Keyword Pattern Graph Relaxation for Selective
Result Space Expansion on Linked Data

Ananya Dass', Cem Aksoy’, Aggeliki Dimitriou?, and Dimitri Theodoratos')
! New Jersey Institute of Technology, Newark, USA
dthenjit.edu
2 National Technical University of Athens, Athens, Greece

Abstract. Keyword search is a popular technique for querying the
ever growing repositories of RDF graph data. In recent years different
approaches leverage a structural summary of the graph data to address
the typical keyword search related problems. These approaches compute
queries (pattern graphs) corresponding to alternative interpretations of
the keyword query and the user selects one that matches her intention
to be evaluated against the data. Though promising, these approaches
suffer from a drawback: because summaries are approximate representa-
tions of the data, they might return empty answers or miss results which
are relevant to the user intent.

In this paper, we present a novel approach which combines the use of
the structural summary and the user feedback with a relaxation technique
for pattern graphs. We leverage pattern graph homomorphisms to define
relaxed pattern graphs that are able to extract more results potentially of
interest to the user. We introduce an operation on pattern graphs and we
show that it can produce all relaxed pattern graphs. To guarantee that the
result pattern graphs are as close to the initial pattern graph as possible,
we devise different metrics to measure the degree of relaxation of a pat-
tern graph. We design an algorithm that computes relaxed pattern graphs
with non-empty answers in relaxation order. Finally, we run experiments
to measure the effectiveness of our ranking of relaxed pattern graphs and
the efficiency of our system.

1 Introduction

Keyword search is the most popular technique for querying data on the web
because it allows the user to retrieve information without knowing any for-
mal query language (e.g., SPARQL) and without being aware of the struc-
ture/schema of the data sources against which the keyword query is issued.
The same keyword query can be used to extract data from multiple data sources
with different structures and this is particularly useful in the web where the
data sources that can provide the answers are not known in advance. Unfortu-
nately, the convenience and the simplicity of keyword search comes along with a
drawback. Keyword queries are imprecise and ambiguous. For this reason, key-
word queries return a very large number of results. This is a typical problem

© Springer International Publishing Switzerland 2015
P. Cimiano et al. (Eds.): ICWE 2015, LNCS 9114, pp. 287-306, 2015.
DOI: 10.1007/978-3-319-19890-3_19

288 A. Dass et al.

in IR. However, it is exacerbated in the context of tree and graph data where
a result to a query is not a whole document but a substructure (e.g., a sub-
tree, or a subgraph) which exponentially increases the number of results. As
a consequence, the keyword search on graph data faces two major challenges:
(a) effectively identifying relevant results and (b) coping with the performance
scalability issue.

In order to identify relevant results, previous algorithms for keyword search
over graph data compute candidate results in an approximate way by con-
sidering only those which maintain the keyword instances in close proximity
[6,10,14,16,19,20,23,24]. The filtered results are ranked and top-k processed
usually by employing IR-style metrics for flat documents (e.g., tf*idf or PageR-
ank) adapted to the structural characteristics of the data [12,15,25,26]. Never-
theless, the statistics-based metrics alone cannot capture effectively the diversity
of the results represented in a large graph dataset neither identify the intent of
the user. As a consequence, the produced rankings are, in general, of low quality.
Further, despite the size restriction of the candidate results, these algorithms are
still of high complexity and they do not scale satisfactorily when the size of the
data graph and the number of query keywords increases.

Leveraging the Structural Summary. In order to address these challenges
recent approaches to keyword search on RDF data developed techniques which
exploit a structural summary of the RDF graph [9,25,26]. This is a concept
similar to the 1-index or data guide in tree databases. The structural summary
summarizes the structure of an RDF graph and associates inverted lists of key-
word instances (extensions) with nodes. A structural summary is typically much
smaller than its RDF graph. These techniques use the structural summary to
produce pattern graphs for a given keyword query. The pattern graphs are struc-
tured queries corresponding to interpretations of the imprecise keyword query.
Evaluating the pattern graphs on the RDF graph, the candidate results for the
keyword query can be produced. Interestingly, a pattern graph can be expressed
as a SPARQL query, and all the machinery of query engines and optimization
techniques developed for SPARQL can be leveraged to efficiently compute the
results of the keyword query.

Benefits of the Structural Summary Approach. A structural summary
approach can resolve the challenges mentioned above. Indeed, the pattern graphs
can be ranked using a scoring function and the top-k of them be presented to
the user. The user chooses one that best meets her intention, and only the
corresponding structured query is evaluated against the data graph [25,26].
A more recent approach exploits semantic interpretations for the query key-
words and a hierarchical clustering of the pattern graphs in order to select a
relevant one [9]. Effectiveness studies show that the approaches based on the
structural summary display good precision. Further, computing, ranking and
identifying top-k subgraphs (query results) for a keyword query directly on the
data graph is very expensive even when answers are computed in an approxi-
mate way [6,19]. In contrast, since the structural summaries are typically much

Keyword Pattern Graph Relaxation for Selective Result Space Expansion 289

smaller than the actual data, generating the relevant pattern graph can be done
efficiently. Therefore, the structural summary-based approaches scale satisfac-
torily and compute answers of keyword queries efficiently even on large RDF
graphs stored in external memory [8,9,25].

The Missing Relevant Result Problem. Despite its advantages, the struc-
tural summary-based approach for keyword search on RDF data has a draw-
back: since the structural summaries are approximate representations of the
RDF graph data, the selected pattern graph might miss results which are rele-
vant to the user intent. This might happen even if the user correctly selects the
pattern graph which is relevant to her intent.

Our Approach. In this paper, we provide an approach for keyword search over
RDF graph data which addresses the weakness of the structural summary based
approach while maintaining its advantages. Our system enables gradual relax-
ation of a relevant pattern graph so that additional results of possible interest to
the user are retrieved from the RDF graph, if needed (for example, if the original
pattern graph returns no result or if the user wants to extract more semantically
similar results).

