Using Query-Log Based Collective Intelligence
to Generate Query Suggestions
for Tagged Content Search

Dirk Guijt! and Claudia Hauff2(*)

! Sanoma, Hoofddorp, The Netherlands
dirk.guijt@sanoma.com
2 Web Information Systems, TU Delft, Delft, The Netherlands
c.hauff@tudelft.nl

Abstract. One of the standard features of today’s major Web search
engines are query suggestions, which aid the user in the formulation
of their search queries. Over the years, a number of different approaches
have been proposed which have commonly been evaluated in the standard
Web search setting. In this work, we build a query suggestion pipeline
based on the collective intelligence stored in log data collected from a
more constrained search engine which uses tags to index the content.
This constrained environment, though large-scale, differs considerably
from standard Web search with respect to its users, indexing process
and Web coverage. We implement a number of suggestion approaches
based on query-flow and term-query graph models and investigate to
what extent they are applicable in this more constrained environment.

Keywords: Query suggestions - Query-flow graphs - Search sessions -
Collective intelligence - Tags - Tagged content

1 Introduction

One of the standard features of today’s major Web search engines are query
suggestions, which aid the user in the formulation of their search queries whilst
typing. Those suggestions are commonly generated using the collective intelli-
gence of the search engine users which is stored in the search engine’s query logs.
Learning the behaviour of the search engine users and applying the knowledge
by generating query suggestions is not an easy task, as large-scale query logs are
noisy, may contain errors and logging artefacts.

In this work, we present our efforts on implementing query suggestions for
startpagina', a Dutch Web search portal similar in spirit to the Open Direc-
tory Project?. It is currently relying on query suggestions offered by a major

The work was conducted during the first author’s TU Delft Master thesis project at
Sanoma.

! http://startpagina.nl

2 Open Directory Project (now DMOZ): http://www.dmoz.org

© Springer International Publishing Switzerland 2015

P. Cimiano et al. (Eds.): ICWE 2015, LNCS 9114, pp. 165-181, 2015.
DOI: 10.1007/978-3-319-19890-3_12

http://startpagina.nl
http://www.dmoz.org

166 D. Guijt and C. Hauff

Commercial Search Engine (CSE) instead of generating its own. Since inter-
acting with those externally generated suggestions leads to general Web search
results (which often include results not indexed by startpagina) many users
leave startpagina in the middle of a search session and continue with a general
Web search. While search engine switching (initiated by the user) is a well-known
phenomenon [25], we consider this switch to be a rather unconscious one, as the
users are “switched” to a different engine without their explicit request. In order
to increase user retention, we use startpagina’s query log and implement a four-
step query suggestion pipeline based on state-of-the-art approaches in (1) search
session splitting [16,17], (2) the classification of query reformulations [9,19], (3)
the generation of query-flow graphs, and, (4) the extraction of suggestions from
such graphs [7-10].

Our main research questions focus on the effects of applying provenly effective
methods of generating query suggestions in regular Web search engines to a more
constrained search environment, which is similar to search on a social tagging
portal. In contrast to regular Web search, our experimental environment indexes
its contents through tags created by human annotators. Our search engine is
limited in its ability to return results for all queries, as a given query must
match a tag before the associated content can be returned. It is not useful to
suggest queries for which no matching tag exists and thus no content is available.
In this work, we investigate whether query logs can be used to generate relevant
query suggestions in this context.

We derive six different models from state-of-the-art query-flow and term-
query graph models [7-10] and compare their effectiveness to the suggestions
provided by the CSE (our baseline that is currently in use at startpagina). In
this particular use case we are able to achieve much higher coverage, that is, the
models trained on our log data can provide valid suggestions, i.e. suggestions for
which startpagina has results, for a much larger number of queries.

In the remainder of the paper, we first cover related work (§ 2), provide
more details about startpagina (§ 3) and describe our approach (§ 4), before
presenting our experiments (§ 5) and a discussing of the lessons learnt (§ 6).

