variation vector, and third is direction vectors indicate similarity in trend in the time
series thus forming the trend clusters of level-0 in the hierarchy of clusters. The higher

Fig. 1. Trend similarity in gene expressions
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level clusters may result from merging the closest clusters in the previous level starting
by smaller clusters, each cluster is represented by a direction vector as medoid of the
cluster. The distance between clusters is computed by the distance between the med-
oids of the two clusters.

The FTSC algorithm is a nonparametric algorithm and it does not require any prior
information related to data or number of clusters.

The asymptotic time complexity of the algorithm is quadratic on the product of
the dimension of the time series and number of clusters level-i, ni < n, therefore the
complexity of the algorithm is O((mn)2). However, due to the binarization of the
variation in the time series, the comparisons of the m bits and distance computation
may be implemented using fast bit operators.
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5 Experiments and Results

5.1 Data Sets

The experiments have been carried out to perform clustering on two microarray data
sets and two financial data sets. Table 1 describes the data sets.

5.2 System Configuration

Windows 8 enterprise © 2012, 64-bit, with processor intel® core (TM) i7 CPU, U
640@1.20 GHz an. Dot Net platform has been used to implementation.

5.3 Design of Experiments

The experiments have been designed to assess the performance of FTSC algorithm in
terms the efficiency and accuracy. Efficiency is mainly observed in terms of execution
time. The accuracy of the algorithm is considered to be the consistency in cluster
allocation to a time series irrespective of the number of re-executed, cluster allocation
to multiple copies of the time series data, and the order of input of the time series to the
algorithm. Second experiment compares both algorithms FTSC and EVCD.

5.4 Efficiency and Accuracy of FTSC

The first experiment has been designed to examine the speed of Fast Trend Similarity
Clustering algorithm to cluster the four data sets. The experiment of running the
program implementing the algorithm repeated five times, the average running time to
yield the hierarchical clusters for each of the four data sets Affymetrix, Drosophila
genome, Exchange Rates and PPPs over GDP and NSE with execution time
00:00:02.66, 00:00:01.72, 00:00:10.11 and 00:00:01.34 respectivly.

The outcomes of running the FTSC algorithm on Affymetrix are presented in
Tables 2, 3 and 4. In Table 2 the 7-bit direction vector of gene Id 11251 is 0000001
which is in cluster C0;0 while the two genes 11152 and 12182 in serial 7 and 8 have
identical direction vectors 0000101. Therefore, C0;3 includes two genes. The total
clusters of level-0 is 115.

Table 1. Data set

Data
set

Repository Type No of
rows

No of
dim

1 NCBI Microarray/Affymetrix 12488 8
2 NCBI Microarray /Drosophila genome 3456 8
3 PWT Financial/exchange rates and PPPs over

GDP
29 61

4 NSE Financial/(NSE) India 1555 9
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Tables 3 and 4 present the clusters of level-2 and level-3 respectively. In the two
tables the rows display all the clusters Ci;j; i denoting the cluster level and j the cluster
ID. The cluster medoid has been presented in the second column by the identifier of the
direction vector representing the cluster of level-0. In Table 3, the 3rd, 4th, 5th, 6th and
7th column display the clusters of level-2 that are merged to form the cluster of level-3.
Thus the cluster id C3;0 represented by the medoid 0 is formed by merging the clusters
of level-2 represented by the medoids 4, 7, 14, 29 and 58 yielding the cluster with a
total of 486 genes. The cluster C3;1 is the outcome of merging three clusters of level-2

Table 2. Direction vectors, clusters of level-0 of AffyMetrix data

S.no. GENE ID Direction vector Cluster no.

1 11251 0000001 0
2 6599 0000010 1
: : : :
6 11278 0000011 2
7 11152 0000101 3
8 12182 0000101 3
: : : :
13 8001 0001001 6
: : : :
16 11668 0001001 6
: : : :
12487 10226 1111011 114
12488 10461 1111011 114

Table 3. Level-3 cluster formation

Cluster id Medoid C2,* C2,* C2,* C2,* C2,* Cluster density

C3,0 0 4 7 14 29 58 486
C3,1 20 26 52 81 – – 689
C3,2 54 48 41 – – – 73
C3,3 87 93 97 105 – – 1657
C3,4 107 77 – – – – 103
C3,5 9 70 – – – – 48
: : : : : : : :