Contribution. The main contributions of the paper are the following:

o We leverage pattern graph homomorphisms to define relaxed pattern graphs.
Relaxed pattern graphs can expand the result space of an original pattern
graph with semantically similar results (Section 3.1).

e We define an operation on pattern graphs (vertex split operation) in order
to allow the construction of relaxed pattern graphs. A vertex split operation
creates two split images of an entity variable vertex in a pattern graph and
partitions its incident edges between the two vertices. We show that this
operation is complete, that is, it can produce all the relaxed pattern graphs
(Section 3.2).

e Since we want to relax a pattern graph so that the relaxed version is as
close to the initial pattern graph as possible, we introduce three metrics to
compare the degree of relaxation of relaxed pattern graphs and rank them.
All three metrics take into account structural and semantic characteristics of
the relaxed pattern graph and depend on the vertex split operations applied
to the original pattern graph (Section 3.3).

e If an original pattern graph has an empty answer on an RDF graph, we would
like to identify its vertices which contribute to this condition. We call these
vertices empty vertices and we provide necessary and sufficient conditions for
characterizing them in a pattern graph. Empty vertices are used to guide the
relaxation process so that relaxed pattern graphs with non-empty answers are
produced (Section 3.4).

290 A. Dass et al.

e We design an algorithm which takes a pattern graph as input and gradually
generates relaxed pattern graphs having non-empty answers. The algorithm
returns the relaxed patterns graphs (and computes their answer in the RDF
graph) in ascending order of relaxation (Section 3.5).

e We run experiments to measure the effectiveness of our ranking of relaxed
pattern graphs and the efficiency of our system in computing relaxed
pattern graphs and their answers. The results showed to be promising
(Section 4).

2 Structural Summaries and Pattern Graphs

Data Model. Resource Description Framework (RDF) provides a framework for
representing information about web resources in a graph form. The RDF vocab-
ulary includes elements that can be broadly classified into Classes, Properties,
Entities and Relationships. All the elements are resources. Our data model is an
RDF graph defined as follows:

Definition 1 (RDF Graph). An RDF graph is a quadruple G = (V, E, L,1)
where:

V' is a finite set of vertices, which is the union of three disjoint sets: Vg (repre-
senting entities), Vi (representing classes) and Vi, (representing values).

FE is a finite set of directed edges, which is the union of four disjoint sets: Fr
(inter-entity edges called Relationship edges which represent entity relation-
ships), Ep (entity to value edges called Property edges which represent prop-
erty assignments), Er (entity to class edges called type edges which represent
entity to class membership) and Eg (class to class edges called subclass edges
which represent class-subclass relationship).

L is a finite set of labels that includes the labels “type” and “subclass”.

[is a function from Vo U Vyy U Eg U Ep to L. That is, [assigns labels to class
and value vertices and to relationship and property edges.

Entity and class vertex and edge labels are Universal Resource Identifiers
(URISs). Vertices are identified by IDs which in the case of entities and classes
are URIs. Every entity belongs to a class. Fig. 1 shows an example RDF graph
(inspired by the Jamendo dataset!). For simplicity, vertex and edge identifiers
are not shown in this example graph.

Query Language Semantics. A query @ on an RDF graph G is a set of
keywords. A keyword instance of a keyword k in @ is a vertex or edge label in
G containing k. The answer of @ on G is a set of result graphs of @ on G.
Each result graph is a minimal subgraph of G involving at least one instance
of every keyword in @ and is formally defined below. In order to facilitate the
interpretation of the semantics of the keyword instances, every instance of a
keyword in) is matched against a small subgraph of G which involves this

! http://dbtune.org/jamendo/

http://dbtune.org/jamendo/

Keyword Pattern Graph Relaxation for Selective Result Space Expansion 291

(At

type (b)
title maker

(ro) maker%‘vpe MUSICLAN tracl —»@
o ®
type maker Sward su :
- ype
(=) “%(Gmma) [Resource | ‘“’f type
ilable
e e\ Y ¥
RECORD subclass RECORD TRACK RECORD MUSICIAN
*- 1¥P€ [TORRENT|
type (BeDIth) o forinat (©) (d)

contains e [BAvIET |)

tag

e,

composition
¥ type—>[TAG|

text
; ﬁ
())

Fig. 1. (a) An RDF graph, (b), (c), (d) and (e) class, relationship, value and property
matching constructs, respectively, (f) inter-construct connection and result graph

keyword instance and the corresponding class vertices. This subgraph is called
matching construct. Figs. 1(b), (c), (d) and (e) show a class, relationship, value
and property matching construct, respectively, for different keyword instances
in the RDF graph of Fig. 1(a). Underlined labels in a matching construct denote
the keyword instances. Each matching construct provides information about the
semantic context of the keyword instance under consideration. For instance, the
matching construct of Fig. 1(d) shows that Rebirth is the title of entity R2 of
type Record.

A signature of @ is a function that matches every keyword k in Q) to a
matching construct of k in G. Given a query signature S, an inter-construct
connection between two distinct matching constructs C; and Cs in S is a simple
path augmented with the class vertices of the intermediate entity vertices in
the path (if not already in the path) such that: (a) one of the terminal vertices
in the path belongs to C; and the other belongs to Cy, and (b) no vertex in
the connection except the terminal vertices belong to a construct in S. Fig.
1(f) shows an inter-construct connection between the matching constructs for
keywords Torrent and Gimma in the RDF graph of Fig. 1(a). The matching
constructs are shaded and the inter-construct connection is circumscribed.

A subgraph of G is said to be connection acyclic if there is no cycle in the
graph obtained by viewing its matching constructs as vertices and its inter-
construct connections between them as edges. Given a signature S for @) on
G, a result graph of S on G is a connected, connection acyclic subgraph of G
which contains only the matching constructs in S and possibly inter-construct
connections between them. A result graph for @ on G is a result graph for a
signature of @ on G. Fig. 1(f) shows a result graph for the query {Torrent,
Cicada} on the RDF graph of Fig. 1(a).

