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Abstract. In this paper we discuss two interpretations of missing
attribute values: attribute-concept values and “do not care” conditions.
Experiments were conducted on eight kinds of data sets, using three types
of probabilistic approximations: singleton, subset and concept. Rules
were induced by the MLEM2 rule induction system. Our main objec-
tive was to test which interpretation of missing attribute values provides
simpler rule sets in terms of the number of rules and the total number of
conditions. Our main result is that experimental evidence exists show-
ing rule sets induced from data sets with attribute-concept values are
simpler than the rule sets induced from “do not care” conditions.

1 Introduction

The most fundamental ideas of rough set theory are lower and upper approx-
imations. In this paper we study probabilistic approximations. A probabilistic
approximation, associated with a probability α, is a generalization of the stan-
dard approximation. For α = 1, the probabilistic approximation becomes the
lower approximation; for very small positive α, it becomes the upper approxima-
tion. Research on theoretical properties of probabilistic approximations started
from [16] and then continued in many papers, see, e.g., [15–17,19–21].

Incomplete data sets may be analyzed using global approximations such as
singleton, subset and concept [8–10]. Probabilistic approximations for incomplete
data sets and based on an arbitrary binary relation were introduced in [12].
The first experimental results using probabilistic approximations were published
in [1].

For our experiments we used eight incomplete data sets with two types of
missing attribute values: attribute-concept values [11] and “do not care” condi-
tions [4,13,18]. Additionally, in our experiments we used three types of proba-
bilistic approximations: singleton, subset and concept.

In [3], the results indicate that rule set performance in terms of error rate is
not significantly different for both missing attribute value interpretations. As a
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result, given two rule sets with the same error rate, the more desirable would
be the least complex, both for comprehension and computation performance.
Therefore, the main objective of this paper is research on the complexity of
rule sets induced from data sets with attribute-concept values and “do not care”
conditions. Complexity is defined in terms of the number of rules and the number
of rule conditions, with larger numbers indicating greater complexity.

Initially, the total number of rules and conditions in rule sets induced from
incomplete data sets with attribute-concept values and “do not care” conditions
were studied in [2]. However, in [2] only one type of probabilistic approximations
was considered (concept) while in this paper we consider three types of proba-
bilistic approximations (singleton, subset and concept). Additionally, in [2] only
three values of α were discussed (0.001, 0.5 and 11.0) while in this paper we
consider eleven values of α (0.001, 0.1, 0.2,..., 1.0).

Note that there are dramatic differences in complexity of rule sets induced
from data sets with attribute-concept values and “do not care” conditions. For
example, for the bankruptcy data set and concept approximation with α = 1.0,
the rule set induced from this data set in which missing attribute values were
interpreted as attribute-concept values has four rules with seven conditions, while
the rule set induced from the same data set in which missing attribute values
were interpreted as “do not care” conditions has 13 rules with 31 conditions. The
error rate, measured by ten-fold cross validation for the data set with attribute-
concept values is 24.24 %, while the error rate for the same data set with “do
not care” conditions is 37.88 %.

Our main result is that the simpler rule sets are induced from data sets in
which missing attribute values are interpreted as attribute-concept values.

Our secondary objective was to identify the probabilistic approximation (sin-
gleton, subset or concept) that is associated with the lowest rule complexity. Our
conclusion is that there is weak evidence that the best probabilistic approxima-
tion is subset.

2 Incomplete Data

We assume that the input data sets are presented in the form of a decision
table. Rows of the decision table represent cases, while columns are labeled by
variables. The set of all cases will be denoted by U . Independent variables are
called attributes and a dependent variable is called a decision and is denoted
by d. The set of all attributes will be denoted by A. The value for a case x and
an attribute a will be denoted by a(x).

In this paper we distinguish between two interpretations of missing attribute
values: attribute-concept values and “do not care” conditions. Attribute-concept
values, denoted by “−”, indicate that the missing attribute value may be replaced
by any of the values that have been specified for that attribute in a given con-
cept. For example, if a patient is sick with flu, and if for other such patients
the value of temperature is high or very-high, then we will replace the missing
attribute values of temperature by values high and very-high, for details see [11].
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“Do not care” conditions, denoted by “*”, mean that the original attribute val-
ues are irrelevant, so we may replace them by any attribute value, for details see
[4,13,18].

One of the most important ideas of rough set theory [14] is an indiscernibility
relation, defined for complete data sets. Let B be a nonempty subset of A.
The indiscernibility relation R(B) is a relation on U defined for x, y ∈ U as
follows:

(x, y) ∈ R(B) if and only if ∀a ∈ B (a(x) = a(y)).

