
Identifying Inter-Component Control
Flow in Web Applications

William G.J. Halfond(B)

University of Southern California, Los Angeles, USA
halfond@usc.edu

Abstract. As web applications become more complex, automated tech-
niques for their testing and verification have become essential. Many
of these techniques, such as ones for identifying security vulnerabili-
ties, require information about a web application’s control flow. Cur-
rently, this information is manually specified or automatically generated
using techniques that cannot give strong guarantees of completeness.
This paper presents a new static analysis based approach for identifying
control flow in web applications that is both automated and provides
stronger guarantees of completeness. The empirical evaluation of the
approach shows that it is able to identify more complete control flow
information than other approaches with comparable analysis run time.

1 Introduction

Modern web applications have become increasingly sophisticated, interweaving
complex interactions and combining data from multiple sources. As web appli-
cations become more complex, automated testing and verification techniques
specifically tailored for web applications have risen in importance. Many of these
techniques require detailed information about the control flow of a web appli-
cation. For example, to identify multi-module vulnerabilities [2], access control
vulnerabilities [22], or eliminate navigation errors [10]. For early web applica-
tions, identifying this control flow was as simple as following the links embedded
in each of the application’s web pages. However, control flow in modern web
applications is more complex and limitations of techniques for identifying con-
trol flow have meant that testing and verification techniques have to rely on
less accurate methods. Unsurprisingly, two control flow related vulnerabilities,
“Failure to Restrict URL Access” and “Unvalidated Redirects and Forwards”
have made the infamous OWASP Top 10 Web Application Security Risks list.

The architecture of modern web applications makes their control flow more
complex than that of traditional (e.g., desktop) software. On the server-side
of a web application, modules of code, called components, can expose methods
that allow them to be directly executed over the web. Examples of components
include Java Servlets and PHP pages. In turn, a component may generate data or
object programs, code that is intended to be interpreted and executed in another
context. Object programs can be written in “web” languages, such as JavaScript

c© Springer International Publishing Switzerland 2015
P. Cimiano et al. (Eds.): ICWE 2015, LNCS 9114, pp. 52–70, 2015.
DOI: 10.1007/978-3-319-19890-3 5

Identifying Inter-Component Control Flow in Web Applications 53

and HTML, or with protocols, such as HTTP, which allow developers to control
the behavior of an end user’s browser (e.g., using a redirect or authentication
request). In web applications, not only is there control flow within each compo-
nent, such as jumps, loops, branching, and method calls, written in the appli-
cation’s general purpose programming language, there is also inter-component
control flow. This additional control flow is defined by the combination of the
semantics of the object programs, which themselves can interact with other
components and users. Control flow models that fail to account for all of these
additional types of control flow may be incomplete and represent only a subset
of the potential runtime behaviors of a web application.

Researchers and web application developers have recognized the importance
of checking web application control flow. In early web applications, errors in con-
trol flow typically manifested themselves as dead links. Researchers found that
web crawlers [3,14,23], were very effective at detecting these types of errors.
However, as web applications became more dynamic, the effectiveness of these
approaches was reduced. Subsequent work did not directly address this prob-
lem, but did provide a diverse set of techniques that could be used to verify and
enforce correctness and security properties of web applications [1,10,12,15,20].
Unfortunately, their primary assumption is that there exist techniques for accu-
rately specifying control flow. In practice, the approaches rely on either the
developer to manually specify the control flow, which is time-consuming and
error-prone, or on web crawlers, which cannot provide strong guarantees of com-
pleteness. Several automated static analysis techniques (e.g., [2,5,19,22,25])
have attempted to derive more complete control flow models, but do not account
for all possible types of control flow.

This paper presents a new approach for statically identifying control flow
in web applications that addresses the limitations of previous approaches. The
approach is based on static analysis of the code of a web application. The static
analysis identifies control flow related constructs defined by the generated HTML
and JavaScript of the web application and by server-side commands generated
by the general purpose language of the web application. This information is com-
bined with traditional control flow information to provide a more complete model
of a web application’s control flow. As shown in the evaluation, the approach
is more complete than other approaches and its running time is fast enough to
allow it to be used to generate control flow information for a range of testing
and verification tasks [10–12,21,22,24,26].

2 Web Applications Control Flow

Web application control flow includes both traditional control flow constructs,
such as jumps, branches, and loops, as well as the following new types of control
flow that are specific to web applications:

Dynamically Generated HTML. Web pages are displayed in a user’s browser
and provide the user with the ability to interact with the web application. Certain
types of HTML tags can also affect the control flow, either automatically or when

54 W.G.J. Halfond

they are clicked on by the end user. These tags include: <a>, <form>, ,
<meta>, <frame>, and <script>.
JavaScript . is a scripting language widely used to write programs that are
embedded in HTML pages and that can interact with the web page’s docu-
ment object model (DOM) and the end-user. The embedded programs can per-
form a range of functions that can affect the inter-component control flow of
a web application. These can be done by referencing the location property of
the DOM and accessing the navigation functionality of the browser. Note that
inter-component control flow related to JavaScript does not include control flow
within the JavaScript programs, only the actions that cause a user to navigate
from one component to another.

HTTP Commands. Components communicate among themselves and with the
end user’s browser by sending messages using the Hyper-Text Transport Protocol
(HTTP). A component issues HTTP commands by calling a special API-based
command and passing it an HTTP response code and a message parameter. Cer-
tain HTTP response codes cause the browser to redirect to the location specified
in the HTTP message. These codes are 300, 301, 302, 303, and 307. For all of these,
the message is specified in a special HTTP header field that is defined by a mes-
sage of the form “Location: target” where target is a URL that indicates where
the user should be redirected. A lesser known HTTP refresh header can also be
used in much the same way as the HTML <meta> tag.