2 Background

2.1 Search Sessions

Deriving search sessions, i.e. chronologically ordered sets of queries by a single
user with a common search goal (within a certain time interval), from query logs
is one of the necessary pre-processing steps to generate query-log based query
suggestions. Search session splitting has been tackled by various researchers in
the past, including [15-17]. Most works rely heavily on lexicographical and tem-
poral properties; it was shown that those low-level features achieve nearly the
same effectiveness for search session splitting as more complex semantic or result-
set based features [16].

Using Query-Log Based Collective Intelligence 167

2.2 Query Reformulations

Another important aspect of our pipeline is the classification of query refor-
mulations, i.e. in what manner the next query is altered with respect to the
previous one, as the reformulation type itself can significantly alter the shape
and dynamics of a query-flow graph [8,9]. Early work on user query behavior
in web search defined various reformulation type classes [12,20]. These form the
basis for the four reformulation types introduced in [9], which are: specialisation
(.e.g query “elephant” is reformulated to “elephant tusk”), generalisation (e.g.
moving from “elephant tusk” to “elephant”), parallel move/equivalent rephrase
(replacing some terms with similar terms or phrase the same query intent dif-
ferently), same query/error correction (applying small changes, often spelling
correction, to the next query). Both Boldi et al. [9] and Huang et al. [19] provide
an extensive list and description of features that can be used to detect the refor-
mulation type of two subsequent queries. These include both lexicographical and
temporal features.

2.3 Query Suggestion

Suggestions for a given query can be generated from a multitude of sources:
document content, taxonomies (e.g. WordNet), query logs or a combination of
those. The use of query logs is particularly popular, but at the same time limited
to use cases where large-scale query logs are available.

Huang et al. [18] extracted suggestions based on co-occurring query terms in
users’ search sessions. They found this approach to outperform a pure document
content analysis-based approach (performed over the top-k retrieved documents).
Baeza-Yates et al. [2] combined clicks and retrieved documents by only consider-
ing those top-k documents that were actually clicked by users; new query terms
are suggested based on the analysis of the clicked documents.

The notion of click graphs started to appear in 2000 [6]. A click graph is a
bipartite graph consisting of two groups of nodes, query nodes and document
nodes (URLs). There is an undirected edge in between two nodes if the document
appears in the result set of a query and was clicked as well. Generating such a
graph from a query log enables the use of a range of graph theoretic algorithms.
In particular random walks on click graphs are a popular strategy to generate
query suggestions, e.g. [13,14,21]. The main drawback of click graphs is the large
amount of data required to generate high-quality graphs; not every user query
yields a click, and not all search portals are frequented by a sufficient number of
users to make click graphs a viable option.

This drawback has led to the use of query-flow graphs for query suggestion
generation. A query-flow graph contains nodes constructed from the unique set
of queries in the query log. These nodes are connected by a directed edge if the
queries succeeded one another in a single search session. The weights of the edges
correspond to the likelihood of the two queries belonging to the same query chain.
This modelling strategy was first proposed in [7]. Numerous extensions have been
proposed, for instance, in [8,9], different graphs are constructed by considering

168 D. Guijt and C. Hauff

only a subset of edges based on reformulation types; in [3,4] the random walk is
biased towards the query intent. Altering the graph itself, by adding shortcuts for
very likely paths in the graph has been proposed by Anagnostopoulos et al. [1].
More recently, works have also began to extend such graphs with nodes on the
term level: instead of considering only a query as atomic unit (i.e. a node in
a graph), each unique term within a query is considered to be a node as well.
An advantage of such a term-query graph [10] is that the model can generate
suggestions for queries that have not been “seen” before, which is not possible
in query-flow graphs. The transition of individual query terms has been added
to the query-flow graph in Szpektor et al. [24] and Song et al. [23]. Both of these
models have a semantic component as well through named-entity recognition
and click-based topic extraction respectively. Since users’ querying behaviour
and the search system’s back-end are likely to change over time, [5] investigated
the effects of time on the construction of query-flow graphs. They concluded that
query-flow graph indeed age due to the change in user interest.