The indiscernibility relation R(B) is an equivalence relation. Equivalence
classes of R(B) are called elementary sets of B and are denoted by [x]B .
A subset of U is called B-definable if it is a union of elementary sets of B.

The set X of all cases defined by the same value of the decision d is called
a concept. The largest B-definable set contained in X is called the B-lower
approximation of X, denoted by appr

B
(X), and defined as follows

∪{[x]B | [x]B ⊆ X},

while the smallest B-definable set containing X, denoted by apprB(X) is called
the B-upper approximation of X, and is defined as follows

∪{[x]B | [x]B ∩ X �= ∅}.
For a variable a and its value v, (a, v) is called a variable-value pair. A block

of (a, v), denoted by [(a, v)], is the set {x ∈ U | a(x) = v} [5].
For incomplete decision tables the definition of a block of an attribute-value

pair is modified in the following way.

– If for an attribute a there exists a case x such that the corresponding value
is an attribute-concept value, i.e., a(x) = −, then the corresponding case
x should be included in blocks [(a, v)] for all specified values v ∈ V (x, a) of
attribute a, where V (x, a) is defined as follows

{a(y) | a(y) is specified , y ∈ U, d(y) = d(x)},

– If for an attribute a there exists a case x such that a(x) = ∗, i.e., the cor-
responding value is a “do not care” condition, then the case x should not be
included in any blocks [(a, v)] for all values v of attribute a.

For a case x ∈ U and B ⊆ A, the characteristic set KB(x) is defined as the
intersection of the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in
the following way:

– If a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x),

– If a(x) = −, then the corresponding set K(x, a) is equal to the union of all
blocks of attribute-value pairs (a, v), where v ∈ V (x, a) if V (x, a) is nonempty.
If V (x, a) is empty, K(x, a) = U ,

– If a(x) = ∗ then the set K(x, a) = U , where U is the set of all cases.
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3 Probabilistic Approximations

For incomplete data sets we may define approximations in many different ways
[8]. For the lack of space, we are going to define only probabilistic approxima-
tions.
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Fig. 1. Size of the rule set for the Bank-
ruptcy data set
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Fig. 2. Size of the rule set for the
Breast cancer data set
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Fig. 3. Size of the rule set for the
Echocardiogram data set
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Fig. 4. Size of the rule set for the
Hepatitis data set

A B-singleton probabilistic approximation of X with the threshold α, 0 <
α ≤ 1, denoted by apprsingleton

α,B (X), is defined as follows

{x | x ∈ U, Pr(X | KB(x)) ≥ α},

where Pr(X | KB(x)) = |X ∩ KB(x)|
|KB(x)| is the conditional probability of X given

KB(x) and |Y | denotes the cardinality of set Y .
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Fig. 5. Size of the rule set for the Image
segmentation data set
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Fig. 6. Size of the rule set for the Iris
data set

A B-subset probabilistic approximation of the set X with the threshold α,
0 < α ≤ 1, denoted by apprsubset

α,B (X), is defined as follows

∪{KB(x) | x ∈ U, Pr(X | KB(x)) ≥ α}.
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Fig. 7. Size of the rule set for the Lym-
phography data set
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Fig. 8. Size of the rule set for the Wine
recognition data set

A B-concept probabilistic approximation of the set X with the threshold α,
0 < α ≤ 1, denoted by apprconcept

α,B (X), is defined as follows

∪{KB(x) | x ∈ X, Pr(X | KB(x)) ≥ α}.

For simplicity, the A-singleton probabilistic approximation will be called a sin-
gleton probabilistic approximation, A-subset probabilistic approximation will be
called a subset probabilistic approximation, and A-concept probabilistic approxi-
mation will be called a concept probabilistic approximation.
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Fig. 9. Number of conditions for the
Bankruptcy data set
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Fig. 10. Number of conditions for the
Breast cancer data set

4 Experiments

Our experiments were conducted on eight data sets that are available from the
University of California at Irvine Machine Learning Repository. For every data
set a template was created by replacing randomly 35 % of existing specified
attribute values by attribute-concept values. The same template was used for
constructing a corresponding data set with “do not care” conditions, by replacing
“−”s by “*”s. For two data sets, bankruptcy and iris, replacing more than 35 %
of existing specified values by missing attribute values resulted in cases where
all attribute values were missing. Hence we used for our experiments data sets
with exactly 35 % missing attribute values.
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Fig. 11. Number of conditions for the
Echocardiogram data set
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Hepatitis data set

In our experiments, for any data set with given type of missing attribute val-
ues a rule set was induced using three types of probabilistic approximations:
singleton, subset and concept, resulting in 24 combinations. For every such
combination, rule sets induced from a data set with attribute-concept values
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and the corresponding data set with “do not care” conditions were induced, for
all eleven values of the parameter α, α = 0.001, 01, 0.2,..., 1.0. Both the total
number of rules and the total number of conditions in the rule set were com-
pared using the Wilcoxon matched-pairs signed rank test with a 5 % level of
significance, two-tailed test.
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Fig. 13. Number of conditions for the
Image segmentation data set
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In our experiments, we used the MLEM2 rule induction algorithm of the
Learning from Examples using Rough Sets (LERS) data mining system [1,6,7].
Results of our experiments are presented in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15 and 16.