Component Inclusion. In many web application frameworks, it is possible to
issue a command that imports the contents of another component. For example,
both PHP and JSP have a variant of the include command. These commands
import the contents of the target component at the point of the command. This
can be done either statically via precompilation or dynamically at runtime. These
commands affect control flow since the imported components are themselves
executable code.

Direct Entry . Users are able to enter the URL of a web component directly in
a web browser’s location bar. This action causes the root method of the target
component to execute. Direct Entry can occur even if a link to the target compo-
nent has not been exposed and the developer did not intend for the component
to be an entry point into the application. In the security literature, Direct Entry
control flow is also known as “forced browsing” and can lead to workflow vul-
nerabilities [2]. Direct Entry control flow can be further refined by the type of
encoding used by the HTTP requests, such as GET or POST.

3 Motivating Example

Figure 1 shows a partial listing of a web application component, Login.jsp, that
manages a user logging in to a web application. The component is implemented
as a servlet in the Java Enterprise Edition (JEE) web application framework.

The input to Login.jsp is a Request object for accessing the HTTP message
sent to the component and a Response object for sending content to the end

Identifying Inter-Component Control Flow in Web Applications 55

void service(Request req, Response resp)

1. JspWriter out = resp.getOutputStream();

2. String session = req.getParam("session");

3. if (isValidSession(session)) {

4. sendHttpCmd(resp, 302, "Default.jsp");

5. } elsif (session.equals("login")) {

6. String login = req.getParam("uname");

7. String password = req.getParam("pword");

8. if (isClean(login) && isClean(pword)) {

9. if (loginOK(uname, pword)) {

10. sendHttpCmd(resp, 302, "Default.jsp");

11. }

12. } else {

13. sendHttpCmd(resp, 303, "Error.jsp");

14. }

15. } else {

16. out.print("<html><body>");

17. out.print("<script language=’JavaScript’>");

18. out.print("function goBack() {");

19. out.print("window.location.href="Index.jsp";

20. out.print("}");

21. out.print("</script>");

22. out.print("<h1>Login Page</h1>");

23. out.print("<form method=POST" + " action=‘Login.jsp’>");

24. out.print("<input type=hidden value=" + "‘login’ name=session>");

25. out.print("User:<input type=text name=uname>");

26. out.print("Password:<input type=" + "password name=pword>");

27. out.print("<input type=submit value=‘Login’>");

28. out.print("<input type=submit value=‘Back’" + " onClick=‘goBack()’>");

29. out.print("</form>");

30. out.print("" + " Reset password");

31. out.print("</body></html>");

void sendHttpCmd(Response resp, int code, String msg)

33. String location = "Location: ";

34. location += urlEncode(msg);

35. location += "\n\n";

36. resp.sendHttpMessage(code, location);

Fig. 1. Implementation of servlet, Login.jsp

user. At line 2, Login.jsp accesses a name-value pair, session, that is used by
the application to track the logged-in status of the end user. If the session corre-
sponds to a valid session, an HTTP command is issued at line 4 that causes the
end user to redirect to the default servlet. This is done by calling sendHttpCmd
and passing in three parameters, the first is the Response object, the second is
the intended HTTP response code, and the third is the URL of the component
to which the end user will be redirected. If the user does not have a valid session,
but the session variable is equal to “login,” then the servlet accesses the sup-
plied username and password (lines 6 and 7) and checks the credentials at lines
8 and 9. If the login is successful, then at line 10 a redirect command is executed

56 W.G.J. Halfond

that allows the end user to proceed to the default servlet; otherwise, the user is
redirected to an error page at line 13. Finally, if neither condition at line 3 or
5 applies, then the servlet prints a web form that allows the user to submit a
username and password (lines 15–31). This web form, when submitted, sends the
username and password back to the Login.jsp servlet. Alternatively, the user
can click on the link generated at line 30 if they have forgotten their password
or go back to the previous page that triggered the login request by clicking on
the button generated at line 28. Clicking this button triggers the execution of
the JavaScript function generated at lines 18–20.

Login.jsp illustrates several types of inter-component control flow. These
include HTTP Commands at lines 4, 10, and 13; Dynamically Generated HTML
via the HTML page produced at lines 16–31; and JavaScript via the script tag at
lines 17–21 and called at line 28. The control flow links the Login.jsp servlet to
Index.jsp, Default.jsp, Error.jsp, and ResetPassword.jsp. A web crawler
could miss several of the control flow links during a crawl of the example appli-
cation. For example, it is likely a web crawler could not accurately guess the
constraints on the user input imposed at line 8. Therefore, the crawler would
find the error page referenced at line 13, but not the default page referenced at
line 10.

4 Approach

The goal of the proposed approach is to identify inter-component control flow in
web applications. The proposed approach has four steps that together account
for the different types of control flow. The first step targets control flow defined
by the components’ generated object programs, Dynamically Generated HTML
and JavaScript , and is explained in Section 4.1. The second step, explained in
Section 4.2, identifies server-side API-based control flow, which includes HTTP
Commands and Component Inclusion. Section 4.3 details the third step, which
identifies Direct Entry related control flow. The fourth step, in Section 4.4, com-
bines the identified control flow into an Inter-Component Control Flow Graph
(ICCFG).

4.1 Control Flow in Generated HTML Pages

Control flow due toDynamically GeneratedHTML and JavaScript is defined in the
HTML output of the components of aweb application.To identify this control flow,
the approach builds on prior work in web page string analysis [8,9] to compute the
set of HTML pages that each component can generate at runtime. To do this, the
approach analyzes each method of the component and computes a parameterized
summary of the HTML that could be generated by the method. The methods are
analyzed in reverse topological order with respect to the component’s call graph
to ensure that a method’s summary is computed before those of calling methods.
All methods that are part of a recursive call are analyzed together as one “super
method.”When the analysis of the component terminates, the summary of the root

Identifying Inter-Component Control Flow in Web Applications 57

Gen[n] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{{}} if n is method entry
{n} if n generates output
{n} if n is a callsite

and target(n) has a summary
{} otherwise

In[n] =
⋃

p∈pred(n)

Out[p]

Out[n] = {p|∀i ∈ In[n], p ← append(i, Gen[n])}

summary(m) =

{

p|∀s ∈ Out[exit(m)]
∏

n∈s

resolve(n)

}

Fig. 2. Data-flow equations for identifying generated HTML [8]

method represents all of the possible HTML pages that could be generated by the
component.