Query-flow graphs and term-query graphs have shown to be a popular and
successful approach to query suggestion generation. We investigate two query-
flow graph models (the original model [7] and variations of the reformulation type
model [8,9]) and one term-query graph model [10] and examine their applicability
to our particular use case startpagina. We do not consider click graphs, as the
amount of click data required is not suitable for our use case.

3 Startpagina

startpagina focuses specifically on the Dutch market. The search portal
employs human annotators that manually determine whether or not a Web site d
(written in Dutch) should be included in its index. For indexing purposes, anno-
tators provide a number of tags Ty, = {ti,...,t: } for each d;. Users can only
retrieve d; if their complete query matches a tag in 7;,. The entire tag space
over all n documents presented in the index is 7 = |J;'_, 73, . startpagina cur-
rently employs both auto-completion (offered by the employed commercial search
engine) and instant-result mechanisms. Each typing action by a user results in
one of the following:

— If the user’s current query is a tag found in 7, the correspondingly tagged
results are shown (instant results provided by startpagina).

— If the user’s current query is not in 7, query suggestions are retrieved from
the CSE’s suggestion API. The suggestions are agnostic to the tag space 7,
i.e. they are not restricted to terms and phrases that appear in 7. A click on
any of the suggestions that are not in 7 leads the user to a standard Web
search result page (SERP) provided by the CSE.

Figure 1 presents an overview of startpagina’s user search flow. The out-
come on the left (leading the user to a target Web site) is the desired case:
the user remains on startpagina until the final click. The outcome on the
right (showing a SERP) is the case we are tackling in our work: the external

Using Query-Log Based Collective Intelligence 169

suggestions should be replaced whenever possible (i.e. when we can generate
suggestions t; € 7) with startpagina’s own suggestions. In cases where this is
not possible, startpagina continues to rely on the CSE’s suggestions. Overall,
generating startpagina internal suggestions will keep more users engaged with
the site, which in turn will improve user retention and user satisfaction.

startpagina.nl

user

target
Web site yes

suggestion
click?

result
extraction

instant
results

—
curated
index

Fig. 1. High-level overview of startpagina’s current user search flow. Shown in red
(suggestion component) is the part of the search flow we are tackling in this work.

On average, each month startpagina has more than 1.5 million unique vis-
itors who conduct tens of millions of searches. A significant fraction® of searches
result in the user leaving the site as their queries are not in 7 and thus no
startpagina results are available.

The goal of our work is to provide for each user query which is not found in
T, a list of query suggestions that are found in 7. In this manner, when a user
submits a search query for which no results are available, she instead receives
a number of related query suggestions, all of which will lead to results within
startpagina.

The content of startpagina is manually moderated and so are the tags
that are used to describe and index it. This manual, human factor is similar to
social tagging systems where the content and tags are generated by humans as
well. The key difference is that startpagina has an editorial staff as opposed to
having the system’s users create and curate the content. Although this difference
is important to note, our research does not focus on the content creation and
curation but on using the collective intelligence of the search engine users to
generate query suggestions. We therefore believe that our results extend to search
engines that search through folksonomies as well.

4 Approach

Our query suggestions pipeline consists of four components: (1) search ses-
sion splitting, (2) classification of query reformulation types, (3) generation of

3 Due to the commercial nature of the portal, the exact numbers cannot be published
here.

170 D. Guijt and C. Hauff

query-flow graphs, and, (4) deriving suggestions from them. The first two are
necessary pre-processing steps to convert the query log into a suitable represen-
tation.

4.1 Pre-processing

Search Session Splitting. Given a typical query log (i.e. user-id, timestamp,
query and logged click if any), the first pre-processing step involves aggregating
the queries submitted by a single user into search sessions. An often used heuristic
is to split a search session after 30 or 60 minutes of inactivity [15]. Apart from
splitting simply by time, classifiers have been trained in the past [15] to determine
whether or not a session boundary exists between two subsequent queries ¢; and
¢;+1 submitted by the same user. We opted for this approach as it generally
yields better results.