292 A. Dass et al.

Cicada "

name _award
title made i
MUSICIAN subclass

: —¥{Resource]
maker
_ subclass name title title
avaiable ~a [TGRRENT |
trsck format* @4 maker—@f uack»@
Girl)= y; t b
mle contains v$e tyvpe v*pe
composition tag [MUSICIAN] [RECORD] [TRACK]
text TAG |- tagname »(rock)
(a) (b)

Fig. 2. (a) Structural Summary, (b) Query Pattern Graph

The Structural Summary and Pattern Graphs. In order to construct pat-
tern graphs we use the structural summary of the RDF graph. Intuitively, the
structural summary is a graph that summarizes the RDF graph.

Definition 2 (Structural Summary). The structural summary of an RDF
graph G is a vertex and edge labeled graph constructed from G as follows:

1. Merge every class vertex and its entity vertices into one vertex labeled by the
class vertex label and remove all the type edges from G.

2. Merge all the value vertices which are connected with a property edge labeled
by the same label to the same class vertex into one vertex labeled by the union
of the labels of these value vertices. Merge also the corresponding edges into
one edge labeled by their label.

3. Merge all the relationship edges between the same class vertices which are
labeled by the same label into one edge with that label.

Fig. 2(a) shows the structural summary for the RDF graph G of Fig. 1. Simi-
larly to matching constructs on the data graph we define matching constructs on
the structural summary. Since the structural summary does not have entity ver-
tices, a matching construct on a structural summary possess one distinct entity
variable vertex for every class vertex labeled by a distinct variable.

Pattern graphs are the subgraphs of the structural summary, strictly con-
sisting of one matching construct for every keyword in the query @ and the
connections between them without these connections forming a cycle.

Definition 3 (Pattern Graph). A (result) pattern graph for a keyword query
@ is a graph similar to a result graph for @), with the following two exceptions:

(a) The labels of the entity vertices in the result graph, if any, are replaced
by distinct variables in the pattern graph. These variables are called entity
variables and they range over entity labels.

(b) The labels of the value vertices are replaced by distinct variables whenever
these labels are not the keyword instances in the result graph. These vari-
ables are called value variables and they range over value labels in the RDF
graph.

Keyword Pattern Graph Relaxation for Selective Result Space Expansion 293

Fig. 2(b) shows an example of a pattern graph, for the keyword query @ =
{Cicada, Authentic, Girl} on the RDF graph of Fig. 1.

Computing and Selecting Pattern Graphs. For computing the pattern
graphs of a query on the structural summary, we use an algorithm which com-
putes r-radius Steiner graphs [9]. The user selects a pattern graph by navigation
through a two-level semantic hierarchical clustering system [9]. Nevertheless,
the way the pattern graph is selected by the user is orthogonal to the relaxation
method we present in this paper. Any other approach like those in [13,25-27]
can be used for selecting the relevant pattern graph which will be relaxed.

3 Computing Relaxed Pattern Graphs

In order to expand the result set of the pattern graph chosen by the user and
get additional results for the same query signature that involve the same classes,
relationships, properties and values but additional entities, we relax this pattern
graph. In this section, we first define relaxed pattern graphs. We then introduce
an operation on pattern graphs, called vertex split operation, and we show that
a pattern graph can be relaxed by applying vertex split operations. Relaxed
pattern graphs which are semantically closer to the original pattern graph are
preferable. Therefore, we introduced different metrics to compare the degree
of relaxation of relaxed pattern graphs and characterize their closeness to the
original pattern graph. Then, we elaborate on the reasons for a pattern graph
having an empty answer. Finally, we design an algorithm which computes relaxed
pattern graphs with non-empty answers ranked in ascending order of their degree
of relaxation.

3.1 Relaxed Pattern Graphs

In order to define relaxed patterns, we need the concept of homomorphism
between pattern graphs.

Definition 4 (Pattern Graph Homomorphism). Let P; and P> be two
pattern graphs. A homomorphism from P to P is a function h from the variable
vertices (entity variable and value variable vertices) of P; to the variable vertices
of P, such that, if X is an entity variable vertex in P;:

(a) for any type edge (X,c) in Py, there is a type edge (h(X),c) in P,. That is,
X in P; and h(X) in P, are of the same type c.

(b) for every relationship edge (X,Y) in P; labeled by r, where Y is another
entity variable in P;, there is a relationship edge (h(X),h(Y)) in P, labeled
by the same label r.

(¢) for every property edge (X,Y) in P; labeled by p, where Y is a value
variable vertex, there is a property edge (h(X),h(Y)) in P, labeled by
the same label p.

294 A. Dass et al.

name m,g, tﬁe 7
(%} maker uack»(?
(y e type type
[MUSICIAN] RECORD] TRACK | - Lspit P [[musician | [Recoro | [TRack |
Pat. graph Py Pat. graph P,
1 5plit
= - | Cicada Girl
nape title nape
é«makar{? /@ track» - maker track
oe 1o, P t pe - 15pht’ type type type t\ipe
[musician | [Recoro | [TRACK | [WOSICAN] RECORD | [[Track]
Pat. graph P Pat. graph P,

Fig. 3. An original pattern graph P; and relaxed pattern graphs P», P3, Py

(d) for every property edge (X,v) in P; labeled by p, where v is a value vertex
labeled by the value (keyword) V, there is a property edge (h(X),v') in P,
labeled by the same label p, where v’ is a value vertex also labeled by V.

Fig. 3 shows a homomorphism from the pattern graph P, to the pattern
graph P;. The vertex mapping is illustrated with dashed arrows. One can see,
that there are also homomorphisms from P; and Py to P;. However, there is no
homomorphism from P; to any one of the other pattern graphs.

We use the concept of homomorphism to define a relation on pattern graphs.

Definition 5 (Relation <). Let P; and P, be two pattern graphs. We say
that Py is a relaxzation of P; or that P is a relaxzed version of Pj if there is a
homomorphism from P, to P; but there is no homomorphism from P; to P5. In
this case, we write P, < Ps.

In the example of Fig. 3, P, < P, and P; < P3 < P,. No other < relationships
hold between these patterns.