Within each method, the approach uses iterative data-flow analysis to com-
pute the set of HTML pages. This analysis computes the fixed point solution
to the equations shown in Figure 2. As shown in the figure, each node n in the
method is assigned a Gen set based on whether it directly generates HTML data,
calls a function that then generates HTML data, or does not contribute at all
to the generated HTML. A node can be identified as generating HTML content
based on the signature of its target invocation method. The In and Out sets prop-
agate this information. The general intuition behind the equations is that nodes
that can directly or indirectly generate HTML content are appended together,
so the Out set of the exit of a method is a set of ordered sets (representing paths)
of nodes that can generate HTML.

Once the Out set of the method’s exit node reaches a fixed point, the approach
uses the resolve function to convert each node to a set of strings that repre-
sents its generated HTML. The resolve function handles two general cases. (1)
If the node directly generates output, resolve computes a finite state automata
(FSA) representation of its strings. For nodes that print a constant string or
variable defined without string operations (e.g., no concat or insert), the app-
roach identifies the reaching definitions of the string values. For variables defined
using a string expression, the approach uses the Java String Analysis (JSA) to
compute an approximation of the possible string values [4]. If resolve encoun-
ters the use of a string that is defined as one of the formal parameters to the
enclosing method or external to the method, then the resolve function leaves
a placeholder in the returned results. (2) If the node represents a call site to a
method with a summary, resolve replaces any placeholders in the target’s sum-
mary with the call site’s corresponding arguments. The result of calling resolve
on each node in each ordered set is appended together to create an FSA based
representation of the HTML content that could be generated along each path in
the application.

58 W.G.J. Halfond

When the analysis terminates, each component is associated with a set of
FSA based representations of its potentially generated HTML. The approach
traverses the generated representation using standard parsing techniques, and
identifies strings that define control flow related tags and JavaScript. The app-
roach analyzes the contents of these tags to identify their control flow informa-
tion.

The relevant tags include: <a> allows for the creation of hyperlinks that can
be clicked on by the user to move from the current page to the target of the
hyperlink; <form> allows the user to submit data in a web form, which causes
control flow to transfer from the current page to the target component specified
by the tag; contains a URL-based attribute that defines its source. In
some cases the source points to a component that dynamically generates an
image and causes execution of the target component. To prevent inclusion of
uninteresting control flow that would be identified in this case, the approach
uses the heuristic of not including control flow generated by the tag if its
source URL has a suffix that corresponds to a static image type; <meta> can
define a “refresh” attribute, which redirects the end user to another URL after
a certain amount of time has elapsed; <frame> and <iframe> include a URL
attribute that indicates a target component is to be executed and then displayed
in a portion of the HTML page.

To identify JavaScript related inter-component control flow, the approach
first identifies JavaScript contained by <script> tags, embedded as event han-
dlers, and included from external files. Next, the approach parses the JavaScript
to identify statements that implement Component Inclusion, Dynamically Gen-
erated HTML, or HTTP Commands control flow. For example, statements that
reference the location property, use the Document Object Model’s (DOM) nav-
igation model to send the user to another URL, generate HTML, or load addi-
tional JavaScript. Since each of these statements requires an argument specifying
the target of the operation, the approach attempts to identify the values that
could be referenced at each statement. This is done using an algorithm almost
identical to Algorithm 1, where the identified statements are the analyzed com-
mand points. The difference between this analysis and the one explained in
Section 4.2 is that these resolve functions return string values based on reach-
ing definitions and only model the effect of concatenation used at the identified
statements to join reaching string values. This more limited resolve function is
used because there is not yet a JSA equivalent for JavaScript. Once the potential
values at each of the identified statements have been calculated, the approach
parses the arguments to identify the HTML tags used to define Dynamically
Generated HTML control flow, the targets of HTTP Commands related control
flow, or the code included by Component Inclusion constructs.

Example. In Login.jsp, only one of the four paths generates HTML content,
the path that follows the false branch at line 5. The HTML page generated
along this path is comprised of the string data generated at lines 16–31. The
output of these nodes is appended together to form one string that contains

Identifying Inter-Component Control Flow in Web Applications 59

the HTML output generated by the corresponding nodes. This string is then
analyzed by an HTML and JavaScript parser to identify control flow information.
This analysis identifies three control flow edges: a form that directs control flow
back to Login.jsp, a hyperlink that directs control flow to ResetPassword.jsp,
and a call to a JavaScript function that redirects the user to Index.jsp.