Reformulation Type Classification. One of the query-flow graph models
we investigate is based on the intuition that different graphs should be build
for different query reformulation types [9] as not all reformulations are equally
useful for the generation of query suggestions. Thus, as a second component we
implemented a classifier to determine the reformulation type of a pair of queries
issued subsequently within a single search session. We distinguish between the
following four types [9]: specialisation (S), generalisation (G), same query/error
correction (C), and, parallel move/equivalent rephrase (P).

We treat both tasks (search session splitting and reformulation type classifica-
tion) analogously, as they are similar in nature. We derive twenty-three features
based on ¢; and ¢;41 individually as well as their temporal and syntactic relation-
ship, in line with previous works [9,16,17,19]. An overview of these features is
shown in Table 1. We employ a decision tree classifier (C5.0) as suggested in [9].
For search session splitting our classifier is binary, while for reformulation type
classification we use n binary classifiers as well as the n-class classifier (where
n is the number of reformulation types). The n binary classifiers are ordered
according to their accuracy. If a query pair is classified with sufficient confidence
by a classifier in the cascade, the remaining classifiers in the cascade are skipped
for that pair [16].

To train the session splitting classifier, we manually annotated a set of ran-
domly drawn super-sessions (a session of a single user split by the 60 minute
inactivity heuristic is one super-session) from our query log and determined for
each pair of subsequent queries whether or not they belong to the same session.
Having trained the classifier, we then identified the sessions across the entire
query log. In a second step we drew a sample of the search sessions identified
in this manner and manually annotated the type of reformulation occurring. To
compare our results directly with existing research, we also applied our imple-
mentation to a search session data set provided in [16] (we refer to it as Hagen13),
which is based on the AOL query log.

We evaluate the effectiveness of the classifier through 5-fold cross-validation
and report the following four metrics:

Using Query-Log Based Collective Intelligence 171

Table 1. Description of the 23 features used in both session splitting an query reformu-
lation type classification. The following notation has been used in this table: ¢?/* C ¢
means that ¢P/? is a prefix of ¢, ¢“" means that all URL elements like http:// and .com
have been stripped from ¢, and, w(q) is the set of words in query g where the space char-
acter was used as a boundary between words.

Notation Feature

Fl1 Ans time difference between ¢; and ¢;41 in milliseconds

F2 |q number of characters in ¢;

F3 |git1] number of characters in g;41

F4 F3—F2 difference in length between ¢; and g;+1

F5 Equals(qi, Qi+1) boolean equality of ¢; and ¢;41

F6 Equals(qffz, Qi+1) boolean equality of qffx and g;+1, with |qipfz| =
|Qi+1\

F7 Equals(q;, qﬂf} boolean equality of ¢; and q,’-’f:f, with |g;| = |qfff

F8 Equals(g’™", ¢h) boolean equality of ¢! and ¢}t

F9 |w(g)l number of words in g;

F10 |w(gi+1)| number of words in g;+1

F11 F10 — F9 difference of number of words in ¢; and ¢;+1

F12 Jw(g:) Uw(git1)| number of unique words combined

F13 [{z € w(g:),y € w(gi+1)|z T y}| number of words that were expanded

F14 {z € w(g:),y € w(gi+1)|y C =}| number of words that were contracted

F15 |w(git+1) — w(gi)] — F10 — F11 number of added words

F16 |w(g;) — w(gi+1)] — F10 — F11 number of deleted words

F17 Lev(qi,qi+1) Levenshtein distance between ¢; and ¢;+1

F18 % Levenshtein distance normalized by average
length

F19 % Levenshtein distance normalized by time differ-
ence

F20 CosSim(Oword,i> Gword,i+1) cosine similarity of character 3-grams extracted
from the individual words in a query

F21 % cosine similarity (F20) normalized by time

F22 CosSim(Oquery,i» Oquery,i+1) cosine similarity of the character 3-grams
extracted from the query string as a whole
F23 % cosine similarity (F'22) normalized by time

— Correctness: the percentage of sessions that are completely correct, i.e.
the start and end query are correctly identified and no split is introduced
in-between;

— Precision: the percentage of boundaries that were correctly identified from
all the boundaries that where classified as boundaries;

— Recall: the percentage of boundaries that were correctly identified of all the
boundaries that should have been identified; and,

— F-Measure: with § = 1.5, as we consider false positives to be less harmful
then false negatives (in the later case different search sessions are merged
into one, leading to a degradation of the query-flow graph).