Clearly, relation < is a strict partial order on the set of pattern graphs (it
is irreflexive, asymmetric and transitive). We call its minimal elements original
pattern graphs. The patterns initially presented to the user are original pattern
graphs and one of them is selected and possibly relaxed. If an (original) pattern
graph P has an embedding to an RDF graph, a relaxed version of P also has
an embedding to the same RDF graph. The opposite is not necessarily true.
Therefore, with relaxed pattern graphs we can expand the result set of an original
pattern graph.

3.2 Vertex Splitting

A pattern graph is relaxed by applying the vertex split operation to one or more
of its entity variable vertices. This operation “splits” an entity variable vertex in

Keyword Pattern Graph Relaxation for Selective Result Space Expansion 295

a pattern graph into two entity variable vertices of the same type and partitions
the incident edges between the two new vertices as indicated by the operation.

Definition 6 (Vertex split operation). Let P be a pattern graph, v be an

entity variable vertex in P connected with a type edge to a class vertex ¢, and

E ={e1,...,er}, k> 1, be a proper subset of the set of non-type edges incident

to v in P. Assume the edges eq,...,eg, are connecting the pairs of vertices

(v,v1),..., (v,vy), respectively. The vertex split operation split(P, v, E) returns

a pattern graph constructed from P as follows:

(a) Add to P a new entity variable vertex v’ of type c.

(b) Remove all the non-type edges (incident to v) that occur in E.

(¢) Add k edges (v',v1),...,(v',v;) having the same labels as the edges
e1,...,eL, respectively.

Splitting one or more of the vertices of an original pattern graph P results in
a relaxed pattern graph (a relaxed version of P). Applying the split operation in
sequence can create a pattern graph where the non-type edges incident to v are
partitioned into more than two sets attached to different vertices, as desired.

Not all the entity variable vertices are interesting for splitting. This operation
is defined only on candidate split vertices. An entity variable vertex is a candidate
split vertex if it has at least two non-type edges.

As an example, consider the original pattern graph P; of Fig. 3. This is
a pattern graph for the keyword query {Cicada, Authentic, Girl}. Apply-
ing split(Py, X, {maker}) to P; results in the pattern graph P,. Applying
split(Py,Y, {track}) to P; results in the pattern graph Ps;. Applying in turn
split(Ps, Y, {title}) produces the pattern graph Pj.

Any partitioning of the edges incident to a vertex in an original pattern graph
can be obtained in a relaxed pattern graph by a successive application of vertex
split operations. Therefore, one can see that if P; and P; are two pattern graphs,
P, < P, iff P, can be produced from P; by applying a sequence of vertex split
operations. In other words, the vertex split operation is sound and complete
w.r.t. relaxed pattern graphs.

3.3 Measuring Pattern Graph Relaxation

Usually we want to relax a pattern graph so that it is as close to the initial
pattern graph as possible. To this end, we introduce three metrics of decreasing
importance to measure the degree of relaxation of a pattern graph. All these three
metrics depend on the vertex split operations applied to the original pattern
graph. The first one is called connectivity of the pattern graph. In order to define
the connectivity of a pattern graph we use the concept of tightly connected pair
of keyword instances. Two keyword instances in a pattern graph P are tightly
connected if there exists a simple path between them which does not go through
a class vertex. For instance, in the pattern graph of Fig. 4(b), the keyword
instances Rebirth and mp3 are tightly connected whereas the keyword instances
Cicada and Gimma are not.

296 A. Dass et al.

‘ tv e itle ‘VF’e fype” type mle o
maker (,acka maker track—
award T

ava\lable

nime available - 15p|ll* award name
Gimma mp3 @format—» mp3
‘ : @ format—»(mp3 y, é

7
¥ ®

type
1 split

@
[musican | [Recoro | , [musician | [Recorp | m M
title YA h)
type” type t‘/Pe ty e type” type e’ type title type
maker tmck;, maker (\?4 track ———

award name aval\able

@ format —#-(mp3)

tye

award name avajlable

Y
@ format ——»-(mp3)

type

1 split 2 splits
o \ @

title
MUSlCIAN RECORD , TRACK Mus|c|AN = Reblrt
title f
o tYPe maker b .
ype” type ‘@‘ track\w N type tvPg : AN
maker (f) —RECORD
@ \@ type —- TRACK

nlme avalable T T tipe
T @format—» i) @ava.lable+® @fcrma(—>.
Wpe oL o
© TORRENT
[roreent] ()

Fig. 4. (a) Original pattern graph (b), (c), (d), (e) and (f) relaxed pattern graphs

Definition 7 (Pattern graph connectivity). The connectivity of a pattern
graph is the number of unordered keyword instance pairs that are strongly con-
nected divided by the total number of unordered keyword instance pairs.

In an original pattern graph, all pairs of keyword instances are strongly con-
nected. Therefore, its connectivity is 1. Relaxing such a pattern graph by apply-
ing the vertex split operation to any entity variable vertex produces a pattern
graph of lower or same connectivity. For instance, the connectivity of the pattern
graph in Fig. 4(a) is 1. The connectivity of the relaxed pattern graph of Figs.
4(b) is 0.73, the connectivity of that of Fig. 4(c) is 0.47 and the connectivity of
those of Figs. 4(d), (e) and (f) is 0.33.

In order to distinguish between relaxed pattern graphs of the same pattern
graph which have the same connectivity, we introduce another metric called
scatteredness of a pattern graph. We first define the distance between two tightly
connected keyword instances in a pattern graph as the number of vertices in a
shortest path between them. For instance, in the pattern graph of Fig. 4(d) the
distance between the tightly connected keyword instances of Rebirth and mp3
is 2 while the distance between Gimma and Musician is 1.

A relaxed pattern graph partitions its keyword instances into sets of tightly
connected keyword instances such that any two keyword instances which are
tightly connected belong to the same set. The scatteredness of a pattern graph
measures how sparsely are positioned the keyword instances within these sets.