Algorithm 1. Identify API-based control flow
Input: C: web application component
Output: set of edges identified in C
1: methods ← methods of C in RTO
2: for all m ∈ methods do
3: for all stmt ∈ m do
4: if stmt is a CP then
5: codes ← {FP,CI, 301, 302...}∩ resolveCodes(stmt)
6: if codes �= ∅ then
7: targets ← resolveTarget(stmt)
8: linenumber ← getLineNumber(stmt)
9: summary(m) ← summary(m) ∪ createEdges(C, targets, codes)

10: end if
11: else if isInvoke(stmt) ∧ summary(getInvkTarget(stmt)) �= ∅ then
12: target ← getInvkTarget(stmt)
13: mappedEdges ← map(summary(target), stmt)
14: for all e ∈ mappedEdges do
15: targets ← resolveTarget(e)
16: codes ← resolveCodes(e)
17: linenumber ← getLineNumber(e)
18: summary(m) ← summary(m) ∪ createEdges(C, targets, codes)
19: end for
20: end if
21: end for
22: end for
23: return summary(root method of C)

4.2 Server-side API-Based Control Flow

The approach identifies server-side API-based control flow using a static analysis
based technique. The general intuition behind this approach is to first identify
the application’s command points (CP) – points in an application where com-
mands are issued to perform either HTTP Commands or Component Inclusion
based control flow. The approach analyzes the CP to identify the possible values
of their arguments. This is done by analyzing the chain of definitions and uses of
the arguments. The identified values are parsed to extract control flow informa-
tion. For CPs related to HTTP Commands, parsing the arguments identifies the
HTTP response codes and the value of the Location header. For CPs related
to Component Inclusion, the parsing identifies the component to be included at
that point.

60 W.G.J. Halfond

Algorithm 2. CreateEdges: helper function for creating edges
Input: C: web application component; targets: set of edge targets; codes: set of codes

for the edges
Output: edges: set of edges created
1: for all target ∈ targets do
2: for all code ∈ codes do
3: edges ← edges ∪ (nameOf(C), target, code, linenumber)
4: if code = CI then
5: edges ← edges ∪ =(target, nameOf(C), code, linenumber)
6: end if
7: end for
8: end for
9: return edges

The algorithm for identifying server-side API-based control flow is shown in
Algorithm 1. The input to the algorithm is a web component C, and the output
is a set of edges, which contains the control flow defined in C. Each edge in
edges is a tuple of the form 〈source, destination, code, linenumber〉. The first
element of the tuple, source, is the name of the component from which the
edge is originating. In most cases, this is the canonical name of C. The second
element of the tuple, destination, represents the target component to which
control flow is redirected. The third element, code, is the HTTP response code
that is part of the message or the value “CI” for edges related to Component
Inclusion. The last element, linenumber, is the line number in the component
where the command is issued. This is used in the fourth step (Section 4.4) when
the inter-component control flow information is combined with the CFGs of the
individual components of the web application.

The analysis begins by creating a list of the methods of C. As in Section 4.1,
the methods are analyzed in reverse topological order with respect to the com-
ponent’s call graph to ensure that a method’s summary is computed before
those of calling methods (line 1). All methods that are part of a recursive call
are analyzed together as one “super method.” Then for each method, m, each
statement, stmt, is processed (lines 2–22).

If the statement is a CP (line 4), then resolveCodes is called on the state-
ment to identify the possible HTTP codes that could be used at that point (line
5). The function resolveCodes is a simplified version of the resolve function
introduced in Section 4.1, but is for resolving integer instead of string values.
The set of values returned by calling resolveCodes is intersected with a set that
contains HTTP control flow related codes, the symbol that is used to denote a
placeholder for formal method parameters “FP,” and the symbol for Compo-
nent Inclusion, “CI” (line 5). If the intersection is non-empty (line 6), then
resolveTarget is called to determine the value of the message used at the CP
(line 7). The resolveTarget function is similar to the resolve method, but
is customized to extract information related to Component Inclusion and the
“Location” header. Then the line number that corresponds to stmt is identified

Identifying Inter-Component Control Flow in Web Applications 61

(line 8). A helper function, CreateEdges, shown in Algorithm 2 is called to gen-
erate the inter-component control flow edges. In CreateEdges, the algorithm
creates a new edge for each code and target. If the code relates to Compo-
nent Inclusion, then an additional control-edge is added that shows control flow
returning from the target back to the source. This reflects that Component Inclu-
sion includes the target component’s control flow and then continues execution
within the original component.

If the statement is not a CP, then it is checked to see if it invokes a method
that has a summary associated with it (line 11). If this is the case, the target
of the invocation is identified (line 12). Next, function map takes the statement
and summary of the target method and replaces any placeholders in the method
summary with the corresponding argument provided at the invocation call site
(line 12). For each mapped edge, the corresponding resolve calls are performed
to identify the possible locations and codes that could be executed at that point
(lines 15 and 16). This is done since the substituted argument for either the
location or code could be resolvable in the current method context or may itself
be defined by a parameter to the current enclosing method. With the potential
codes and locations discovered by the calls to the resolve functions, new edges
are created by calling createEdges (line 18).

Once each of the methods have been processed, the summary of the root
method of the component contains all of the Component Inclusion and HTTP
Commands control flow edges that can be generated by the component at run-
time. If there are any placeholders remaining in the summary, these edges are
noted as being defined by external input to the component. The root method’s
summary is returned as the output of the algorithm.

Example. To illustrate the second step of the approach, consider the exam-
ple servlet, whose implementation is shown in Figure 1. Analysis of Login.jsp
begins by analyzing method sendHttpCmd, since it is the first method in reverse
topological order. The algorithm examines each statement of the method and
identifies the CP at line 36 of Login.jsp. Next it attempts to resolve the value
of the code variable that specifies the HTTP response code that will be issued
at that point. The definition-use chain (DU) leads back to the second formal
parameter of the method, so a placeholder (FP2) that specifies this relationship
is generated and returned by the call to resolveCode at line 6 of the algorithm.
The formal placeholder is in the set of valid control flow related codes at line 7 of
the algorithm, so the algorithm next tries to resolve the message sent at line 36
of Login.jsp. The DU chain leads back to the third formal parameter, so here
again a placeholder is generated and returned (FP3). No other statements in
sendHttpCmd match either of the conditions at lines 5 or 20 of the algorithm, so
a single edge of the form 〈Login.jsp, FP3, FP2, 36〉 is added to sendHttpCmd’s
summary.