Table 4. Level-4 cluster formation

Cluster id Medoid C3,* C3,* C3,* C3,* Cluster density

C4,0 0 9 16 31 60 581
C4,1 20 54 83 – – 764
C4,2 87 99 107 – – 1880
: : : : : : :
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that are represented by the medoids 26, 52 and 81 to the cluster represented by medoid
20 at level-3 having a total of 689 genes. To obtain the clusters C3;6 to C3;15 no other
clusters of level-2 were merged to the ones represented by the respective medoids
indicated in column two. The blank ‘−’ entries in the table indicate no clusters of level-
2. Therefore, the row pertaining to the cluster C3;6 with medoid 16 indicates that no
cluster of level-2 satisfied the criterion for the merge operation although the total
number of genes in the cluster C3;6 is 2, where number of clusters of level-3 are 16.

The clusters from C3;6 to C3;15 in level-3 have not changed from the previous level
with the same medoids and densities.

Similarly the Table 4 exhibits the details of the clusters of level-4. From both
Tables 3 and 4 it may be observed that the cluster C4,0 with medoid 0 has been formed
by merging the clusters C3,0, C3,5, C3,6, C3,7 and C3,11 referred to by the medoids 0, 9,
16, 31 and 60 respectively. It may also be observed that the density of C4,0 is the sum of
the densities of the C3,0, C3,5, C3,6, C3,7 and C3,11. Similarly the cluster C4,2 is formed
by merging C3,13, and C3,4, to C3,3 resulting in the density 1880.

As the FTSC algorithm is an agglomerative clustering algorithm yielding a hier-
archical clustering of levels 0–7 for Affymetrix data. The cluster at the highest level
C6,0, represented by the medoid 0 includes all the 12488 genes (Figs. 2 and 3).

In order to estimate the efficiency, accuracy and sensitivity to order of data inputs,
all the rows of the Affymetrix data set were duplicated four times and randomly
shuffled. Therefore, the algorithm was executed with a total of 4 × 12488 = 49952 rows
with 8 dimensions. The output of the program was a hierarchical clustering with levels

Fig. 2. Random clusters plot for DS 1 level 0

Fig. 3. Random clusters plot for DS 2 level 0
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0−7 with same number of clusters at each level as before but the density of each cluster
was four time the previous density. i.e. the cluster C4,5 with inputs four time the first
run was represented by a gene that had direction vector identical to the gene 9 and
contained 192 genes. The same phenomenon was observed for all the clusters of each
level from level-0 to level-7. Thus the accuracy of the algorithm has been assessed. The
average running time of repeated execution of the four times the original data set was
00:00:10.714.

The repeated execution of the program after randomly shuffling the rows yielded
the same number of clusters. However, each time the execution time was differed in the
3rd or the 4th decimal point with the mean being 00:00:02.6599 (Figs. 4 and 5).

5.5 Comparison of FTSC and EVCD Algorithms

In this experiment the results of EVCD algorithm and FTSC algorithm have been
compared. Two real world data sets Affymetrix and Drosophilia data sets as described
in Table 1 are used in this experiment to assess the novelness of trend dissimilarity as
the changes in the time series are represented by direction vectors. The EVCD algo-
rithm is also a parametric algorithm while FTSC algorithm is not. EVCD algorithm
requires one user input as the parameter ε. The experiment has been repeated for three
values of ε, i.e. 0.01, 0.05 and 0.1 respectively. As EVCD performs a hierarchical
clustering, for ε = 0.01, 10 clusters and 6 singletons were obtained at level 14, while for
ε = 0.05, 10 clusters and 6 singletons were obtained at level 2, and finally 11 clusters
and 2 Singleton were obtained at level 1 for ε = 0.1.

Fig. 4. Random clusters plot for DS 3 level 0

Fig. 5. Random clusters plot for DS 4 level 0
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6 Conclusions

The experiments indicate that although the FTSC algorithm has the complexity O
((mn)2) it is fast in terms of execution time due to the binarizing the change in the time-
series. The binary representation in terms of the direction vector affect the distance
computation implemented using bit level operators. The binarization also helps in
privacy and security of the actual data. The nonparametric characteristic of the algo-
rithm keeps the end user from exercise of parameter tuning. User also does not require
any prior knowledge of the data or the clusters. The FTSC algorithm is time efficient
and has the potential to yield accurate clusters of time-series data. The scalability of the
algorithm in terms of multi-dimensions time-series and dealing with noise shall be
investigated in future. To select a better medoid of the cluster of each higher level is
also considered as future work.
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