Keyword Pattern Graph Relaxation for Selective Result Space Expansion 297

Definition 8 (Scatteredness of a pattern graph). Let N be the sum of
the distances between all the unordered keyword instance pairs that are tightly
connected, and S be the total number of tightly connected unordered keyword
pairs in a pattern graph P. The scatteredness of the tightly connected keyword
instances of P (scatteredness of P for short) is N/S.

A relaxed pattern graph with smaller scatteredness is preferred over a pattern
graph of the same connectivity but higher scatteredness since its keywords are
assumed to be more closely related. In the example of Fig. 4, the patterns (d) and
(e) have the same connectivity 0.33. However, the scatteredness of the pattern
of Fig. 4(d) is 1 and that of the pattern of Fig. 4(e) is 2. We use the pattern
graph scatteredness to rank the relaxed patterns of a pattern graph having the
same connectivity. In our running example, the pattern of Fig. 4(d) is ranked
before the pattern of Fig. 4(e).

Nevertheless, it is possible that multiple relaxed patterns of the same pattern
graph have not only the same connectivity but also the same scatteredness. In
order to differentiate between the degree of relaxation of such pattern graphs,
we employ a third metric called dispersion of the keyword instances of a pattern
graph. Roughly speaking this metric is used to capture how much the keywords
are dispersed as a result of vertex split operations in the pattern graph. To
formally define the keyword instance dispersion metric we introduce the concept
of split distance. The split distance of two keyword instances in a pattern graph
P is the minimum number of class vertices in the simple paths between these
two keyword instances in P excluding the terminal vertices. For instance, in the
pattern graph of Fig. 4(d), the split distance of the keyword instances of Gimma
and mp3 is 2 and that of Gimma and Musician is 0.

Definition 9 (Pattern graph keyword dispersion). The keyword dispersion
of a pattern graph P is the sum of the split distances of all unordered pairs of
keyword instances in P.

For example, the pattern graphs of Fig. 4(e) and (f) have the same connec-
tivity (0.33) and the same scatteredness (2) whereas their keyword dispersion
is 10 and 14, respectively. A pattern graph with a lower keyword dispersion is
preferred over a pattern graph with a higher keyword dispersion. Hence, the
pattern graph of Fig. 4(e) will be ranked higher than that of Fig. 4(f).

Given two pattern graphs P, and P,, we say that, P» is equally or more
relaxed than P, and we write Py <, P, if: (a) conn(P;) > conn(P,), or (b)
conn(P;) = conn(Ps) and scatt(Py) < scatt(Py), or (c¢) conn(P;) = conn(P)
and scatt(P;) = scatt(P,) and disp(P;) < disp(P2). Any two pattern graphs are
comparable w.r.t. <,. If a set of pattern graphs is ranked with respect to <.,
with the less relaxed pattern graphs are ranked first, we say that it is ranked
in relazation order. Since split operations introduce additional type edges in the
pattern graph it is not difficult to see that given two pattern graphs P, and P,
if P < P, then P, <, P».

298 A. Dass et al.

3.4 Identifying Empty Vertices for Relaxation

If an original pattern graph for a query has an empty answer on an RDF graph,
we would like to identify vertices in the pattern graph which if not split, the
relaxed pattern graph will keep producing an empty answer. Splitting these
vertices does not guarantee that the relaxed query does have a non-empty answer.
However, if we omit splitting any one of these vertices, the relaxed pattern graph
will not return any results. We call these vertices empty vertices.

Definition 10 (Empty vertex). An entity variable vertex X in a pattern
graph P on a data graph G is an empty vertex iff P or any relaxed version of P
where X is not split has an empty answer on G.

We provide next conditions to characterize empty vertices in a pattern graph.
Let X be an entity variable vertex of type ¢ in a pattern graph P, p} (X, Z7), ...,
(X, Z!) be the property edges incident to X whose value vertices Z7,..., 2/,
are variables, p1 (X, v1),...,pn(X,v,) be the property edges incident to X whose
value vertices vq, . . ., U, are not variables (they are keyword instances), r1 (X, Y1),

., 7:(X,Y%) be the relationship edges from X to some other entity variable
vertices Y1,...,Yy of type ¢1 ... ¢, respectively, and r{(X,YY),...,r(X,Y/) be
the relationship edges to X from some other entity variable vertices Y/,...,Y]/ of
type ¢}, ..., ¢}, respectively (see Fig. 5). We call the graph of Fig. 5 the star-join
view of the entity variable vertex X in P. One can see an entity variable vertex
X is an empty vertex of pattern graph P on an RDF graph G iff the star-join
view for X in P has an empty answer on G.

All empty vertices need to be split when relaxing a query in order to possibly
get a nonempty answer for the query.

3.5 An Algorithm for Computing Relaxed Patterns

We provide now an algorithm which, given the pattern graph P chosen by the
user, gradually generates relaxed pattern graphs of P having non-empty answers.
The algorithm returns these pattern graphs and their answers in relaxation order.
The number of relaxed pattern graphs returned is controlled by the user.

D@

Fig. 5. Star-join view of entity variable vertex X

Keyword Pattern Graph Relaxation for Selective Result Space Expansion 299

Algorithm 1.

Input: P: pattern graph.

Output: A list of relaxed pattern graphs of P with non-empty answers in ascending
relaxation order. Every pattern is returned along with its answer.

1: R={P};

2: MoreResults = True;l

3: Ans = (;

4: while R # 0 and MoreResults do

5: Prop < the pattern in R with the highest rank;

6: R— R —{Prop};

7 EV — Compute EmptyVertices(Prop);

8: Mark the new non-empty vertices in Prop;

9: if EV # () then

10: NewR — GetRelazed FromEmpty(Prop, EV); > all the relaxed patterns

obtained by applying one vertex split operation to all empty vertices.

11: Rank the patterns in NewR in ascending relaxation order;

12: R < merge R and NewR into one list of patterns ranked in ascending

relaxation order;

13: else

14: Ans «— Evaluate(Prop);

15: if Ans # () then

16: Output (Prop, Ans);

17: MoreResults < input from the user on whether more results are needed;
18: if Ans =0 or MoreResults then

19: MoreR «— GetRelaxed(Prop); > all the new relaxed patterns obtained

by applying one vertex split operation to a candidate split vertex.