The algorithm then analyzes method service. The condition at line 20 of
the algorithm is true for nodes 4, 10, and 13, since all call method sendHttpCmd
and this method has a summary. The algorithm maps the statement’s argument
to the method’s summary. For node 4, this creates 〈Login.jsp, Default.jsp,

62 W.G.J. Halfond

302, 4〉; for node 10 this creates the edge 〈Login.jsp, Default.jsp, 302, 10〉;
and for node 13 the edge 〈Login.jsp, Error.jsp, 303, 13〉 is created. The edges
generated for each of the statements are added to the summary of service. No
other statements in service match either of the conditions at line 5 or line 20 of
the algorithm, so processing of service is finished and its summary is returned
as the output of the algorithm.

4.3 Control Flow Based on Direct Entry

The third part of the approach identifies control flow related to Direct Entry .
There are two steps in this identification. The first identifies if a component is
able to receive requests directly from an end user. This is done by analyzing the
component to determine if it meets the necessary conditions specified by the web
application framework to receive requests. For example, in the Java Enterprise
Edition (JEE), a component must implement one of a set of specific interfaces.
These conditions can be checked via static analysis. If the component satisfies
the conditions, an inter-component control flow edge that originates from the
user and connects to the component entry points is identified. Once an edge is
identified, the approach attempts to refine the information by determining the
type of HTTP request method encoding (e.g., GET or POST) required to access
the component. In certain frameworks, such as JEE, the HTTP request method
indicates which procedure will be treated as the root method. For example,
the presence of a doPost method implies that the component can handle POST
requests. In PHP, the name of the global variable used to access input parameters
indicates the expected request method. If it is possible to identify the request
method, then the added edges are updated to include an annotation specifying
the request method.

Example. The example presented in Figure 1 has several edges related to Direct
Entry control flow. The first of these is an edge annotated with the “POST”
request method that runs from the user to the entry node of Login.jsp. This
is created because Login.jsp implements the JEE servlet interface method
“doPost.” This edge is of the form 〈User, Login.jsp, “Direct”, 0〉, where the
linenumber is not defined. Additionally, there are four other components identi-
fied as targets in in Sections 4.1 and 4.2: Default.jsp, Error.jsp, Index.jsp,
and ResetPassword.jsp. For the purpose of illustration, we assume that these
are analyzable by the approach and also implement the necessary entry points,
which leads to edges being added from the user to each of their entry points.

4.4 Combining Control Flow Information

The Inter-Component Control-Flow Graph (ICCFG) includes inter-component
and intra-component control flow. Intra-component control flow can be identified
by standard techniques for building control flow graphs. Inter-component control
flow edges that have a non-zero line number associated with them are added by

Identifying Inter-Component Control Flow in Web Applications 63

Login.jsp
Entry

Login.jsp
Exit

1 2 3

4

5

6 7 8 9

10

13

ResetPassword.jsp
Entry

Index.jsp
Entry

Error.jsp
Entry

Client

15
...
31

Default.jsp
Entry

Fig. 3. Inter-component control flow graph for servlet Login.jsp shown in Figure 1

specifying that the source of the edge is the node that corresponds to the line
number in the source component and connecting it to the edge’s destination.
Destination edges are connected to the entry node of the target component.
In the case of inter-component control flow edges for which there is a zero or
undefined line number, their source is the exit point of the source component and
the destination is determined the same as edges with defined line numbers. For
any edge with the user as the source, a “Client” node is created in the graph and
all such edges’ source runs from this node to the target component. Control flow
edges that are derived from Component Inclusion are handled slightly differently
in terms of their connection to specific nodes in the traditional control flow graph.
The reason for this is that the naive approach to connecting these edges leads to
the generation of a cycle at the node that performs the Component Inclusion.
This would happen because both the outgoing edge and returning edge would be
connected to the same node in the source component. To address this, the source
node n is split into two corresponding nodes ncall and nreturn. The outgoing edge
to the included component is connected at its source to ncall and its destination
to the entry node of the included component. The corresponding return edge is
connected at its source to the exit of the included component and its destination
to nreturn.

The ICCFG for servlet Login.jsp is shown in Figure 3. This graph includes
the traditional intra-component control flow of the component as solid lines and
the inter-component control flow edges as dotted lines. Due to space constraints
the control flow edges that go from nodes 4, 10, and 13 to method sendHttpCmd
are omitted. Additionally, the control flow graphs for Default.jsp, Error.jsp,
Index.jsp, and ResetPassword.jsp are not included in this example.

5 Evaluation

This section presents the results of an empirical evaluation of the approach.
For the evaluation, the author implemented the analysis in a prototype tool,
ICE (Inter-component Control-flow Extractor). The accuracy and runtime cost
of ICE was compared against web crawling and three static analysis based
approaches. The research questions are: RQ1: How long does it take to analyze
the subject applications using each of the evaluated approaches? RQ2: What is
the precision of each approach? RQ3: What is the recall of each approach?

64 W.G.J. Halfond

Table 1. Subject applications, analysis time, and inter-component edge count. Tech-
niques are Crawler (C), HTML Only (H), MiMoSA (M), SXS (S), and ICE (I)

Application LOC Classes Servlets
Time (s) Edge Count

C H M S I C H M S I

Bookstore 19,402 28 27 440 248 660 660 660 192 118 118 368 415
Classifieds 10,702 18 18 3,389 156 464 464 464 104 78 78 174 198
Daffodil 18,706 119 70 9 1,088 1,482 1,482 1,482 31 92 96 96 101
Employee Dir. 5,529 11 9 246 105 282 282 282 10 35 35 51 65
Events 7,164 13 12 288 248 346 346 346 51 46 46 79 91
Filelister 8,671 41 10 6 90 191 191 191 7 19 19 19 160
Portal 16,089 28 27 2,486 262 755 755 755 294 116 116 491 517
Webmail 17,078 81 24 2,822 1,373 1,900 1,900 1,900 56 59 59 59 76

5.1 Experiment Setup

Subject Applications. For the evaluation, a set of eight subjects were ana-
lyzed. Details of the applications are shown in Table 1. All of the applications
are available as open source. They were chosen because their implementations
are a mix of static HTML, JavaScript, Java servlets, and regular Java code.