The total number of rules was smaller for attribute-concept values than for
“do not care” conditions for 13 combinations: for the bankruptcy and echocar-
diogram data sets with all three types of probabilistic approximations, for the
image data set with concept probabilistic approximations, and for the iris and
lymphography data sets for singleton and concept probabilistic approximations.
On the other hand, the total number of rules was smaller for “do not care” condi-
tions than for attribute-concept values for five combinations: for the breast cancer
data set with singleton, subset and concept approximations and for the hepatitis
and wine recognition data sets with subset probabilistic approximations. For the
remaining six combinations of the data set and probabilistic approximation type
the difference between the number of rules induced from the attribute-concept
values and “do not care” conditions was statistically insignificant.

Similarly, for the same 24 combinations we compared the total number of
conditions in rule sets. For 13 combinations the total number of conditions was
smaller for data sets with attribute-concept values than for “do not care” con-
ditions: for the bankruptcy and echocardiogram data sets with all three types
of probabilistic approximations, for the image data set and concept probabilis-
tic approximations and for the iris and lymphography data sets with singleton
and subset probabilistic approximations and for the and wine recognition data
set with singleton and subset approximations. However, for 5 combinations the
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Wine recognition data set

total number of conditions was smaller for “do not care” conditions than for
attribute-concept values: for the breast cancer data set with all three types of
probabilistic approximations, for the hepatitis data set with subset probabilistic
approximations and for the wine recognition data set with concept approxima-
tions.

We may conclude that there is some evidence to support the idea that rule
sets induced from data sets with attribute-concept values are simpler than rule
sets induced from data sets with “do not care” conditions.

Our secondary objective was to select a type of probabilistic approximation
that should be used for induction the simplest rules. Results of our experiments
were divided into four groups, based on the type of the missing attribute values
(attribute-concept values and “do not care” conditions) and whether the number
of rules or the total number of conditions was used as a criterion of quality.
Within each group we had 24 combinations (eight data sets and three types of
probabilistic approximations). The Friedman multiple comparison rank sum test
was applied, with 5 % significance level.

In our first group, where attribute-concept values were concerned with the
number of rules, in one combination, associated with the breast cancer data set,
the subset probabilistic approximations were better than the singleton proba-
bilistic approximations and for another combination (for the iris data set) the
subset probabilistic approximations were better than the concept probabilistic
approximations. For the wine recognition data set, in two combinations, the con-
cept probabilistic approximations were better than the remaining two probabilis-
tic approximations. For the remaining 20 combinations results were statistically
inconclusive.

For a group associated with “do not care” conditions and the number of
rules, for nine combinations the subset approximations were better than other
probabilistic approximations (for the breast cancer, iris, lymphography and wine
recognition the subset probabilistic approximations were better than the remain-
ing two probabilistic approximations and for the echocardiogram data set the
subset probabilistic approximations were better than the singleton probabilistic
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approximations). For the 15 other combinations the results were statistically
inconclusive.

For the remaining two groups, both associated with the total number of con-
ditions, the results were similar. In four combinations of attribute-concept values,
the subset approximations were the best. For the remaining 15 combinations of
attribute-concept values, the results were statistically inconclusive. For nine com-
binations of “do not care” conditions, the subset probabilistic approximations
were the best. In the remaining 15 combinations of “do not care” conditions, the
results were inconclusive. In summary, there is weak evidence that the subset
probabilistic approximations are the best to be used for inducing the simplest
rule sets.

5 Conclusions

As follows from our experiments, there is evidence that the rule set size is smaller
for the attribute-concept interpretation of missing attribute values than for the
“do not care” condition interpretation. The total number of conditions in rule
sets is also smaller for attribute-concept interpretation of missing attribute values
than for “do not care” condition interpretation. Thus we may claim attribute-
concept values are better than “do not care” conditions as an interpretation of
a missing attribute value in terms of rule complexity.

Furthermore, all three kinds of probabilistic approximations (singleton, sub-
set and concept) do not differ significantly with respect to the complexity of
induced rule sets. However, there exists some weak evidence that the subset
probabilistic approximations are better than the remaining two: singleton and
concept.
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