20: Rank the patterns in R in ascending relaxation order;
21: R «— merge R and MoreR into one list of patterns ranked in ascending

relaxation order;

The outline of our algorithm is shown in Algorithm 1. The input of this algo-
rithm is an original pattern graph P. Data structure R is a list used to store
pattern graphs (both original and relaxed). The variable MoreResults reflects
the user’s choice of fetching more answers by further relaxing the pattern graphs
in R. The algorithm first ranks the pattern graphs in R in ascending relaxation
order (line 5). The pattern graph Pr,, with the highest rank is chosen from
R and its unmarked vertices are checked for emptiness (line 7). If Pp,, has
non-empty vertices, they are marked (line 8), and they (and their split images)
remain marked in the relaxations of Proy. If Proy, has empty vertices, it is fur-
ther relaxed by applying one vertex split operation to all of its empty vertices in
all possible ways. The resulting relaxed pattern graphs form a new list NewR of
relaxed pattern graphs (lines 9-10), which is then ranked in ascending relaxation
order and is merged with the list R (lines 11-12). In contrast, if Pr,, does not
have any empty vertex, it is evaluated over the data graph and the set Ans of
result graphs is non-empty, it is returned to the user along with the correspond-
ing pattern graph Prop (lines 14-16). In case the user wants more results, or the

300 A. Dass et al.

Table 1. The keyword queries

Query # Keywords Chosen Pattern
Graph Structure
1 teenage, text, fantasie, document star-chain
2 signal, onTimeLine, 10002, recorded_as, sweet | chain
3 kouki, recorded-as, knees star-chain
4 briareus, reflection, cool, girl star
5 kouki, revolution, electro, good star
6 nuts, spy4, chillout, track star
7 biography, guitarist, track, lemonade chain
8 divergence, track, obssession, format, mp32 star-chain
9 fantasie, performance, recorded.as, slipstream | chain
10 signal, recorded_as, fantasie, onTimeLine, 10001| chain

pattern graph Pr,, produces an empty answer when evaluated over the data
graph, Pr,, is relaxed by applying one vertex split operation to all of its candi-
date split vertices in all possible ways and the generated relaxed pattern graphs
are stored in a list MoreR (lines 18-19). All the elements of MoreR are then
ranked and merged with the list R of pattern graphs (line 20-21). The whole
process, as described in lines 5-21, continues until the user is satisfied with the
results, or no more pattern graphs are left in R. The above discussion we can
deduce that Algorithm 1 correctly computes its relaxed pattern graphs with
non-empty answers in relaxation order.

4 Experimental Evaluation

We implemented our approach and run experiments to evaluate our system.
The goal of our experiments is to assess (a) the effectiveness of the metrics
introduced in ranking the relaxed pattern graphs, and (b) the feasibility of our
system in producing and presenting to the user the relaxed pattern graphs and
their answers in real time.

Dataset and Queries. We use Jamendo, a large repository of Creative Com-
mons licensed music. Jamendo is a real dataset of 1.1M triples and of 85MB
size containing information about musicians, music tracks, records, licenses and
many other details related to them. Experiments are conducted on a standalone
machine with an Intel i5-3210M @ 2.5GHz processors and 8 GB memory.

Users were provided with different queries on the Jamendo dataset and
selected the most relevant pattern graph among those provided by the system.
We report on 10 queries. The queries cover a broad range of cases. They involve

Keyword Pattern Graph Relaxation for Selective Result Space Expansion 301

o
®
i

o
=
i

Kendal tau b coefficient
o
rS
|

I "PCG, 02 e 1
I rocG,,
, (] nDCG[_wg . _uoef
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Queries Queries

Fig. 6. (a) nDCGnaz, nDCGpin and nDCGqyg (b) Kendall tau-b coefficient

from 3 to 5 keywords and their relevant pattern graph form a star or a chain
or a combination of them. Table 4 shows the keyword queries and information
about them.

Effectiveness in Ranking Relaxed Pattern Graphs. For our effectiveness
experiments, we used expert users to determine the ground truth. For each query,
a user selected, among those computed by the system, the pattern graph which
is most relevant to the query. This is the original pattern graph. The user then is
presented with all the relaxed pattern graphs that are generated by our algorithm
(see Algorithm 1, Section 3.5) until the third relaxed pattern graph with a non-
empty answer is produced and ranks them w.r.t to their semantic closeness to
the original pattern graph. In order to measure the effectiveness of our technique
in generating a ranked list of relaxed pattern graphs (ranked in relaxation order
as described in Section 3.3), we are using two metrics: (a) normalized discounted
cumulative gain (nDCG) [17], and (b) Kendall tau-b rank correlation coefficient
[1]. Both of them allow comparing two ranked lists of items. Note that the list
produced by the user (the correct ranked list) and one produced by our system
might not form strict total orders. That is, there might be ties (relaxed pattern
graphs with the same rank). We call the set of relaxed pattern graphs that have
the same rank in a ranked list equivalence class. Equivalence classes need to be
taken into account in measuring the similarity of the ranked lists.

The nDCG metric was first introduced in [17] based on two key arguments:
(a) highly important items are more valuable than marginally relevant items, and
(b) the lower the position of the relevant item in the ranked list, the less valuable
it is for the user because the less likely it is that the user will ever examine the
item. The cumulative gain (CG) for position n in the ranked list is the sum of the
relevance scores of the items in the ranked positions 1 to n. A discounting func-
tion is used over cumulative gain to measure discounted cumulative gain (DCG)
for position n, which is defined as the sum of the relevance scores of all the
items at positions 1 to n, each divided by the logarithm of its respective posi-
tion in the ranked list. The DCG value of a ranked list is the DCG value at

302 A. Dass et al.

Il P,

-
o

Processing Time (secs)
o
s -

Q1 Q2 Q@3 Q4 Q5 Q6

Queries

Q7 Q8 Q9 Q10

Fig. 7. Evaluation time for three consecutive relaxed pattern graphs

position n of the list where n is the size of the list. The normalized discounted
cumulative gain (nDCGQG) is the result of normalizing DCG with the DCG of the
correct list by dividing the DCG value of the system’s ranked list by the DCG
value of the correct ranked list. Thus, nDCG favors a ranked list which is similar
to the correct ranked list.