Implementation of Analyses. ICE was compared against web crawling and
three static analysis based techniques. The static analysis based techniques were
reimplemented for the evaluation since their original implementations were for
PHP based web applications or were still at a prototype stage. Although none of
the considered approaches were originally intended for control flow identification,
they extract similar types of information and represent the most closely related
approaches known to the author.

ICE: The implementation of ICE is in Java and leverages several previously
developed program analyses: Soot, for generating control flow graphs; Indus, for
data flow information; and JSA for evaluating string expressions. HTMLParser
was used to parse the string representing the web pages and JavaScript was
analyzed using Rhino.

Crawler: Approaches based on web crawling are well-known and widely-used for
analyzing web applications. For this evaluation, two crawling based approaches
were combined, CrawlJax [18], a state of the art crawler for AJAX based web
applications, and a generic Spider based on VeriWeb [3]. Both approaches are
used because preliminary results indicated that they were highly complementary;
CrawlJax was better at finding control flow information related to JavaScript
commands and Spider was better at finding control flow information that was
not represented as a “clickable” unit in the web page. For both approaches,
input specifications that allowed them to navigate login screens was provided.
For CrawlJax a custom list of “clickable” elements was also provided for each
subject application.

Identifying Inter-Component Control Flow in Web Applications 65

HTML Only: This technique is representative of several static analysis based
approaches that analyze a web application and identify HTML output [5,19,25].
The computed HTML output is then parsed for control flow constructs. Although
it is clear that these techniques will not be able to identify other forms of control
flow, it is included since it represents a widely used approach.

SXS: Sun and colleagues propose a static analysis based technique for identify-
ing access control vulnerabilities in PHP based web applications [22]. As part of
this technique, they construct a sitemap that models several types of elements
that are also relevant for constructing the ICCFG. Their approach handles some
HTTP Commands related constructs, Dynamically Generated HTML, Compo-
nent Inclusion, and Direct Entry , but not JavaScript .

MiMoSA: Balzarotti and colleagues propose a static analysis based technique
for identifying multi-module vulnerabilities in PHP based web applications [2].
As with SXS, the authors must identify certain types of control flow in the web
applications in order to discover these vulnerabilities. This control flow modeling
includes limited support for HTTP Commands, heuristics for links generated
by JavaScript , Dynamically Generated HTML, and Direct Entry . There is no
support for Component Inclusion.

5.2 Experiments

To collect the experiment data, each of the five approaches was run on the
eight subject applications. The machine used to run the results was an Intel
Core i7@2.8Ghz with 8GB DDR3 RAM running Ubuntu 10.10 with 2GB RAM
dedicated to the JVM heap. For each run, Table 1 shows the time for the analysis
to execute (“Time”) and the size of the edge set (“Edge Count”). Each approach
is abbreviated by the first letter of its name.

5.3 Discussion of Results

Table 2. Recall (%) of the considered
techniques: Crawler (C), HTML Only (H),
MiMoSA (M), SXS (S), and ICE (I)

Application
Recall

C H M S I

Bookstore 40 27 27 88 100
Classifieds 50 37 37 87 100
Daffodil 5 91 95 95 100
Empl. Dir. 14 52 52 77 100
Events 56 48 48 86 100
Filelister 1 10 10 10 100
Portal 54 21 21 95 100
Webmail 32 78 78 78 100

Average 32 46 46 77 100

The timing results in Table 1 show
that analysis time varied significantly
by application and analysis. Several of
the worst run times were generated by
Crawler. Even though web crawling
is generally a fast technique, Crawl-
jax loads and renders every crawled
page, which incurs a high overhead,
but is necessary to accurately model
the effect of JavaScript. Full static
analysis of daffodil and webmail was
also very expensive. Investigation of
the two applications showed that sev-
eral large servlets represented patho-
logical worst cases for the analysis,
with almost every other line either a

66 W.G.J. Halfond

nested branch or output generating statement. Overall though, the results are
positive for ICE. For 6/8 applications the runtime was under fifteen minutes and
for 2/8 it was under thirty-two minutes. Note that SXS, MiMoSA, and ICE have
the same runtime because they use the same implementations of the algorithms
in Section 4.1 and 4.2.

The edge count results in Table 1 show that ICE, followed by SXS, consis-
tently had the highest discovered edge count. The Crawler and the two other
static analysis approaches each had higher edge counts for half of the sub-
jects. The primary contributing factor to this was whether the application made
extensive use of Component Inclusion. For Crawler it was trivial to discover
these edges because they were present in the crawled page. However, HTML
and MiMoSA did not consider the semantics of Component Inclusion in their
analysis. Bookstore, Classifieds, Events, Employee Directory, and Portal used
Component Inclusion, which led to Crawler having a higher edge count for four
of them. Employee Directory made very limited use of Component Inclusion and
many of these edges were actually redundant with edges already in the including
page.

Table 2 shows recall results for the approaches. ICE had perfect recall; of
the remaining approaches, SXS had the highest recall followed by a tie between
HTML and MiMoSA, and Crawler last. To explain these results, the distribu-
tion of the edges over the different control flow types was analyzed. The primary
differentiators between ICE and SXS was that ICE could handle all types of
HTTP requests, whereas SXS could only handle HTTP requests related to the
302 response code. The differentiator between SXS and HTML/MiMoSA was
primarily SXS’ ability to handle Component Inclusion. Although MiMoSA is
able to handle limited forms of JavaScript and HTTP Commands control flow,
neither of the specific constructs it could handle were prevalent in the appli-
cations’ code, which explains why there was very little difference between the
two approaches. Lastly, there were several reasons for Crawler’s low recall. The
primary reasons was that many pages required the Crawler to interact with it in
specific ways in order to reveal additional response behaviors. Since the Crawler
could not randomly guess this, it was generally unable to access these pages.
Filelister was particularly low for all approaches, except ICE, because almost
88% of its inter-component control flow was done via HTTP Commands. For all
applications, all approaches were able to achieve 100% precision.