172 D. Guijt and C. Hauff

4.2 From Query-Flow Graphs to Query Suggestions

Query-Flow Graph. Boldi et al.’s query-flow graph [7-9] is a weighted,
directed and annotated graph Gorig = (V, E, W, T'). The set of nodes V' is defined
as V = Vyyery U {t} with Vyyery being the set of unique queries in a query log
and t being a special node denoting the end of a search session. The set of
edges F C V x V is a subset of all possible edges. An edge appears between
nodes u and v if u was reformulated into v in at least one session in the query
log. The edge (u,t) appears when wu is the last query in a session. Edges are
associated with weights, i.e. w(u,v) = (0..1] € W. The weight is dependent
on the frequency of the transition in the query log. Let OUT(u) be the set
of nodes that have an incoming edge from wu. For every node it holds that:
> veour(u) W(u,v) = 1, which makes the graph essentially a Markov chain.

Then, w(u,v) = &2 where r(u,v) is the number of times that the
2icouT(u) T(Ush)

transition from u to v occurred in the log. Finally, T is the set of annotations for

each edge in E: each edge is annotated with the type of reformulation occurring

between u and v. Edges directed to end node ¢ are marked with special type X.

Note that the original model did not have any annotations.

Slicing the Query-Flow Graph. As already mentioned, prior work [8,9]
has investigated the use of a limited set of reformulation types to generate a
more refined version of the query-flow graph. To create a slice of Gorig, We only
retain those edges that are annotated with our chosen reformulation types; as
an example, Ggp is the slice of G,.;q Which only contains reformulations of
types specialisation and parallel moves. The edge weights are normalised so that
> veout(u) W(u,v) = 1. The special reformulation type X is assumed to be
present in every slice.

Term-Query Graph. Another model that we consider is the term-query graph-
based model [10], which again is an extension of G,i4. Typically, queries consist
of a number of terms. In this model, we enlarge the graph to also add the set
of unique terms of the query log as nodes, that is, V = Vjuery U Vierm U {t}.
The edge set F is also enlarged: there is an edge between a node u € Vieprm, and
v € Vgyery if v contains the term u. Note that no edges are directed towards term
nodes and no direct edges exist between two term nodes. For a node u € Vierp,
and v € Vgyery, it holds that: w(u,v) = m. Lastly we note that the
reformulation type of an edge (u,v) with u € Vierm and v € Viyery is the special
type X.

Generating Suggestions. Having discussed the different query-flow and term-
query graphs, we now turn to the generation of query suggestions. We formulate
this problem as follows: given a query ¢ and a graph model G, generate a set of
(usually no more than 5) suggestions that are relevant to ¢’s intent.

Using Query-Log Based Collective Intelligence 173

It is important to note that if G is a query-flow graph model (either Gorig
or GreformulationTypes), We can only generate suggestions for “seen” queries, i.e.
queries that are present in the query log from which G has been generated. If a
query does not appear in the query log, we cannot generate suggestions for it. If
q appears in G, we perform a random walk with restart from ¢’s node, known as
Personalized PageRank (PPR) [22]. The difference between PRP and standard
PageRank [11] is that in PRP the random jump always jumps to our starting
node, as opposed to jumping to a random node in the graph. The result of the
random walk is a probability distribution (PPR scores), i.e. the probability of
walking across a particular node in G when starting the walk in ¢. This is in
effect the probability of users’ submitting a particular query after the initial
query g has been submitted. Since in this setup queries that occur very frequent
in the query log have a large number of incoming edges with high weights, we
normalise the PPR score by the standard PageRank score that each query (node)
has. We then filter out all the suggestions that are not in tag space 7', with the
exception of special node t. The normalised PPR score is then used to rank the
queries (nodes) and the highest scoring queries are selected as suggestions for
our starting query g. The rank of node ¢ in our generated ranking is also of
importance: all queries (nodes) ranked below ¢ have a lower likelihood of being
submitted after ¢ than the user stopping her search session. Thus, these queries
are considered not to be useful and are stripped from the suggestion list (as well
as t itself).