In order to take into account equivalent classes of pattern graphs in the
ranked lists, we have extended nDCG by introducing minimum, maximum and
average values for it. The nDCG,,,,, value of a ranked list RL, with equivalence
classes corresponds to the nDCG value of a strictly ranked (that is, without
equivalence classes) list obtained from RL. by ranking the pattern graphs in
the equivalence classes correctly (that is, in compliance with their ranking in
the correct list). The nDCGy,;,, value of RL. corresponds to the nDCG value of
a strictly ranked list obtained from RL. by ranking the pattern graphs in the
equivalence classes in reverse correct order. The nDCGg,4 value of RL. is the
average nDCG value over all strictly ranked lists obtained from RL. by ranking
the pattern graphs in the equivalence classes in all possible ways. The nDCG
values range between 0 and 1. Fig. 6(a) shows the nDCG,,;,, nDCGypq, and
nDCGy,g values for the queries of Table 1. As one can see, all the values are
very close to 1.

The Kendall tau rank correlation coefficient [1] was proposed to address
the problem of measuring the association between two different rankings of the
same set of items. In our context, we want to see if the comparison of the ranked
list produced by our system (the relaxation order) with the correct ranked list
(defined by the expert user) suggests that the former possesses a reliable judg-
ment of the closeness of the relaxed pattern graphs to the original pattern graph
(which expresses the user’s intention). However, the Kendall tau coefficient is
useful when the ranked lists to be compared are strictly ranked. For this reason,
we adopt here a variant called Kendall tau-b coefficient [1], which can deal with
equivalent classes of items in the ranked lists. The value of the coefficient ranges
from -1 to 1. If two items have the same (resp. different) relative rank order

Keyword Pattern Graph Relaxation for Selective Result Space Expansion 303

in the two lists, then the pair is said to be concordant (vesp. discordant). If two
items are in an equivalence class in at least one of the lists then the pair is neither
concordant nor discordant. When the number of concordant pairs is much larger
(resp. much less) than the number of discordant pairs, then the two lists are
positively (resp. negatively) correlated, and the coefficient is close to 1 (resp.
-1). When the number of discordant and concordant pairs are about the same,
then the two lists are weakly correlated (the coefficient is close to 0). Fig. 6(b)
shows the Kendall tau-b rank correlation coefficient for the queries of Table 1.
As we can see, all the values are positive and in most cases very close to 1.

Efficiency of the System in Producing Relaxed Results. In order to
asses the feasibility of our system, we ran our algorithm on the pattern graphs
selected by the user for the queries of Table 4, and we measured the time needed
to produce the first three consecutive nonempty relaxed pattern graphs and their
answers. Many more relaxed pattern graphs are typically produced and ranked
in the background, and a number of them are checked for empty answers. The
queries were selected so that the original pattern graph for almost all of them
has an empty answer. Fig. 7 shows the measured times. One can see that the
displayed times for all the queries are interactive. The times needed to produce
the second and third relaxed pattern graphs are usually shorter than for the
previous relaxed pattern graphs since information about non-empty vertices is
recorded and propagated down to the relaxations of the pattern graphs.

5 Related Work

In recent years, a number of papers address keyword search on graph data. Most
of these approaches return answers which are trees [5,6,8,12,16,18,21]. Only
few of them [20,23,24] return answers as graphs, subgraphs of the data graph.
All the above approaches are proposed for generic graphs, and cannot be used
directly for keyword search over RDF graph data. This is because the edges of an
RDF graph represent predicates, which can also be matched by the keywords of a
keyword query. The approaches proposed for keyword search on RDF data can be
classified into two categories: (a) data-based approaches [11,12] and (b) schema-
based approaches [9,13,22,25-27]. Data-based approaches rely on the data graph
to produce answers. Although these approaches generate precise answers, they
fail to scale well when the size of the data increases. In contrast, summary-based
approaches rely also on a reduced size structural summary extracted from the
data. In order to compute answers, these approaches focus on capturing the
interpretations of a keyword query by mapping the keywords to elements of the
structural summary and constructing pattern graphs. Given that keyword search
is ambiguous, these approaches often exploit relevance feedback from the users
in order to identify the users’ intent [9,18,25]. A hierarchical clustering mech-
anism and user interaction at multiple levels of the hierarchy can be used to
facilitate disambiguation of the keyword query and to support the computation
of the relevant results. Such a mechanism is suggested in [2] in the context

304 A. Dass et al.

of tree data and in [9] in the context of RDF data. Although summary based
approaches proved to have better performance scalability compared to data-
based approaches, they provide an approximate solution and they might miss
relevant results for a given keyword query. As RDF data graphs are practically
schema free, a summary graph extracted from an RDF graph cannot capture
completely all the information in the RDF graph. In this paper we provide a
pattern graph relaxation technique to address this issue. Relaxation techniques
are studied in [5,7,21]. These techniques are not directly related to our work since
they are developed for XML and not RDF data and their goals and processes
are different.

6 Conclusion

To address the drawback of structural summary-based approaches for keyword
search on RDF graphs, while maintaining their advantages, we have presented a
novel approach that permits the relaxation of the most relevant pattern graph
selected by the user and expands its result space with similar results. We used
pattern graph homomorphisms to introduce relaxed pattern graphs. We then
defined an operation on pattern graphs and we show that it is sound and com-
plete w.r.t. relaxed pattern graphs. In order to characterize the semantic close-
ness of relaxed pattern graphs to the original pattern graph, we introduced
different syntax and semantic-based metrics that allow us to compare the degree
of relaxation of relaxed pattern graphs. We studied properties of pattern graphs
with empty answers and we use them to design an algorithm which computes
relaxed pattern graphs with non-empty answers in ascending relaxation order.
Our experimental results demonstrate the effectiveness of our approach in rank-
ing the relaxed pattern graphs and the efficiency of our system in producing
relaxed pattern graphs and their answers.