Overall, the results were very positive for ICE. It was able to discover a more
complete set (i.e., higher recall) of control flow than all other approaches, and
the runtime of ICE was comparable to the other approaches.

5.4 Threats to Validity

External validity is concerned with whether the results of this evaluation could
generalize to other web applications. The primary threat to this validity is that
the subject applications do not use as much JavaScript as AJAX based web
applications. This threat is mitigated by the fact that most of the JavaScript
complexity in AJAX applications is intra and not inter component control flow.

Identifying Inter-Component Control Flow in Web Applications 67

Regardless, most of this control flow would still be discovered by the technique
outlined in Section 4.1 for JavaScript . The presence of this type of control flow
would not change the results of ICE versus the other static analysis approaches,
but could increase the relative number of edges found by Crawler. Also, even
though the subject applications are all written in Java, the approach would be
generally applicable to other web application frameworks and languages, such
as PHP, Perl, or .NET, since all of these provide analogous APIs for sending
HTTP commands and generating HTML content.

Internal validity addresses whether the conclusions about ICE’s performance
can be made based on the experiment design. The primary threat is that the
techniques compared against were reimplemented for the study. To reduce this
threat, the author made optimistic assumptions about the capability of the other
techniques. Case in point, it was assumed that HTML, SXS, and MiMoSA could
compute HTML pages as well as ICE and could be extended to handle the
broader range of HTML constructs identified in this paper. This means that the
performance of SXS and MiMoSA is higher than would be expected in practice
because neither technique could properly handle object oriented code in PHP,
and MiMoSA, as defined in the original paper, cannot safely handle dynamically
generated HTML or HTTP messages.

6 Related Work

Early approaches for identifying control flow were based on the use of web
crawlers that traversed the links of a web page, discovering web pages as they
went [3,14,23]. More recent approaches add support for the interpretation of
client-side JavaScript [17]. However, since they only interact with the web appli-
cation via its generated HTML pages, they cannot offer any guarantees of com-
pleteness with regard to server-side control flow, such as HTTP Commands or
Component Inclusion. Furthermore, it is common for web applications to only
display certain pages after interactions that meet specific constraints. Therefore,
it is likely the approaches could be incomplete with respect to Dynamically Gen-
erated HTML and JavaScript as well. Other approaches have proposed the use of
captured user session data to build models of the target web application [7,13].
However, they can only model portions of the code that have been exercised by
users, and would be incomplete with respect to the complete behavior of the
web application.

Another large group of approaches uses specifications provided by the devel-
oper [1,10,12,15,20]. These specifications are typically provided using a formal
language, such as UML or state-based models. These approaches allow devel-
opers to capture the intended control flow semantics of web applications. The
drawback of manual specification is that the intended and actual control flow can
differ. Furthermore, the development of complete and precise manual specifica-
tions for large web applications can be very time-consuming. Other approaches
have proposed the development of new languages and frameworks that make
much of the implicit control flow of web applications explicit in the structure

68 W.G.J. Halfond

and semantics of the language [6,16], but require developers to learn a new
language and web application framework.

Other researchers have also proposed the use of static analysis to identify
elements of web applications related to control flow. Deng, Frankl, and Wang
proposed an early technique that used static analysis to identify link targets and
paths through a web application [5]. As compared to the proposed approach,
their technique could only be used to discover control flow related to a subset of
Dynamically Generated HTML. Tonella and Ricca proposed an approach that
could identify dynamically generated object programs [25]. This information was
used to build web application system dependence graphs that accounted for cer-
tain types of control and data flow. As compared to their approach, the proposed
approach takes into account a larger set of control flow related constructs on the
client and server-side, such as JavaScript and HTTP redirects, and has a more
precise method of determining string values based on method summarization
and string analysis.

There is also an extensive amount of research that uses control flow related
information to verify and test web applications. The proposed approach comple-
ments this body of work by providing a more complete mechanism for identifying
control flow. For example, several approaches use control flow models to verify or
enforce web application behaviors [10–12,26]. Security related approaches could
also benefit from the automated control flow generation to more completely
check properties related to session handling [6]. Lastly, other approaches use a
web crawling based approach to build control flow models of web applications for
testing and slicing [21,24] and the use of the proposed approach could increase
the effectiveness of these techniques.

7 Conclusion

This paper presents a new technique for automatically identifying control flow
in web applications. The technique is based on static analysis and analyzes each
component of a web application to identify a wide range of of control flow
types. The identified control flow is combined into a new representation, the
Inter-Component Control-Flow Graph, which shows both traditional and inter-
component control flow. The proposed approach was evaluated in terms of its
runtime cost and accuracy of the identified control flow and compared against
those achieved using a web crawling based approach and other static analy-
sis based approaches. The results were positive; the proposed approach had a
higher level of recall, and precision and runtime costs comparable to the other
approaches. Overall, the results indicate that the approach is useful for accu-
rately identifying web application control flow and, as such, could be used to
help to improve testing and verification techniques for web applications that
require control flow information.