When G is the term-query graph, we first have to split the initial query ¢
into wy, ..., wy, individual terms. We perform m random walks with restart, each
one starting at one of the w; (if they exist in the graph). The random walks are
conducted in the same manner as described for the query-flow graphs. The result
is m probability distributions, one for each of ¢’s terms. We then calculate the
Hadamard product [10] of these probability distributions, which assigns only to
those suggestions that appear in all m distributions a score greater than zero.
The suggestions are ranked by their Hadamard score and as before suggestions
ranked below node t are removed from the final list of suggestions.

We experiment with eight models, five based on the query-flow graph and
different reformulation types, one based on the term-query graph and two relying
on the current system’s suggestions that are generated by a commercial search
engine.

Specifically, we investigate:

— Morig: basic query-flow graph including all reformulations types;

— Mgpc: query-flow graph with generalis., parallel move and error correction;
— Mgps: query-flow graph with generalis, parallel move and specialis.;

— Mgces: query-flow graph with generalis, error correction and specialis.;

— Mpcs: query-flow graph with parallel move, error correction and specialis.;
— Mrtgm): the term-query graph model including all reformulations types;

174 D. Guijt and C. Hauff

— CSE suggestions overall: we retrieve the top-5% suggestions for each test
query from the system’s currently employed CSE, independent of whether
or not the suggestions are in 7 (i.e. leading to results in startpagina);

— CSE suggestions € 7: we use the suggestions from the previous model
(CSE suggestions overall) as a starting point and filter out all those that
do not appear in tag space 7 (i.e. those that do not lead to results within
startpagina).

Training and Evaluation. To train and evaluate our suggestions, we split our
query log (ordered by time) into two sets, equivalent to “seen” and “unseen”
queries. We generate the query-flow and term-query graphs on the seen set.
We sample queries from the unseen set and derive query suggestions for them
employing the eight models just described. For evaluation purposes, we ask
human evaluators to judge the usefulness of the presented query suggestions
to the initial query ¢ as either Useful, Somewhat Useful, Not Useful or Don’t
know. The overall effectiveness of a model is the percentage of queries, for which
the top-5 suggestions contain at least one Somewhat Useful suggestion (the so-
called u-score) [8-10]. Additionally, we also evaluate the models according to
their coverage, i.e. the number of queries for which suggestions are made at all.
Since in our setup the tag space 7 is limited, the u-score alone is not sufficient
to evaluate the effectiveness of our models.

5 Experiments

5.1 Data Set

We extract two data sets from startpagina’s query log: (1) data set SP1 con-
tains tens of millions of queries sampled from startpagina’s query log collected
between April 14, 2014 and June 13, 2014; (2) data set SP2 contains all queries
issued in the seven days starting at June 14, 2014. We use SP1 to train our clas-
sifiers and models. Data set SP2 is employed to evaluate the query suggestions
generated by our pipeline - this is a realistic setup, as we may be only able to
(re-train) our models at particular moments in time.

5.2 Pre-processing

We randomly selected 974 super-sessions (i.e. a session split after 60 minutes of
inactivity) from SP1 and manually annotated the session boundaries within those
super-sessions. Overall, we were able to unambiguously determine boundaries for
936 super-sessions, yielding 2,489 different search sessions with a total of 9,410
queries.

Our search session splitting classifier determines for each pair (g;, ¢;1+1) of
subsequent queries (submitted by a single user) whether they belong to the

4 The API of the employed CSE imposes this limit.

Using Query-Log Based Collective Intelligence 175

same session or not. If not, ¢; is considered to be the last query of session S}
while g;1 is the first query of search session S;41. We use 5-fold cross-validation
for training and testing.