We are currently working on exploiting common subexpressions between
relaxed pattern graphs and applying multiquery optimization techniques to fur-
ther improve the performance of our system in computing keyword queries over
large RDF repositories.

References

1. Agresti, A.: Analysis of ordinal categorical data. John Wiley & Sons (2010)

2. Aksoy, C., Dass, A., Theodoratos, D., Wu, X.: Clustering query results to support
keyword search on tree data. In: Li, F., Li, G., Hwang, S., Yao, B., Zhang, Z. (eds.)
WAIM 2014. LNCS, vol. 8485, pp. 213-224. Springer, Heidelberg (2014)

3. Aksoy, C., Dimitriou, A., Theodoratos, D.: Reasoning with patterns to effectively
answer XML keyword queries. The VLDB journal 24(3): 441-465 (2015)

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Keyword Pattern Graph Relaxation for Selective Result Space Expansion 305

Aksoy, C., Dimitriou, A., Theodoratos, D., Wu, X.: XReason: a semantic approach
that reasons with patterns to answer XML keyword queries. In: Meng, W., Feng,
L., Bressan, S., Winiwarter, W., Song, W. (eds.) DASFAA 2013, Part I. LNCS,
vol. 7825, pp. 299-314. Springer, Heidelberg (2013)

Amer-Yahia, S., Cho, S.R., Srivastava, D.: Tree pattern relaxation. In: Jensen,
C.S., Jeffery, K., Pokorny, J., Saltenis, S., Bertino, E., Bshm, K., Jarke, M. (eds.)
EDBT 2002. LNCS, vol. 2287, pp. 496-513. Springer, Heidelberg (2002)
Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword
searching and browsing in databases using BANKS. In: ICDE, pp. 431-440 (2002)
Brodianskiy, T., Cohen, S.: Self-correcting queries for XML. In: CIKM (2007)
Dalvi, B.B., Kshirsagar, M., Sudarshan, S.: Keyword search on external memory
data graphs. PVLDB 1(1), 1189-1204 (2008)

Dass, A., Aksoy, C., Dimitriou, A., Theodoratos, D.: Exploiting semantic result
clustering to support keyword search on linked data. In: Benatallah, B., Bestavros,
A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014, Part I. LNCS, vol.
8786, pp. 448-463. Springer, Heidelberg (2014)

Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding top-k min-cost
connected trees in databases. In: ICDE, pp. 836—845 (2007)

Elbassuoni, S., Blanco, R.: Keyword search over RDF graphs. In: CIKM (2011)
Elbassuoni, S., Ramanath, M., Schenkel, R., Weikum, G.: Searching RDF graphs
with sparql and keywords. IEEE Data Eng. Bull., 16-24 (2010)

Fu, H., Gao, S., Anyanwu, K.: Disambiguating keyword queries on RDF databases
using “Deep” segmentation. In: ICSC, pp. 236-243 (2010)

Golenberg, K., Kimelfeld, B., Sagiv, Y.: Keyword proximity search in complex data
graphs. In: SIGMOD, pp. 927-940 (2008)

Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: ranked keyword
search over XML documents. In: SIGMOD, pp. 16-27 (2003)

He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword searches on graphs.
In: SIGMOD, pp. 305-316 (2007)

Jarvelin, K., Kekéldinen, J.: Cumulated gain-based evaluation of IR techniques.
ACM Trans. Inf. Syst. 20(4), 422-446 (2002)

Jiang, M., Chen, Y., Chen, J., Du, X.: Interactive predicate suggestion for keyword
search on RDF graphs. In: Tang, J., King, I., Chen, L., Wang, J. (eds.) ADMA
2011, Part IL. LNCS, vol. 7121, pp. 96-109. Springer, Heidelberg (2011)
Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar,
H.: Bidirectional expansion for keyword search on graph databases. In: VLDB, pp.
505-516 (2005)

Kargar, M., An, A.: Keyword search in graphs: Finding r-cliques. VLDB (2011)
Kong, L., Gilleron, R., Mostrare, A.L.: Retrieving meaningful relaxed tightest frag-
ments for XML keyword search. In: EDBT, pp. 815-826 (2009)

Le, W., Li, F., Kementsietsidis, A., Duan, S.: Scalable keyword search on large
RDF data. IEEE Trans. Knowl. Data Eng. 26(11), 2774-2788 (2014)

Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: Ease: an effective 3-in-1 keyword
search method for unstructured, semi-structured and structured data. In: SIG-
MOD, pp. 903-914 (2008)

Qin, L., Yu, J.X., Chang, L., Tao, Y.: Querying communities in relational
databases. In: ICDE, pp. 724-735 (2009)

306 A. Dass et al.

25. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candi-
dates for efficient keyword search on graph-shaped (RDF) data. In: ICDE (2009)

26. Wang, H., Zhang, K., Liu, Q., Tran, T., Yu, Y.: Q2Semantic: a lightweight key-
word interface to semantic search. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 584-598. Springer,
Heidelberg (2008)

27. Xu, K., Chen, J., Wang, H., Yu, Y.: Hybrid graph based keyword query interpre-
tation on RDF. In: ISWC (2010)

	Keyword Pattern Graph Relaxation for Selective Result Space Expansion on Linked Data
	1 Introduction
	2 Structural Summaries and Pattern Graphs
	3 Computing Relaxed Pattern Graphs
	3.1 Relaxed Pattern Graphs
	3.2 Vertex Splitting
	3.3 Measuring Pattern Graph Relaxation
	3.4 Identifying Empty Vertices for Relaxation
	3.5 An Algorithm for Computing Relaxed Patterns

	4 Experimental Evaluation
	5 Related Work
	6 Conclusion
	References