Identifying Inter-Component Control Flow in Web Applications 69

References

1. Andrews, A.A., Offutt, J., Alexander, R.T.: Testing Web Applications by Modeling
with FSMs. Software Systems and Modeling 4(3), 326–345 (2005)

2. Balzarotti, D., Cova, M., Felmetsger, V.V., Vigna, G.: Multi-module vulnerabil-
ity analysis of web-based applications. In: Proceedings of the 14th ACM Confer-
ence on Computer and Communications Security, CCS 2007, pp. 25–35. ACM,
New York (2007)

3. Benedikt, M., Freire, J., Godefroid, P.: VeriWeb: automatically testing dynamic
web sites. In: Proceedings the International World Wide Web Conference. ACM
Press, New York, May 2002

4. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string expres-
sions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003)

5. Deng, Y., Frankl, P., Wang, J.: Testing Web Database Applications. SIGSOFT
Software Engineering Notes 29(5), 1–10 (2004)

6. Desmet, L., Verbaeten, P., Joosen, W., Piessens, F.: Provable protection against
web application vulnerabilities related to session data dependencies. IEEE Trans-
actions on Software Engineering 34(1), 50–64 (2008)

7. Elbaum, S., Rothermel, G., Karre II, S.: Leveraging User-Session Data to Support
Web Application Testing. Transactions On. Software Engineering 31(3), 187–202
(2005)

8. Halfond, W.G.J.: Automated checking of web application invocations. In: Proceed-
ings of the 23rd IEEE International Symposium on Software Reliability Engineer-
ing (ISSRE), pp. 111–120. IEEE, New York (2012)

9. Halfond, W.G., Orso, A.: Automated identification of parameter mismatches in web
applications. In: Proceedings of the Symposium on the Foundations of Software
Engineering, pp. 181–191. ACM, New York (2008)

10. Hallé, S., Ettema, T., Bunch, C., Bultan, T.: Eliminating navigation errors in
web applications via model checking and runtime enforcement of navigation state
machines. In: Proceedings of the IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2010, pp. 235–244. ACM, New York (2010)

11. Han, M., Hofmeister, C.: Modeling and verification of adaptive navigation in web
applications. In: Proceedings of the 6th International Conference on Web Engi-
neering, ICWE 2006, pp. 329–336. ACM, New York (2006)

12. Han, M., Hofmeister, C.: Relating navigation and request routing models in web
applications. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 346–359. Springer, Heidelberg (2007)

13. Haydar, M.: Formal framework for automated analysis and verification of web-
based applications. In: Proceedings of the 19th IEEE International Conference
on Automated Software Engineering, pp. 410–413. IEEE Computer Society,
Washington, DC (2004)

14. Huang, Y., Huang, S., Lin, T., Tsai, C.: Web application security assessment by
fault injection and behavior monitoring. In: Proceedings of the International World
Wide Web Conference, pp. 148–159. ACM, New York (2003)

15. Jia, X., Liu, H.: Rigorous and automatic testing of web applications. In: Proceed-
ings of the International Conference on Software Engineering and Applications,
pp. 280–285. ACTA Press, Cambridge, MA (2002)

16. Licata, D., Krishnamurthi, S.: Verifying interactive web programs. In: Proceedings
of the International Conference on Automated Software Engineering, pp. 164–173.
IEEE Computer Society, Washington, DC (2004)

70 W.G.J. Halfond

17. Mesbah, A., Bozdag, E., van Deursen, A.: Crawling ajax by inferring user interface
state changes. In: Schwabe, D., Curbera, F., Dantzig, P. (eds.) Proceedings of
the International Conference on Web Engineering, pp. 122–134. IEEE Computer
Society, Washington, DC (2008)

18. Mesbah, A., van Deursen, A.: Invariant-based automatic testing of ajax user
interfaces. In: Proceedings of the 31st International Conference on Software
Engineering (ICSE 2009). Research Papers, pp. 210–220. IEEE Computer
Society, Washington, DC (2009)

19. Minamide, Y.: Static approximation of dynamically generated web pages. In: Pro-
ceedings of the International World Wide Web Conference, pp. 432–441. ACM
Press, New York (2005)

20. Ricca, F., Tonella, P.: Analysis and testing of web applications. In: Proceedings
of the International Conference on Software Engineering, pp. 25–34. IEEE,
Washington, DC (2001)

21. Ricca, F., Tonella, P.: Web application slicing. In: Proceedings of the International
Conference on Software Maintenance, pp. 148–157. IEEE Computer Society, Los
Alamitos (2001)

22. Sun, F., Xu, L., Su, Z.: Static detection of access control vulnerabilities in web
applications. In: Proceedings of the USENIX Security Symposium, p. 1. USENIX
Association, Berkeley (2011)

23. Tonella, P., Ricca, F.: Dynamic model extraction and statistical analysis of web
applications. In: Proceedings of the Fourth International Workshop on Web Site
Evolution, pp. 43–52. IEEE, Washington, DC (2002)

24. Tonella, P., Ricca, F.: A 2-Layer model for the white-box testing of web appli-
cations. In: Proceedings of the International Workshop Web Site Evolution,
pp. 11–19. IEEE Computer Society, Washington, DC (2004)

25. Tonella, P., Ricca, F.: Web Application Slicing in Presence of Dynamic Code Gen-
eration. Automated Software Engineering 12(2), 259–288 (2005)

26. Yang, J., Huang, J., Wang, F., Chu, W.: Constructing control-flow-based testing
tools for web application. In: Proc. of the 11th Software Enginnering and Knowl-
edge Enginnering Conference (SEKE), p. 1. World Scientific Publishing, Singapore
(1999)

	Identifying Inter-Component Control Flow in Web Applications
	1 Introduction
	2 Web Applications Control Flow
	3 Motivating Example
	4 Approach
	4.1 Control Flow in Generated HTML Pages
	4.2 Server-side API-Based Control Flow
	4.3 Control Flow Based on Direct Entry
	4.4 Combining Control Flow Information

	5 Evaluation
	5.1 Experiment Setup
	5.2 Experiments
	5.3 Discussion of Results
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion
	References