The results are presented in Table 2. As baseline we report search session
splitting based on minutes of inactivity (for each dataset, we empirically eval-
uated inactivity cutoffs between [1,2,..,60] minutes and report the best per-
forming one). While the inactivity based approach leads to 68% fully correctly
identified sessions for SP1, our classifier-based approach makes correct decisions
for 83% of the sessions. This result is verified on the public Hagen13 data set.
When considering the learnt decision trees, the most significant features are the
cosine similarity (both on the word and query level) as well as the Levenshtein
distance normalised by the queries’ time difference (i.e. %). Overall, we
conclude that we are able to split the Dutch startpagina sessions with sufficient
accuracy for our purposes.

Table 2. Overview of search session splitting results achieved on two data sets

Splitting method Data set Correct Precision Recall F; 5-Measure

Inactivity (2 min) SP1 68.46% 0.65 0.95 0.84
Classifier (C5.0) SP1 82.64% 0.79 0.99 0.92
Inactivity (11 min) Hagenl13 67.35% 0.83 0.88 0.86
Classifier (C5.0) Hagen13 84.51% 0.82 0.99 0.93

Having trained our search session splitter, we ran the classifier on the entire
SP1 data set. We then randomly selected 1,806 query pairs from the identified ses-
sions. For 1,738 pairs we were able to manually annotate them with their respec-
tive reformulation type (the remaining query pairs had unclear reformulations).
We used those pairs to train and evaluate our reformulation type classifiers in
a b-fold cross-validation setup. The results show that query type reformulations
can be classified effectively, yielding an accuracy of 85.9%.

Having determined the effectiveness of our classifier cascade, we classified all
query pairs in SP1. We list the distribution of identified reformulation types in
Table 3.

Interestingly, compared to previous works, in particular [9], which use Yahoo!
query log data from 2008, we find considerable differences for the parallel move
and specialisation types: parallel moves are found in less than 20% of all cases
in SP1, while it is the most prevalent reformulation type in the Yahoo! logs
(roughly 50% of all reformulations). In contrast, we find that in SP1 the S and C
types occur with considerably higher frequency than found in the standard Web
search setting. Despite the fact that for many queries startpagina does not
return any results (because the query does not appear in 7°), more than 50% of
the reformulations lead to more specific queries. This is contrary to our intuition,
as we would expect users to back-off to more general queries in order to receive
startpagina results. More research is needed to investigate this behaviour.

176 D. Guijt and C. Hauff

Table 3. Overview of the types of reformulations found in data set SP1 and in previ-
ously published works [9] (final two columns)

Reformulation SP1 Yahoo! Yahoo!
type n =4 UK, 2008 US, 2008

13.01% 4.40% 9.50%
16.26% 47.70% 55.50%
18.16% 10.40% 5.00%
52.56% 37.50% 30.10%

nAavR

5.3 From Query-Flow Graphs to Query Suggestions

We built the query-flow graphs from SP1 using our implemented pipeline: the
query log was split into sessions, the reformulations were annotated, duplicate
queries in succession were removed, and for each of the models a query-flow
graph was generated. When computing (personalized) PageRank we set the ran-
dom jump probability to (1—«) = 0.15. Some basic graph statistics are shown in
Table 4. While for most induced graphs the number of nodes and edges is com-
parable, Mgpc and Mrgm differ considerable with respect to the maximum
out-degree and the number of edges. In slice Mgpc, all edges that represent a
specialization have been removed. We have shown in Table 3 that over half of the
reformulation types in the graph are specializations so we expect the maximum
outdegree to be lower for this slice. The border case nodes with a high outde-
gree have an even higher percentage of (outgoing) specialization edges, which
explains the lower maximum outdegree in the overal graph. The higher number
of nodes and edges in model Mrgm can be explained by the addition of the
term nodes and the edges from the term nodes to the query nodes.

Table 4. Overview of the generated query-flow and term-query graphs based on data
set SP1

#nodes #edges max. outdegree

Morig 14,153,454 19,611,085 13,699
Mgpc 14,153,454 12,638,766 775

Mecps 14,153,454 17,271,592 13,643
Meces 14,153,454 16,697,988 13,650
Mpcs 14,153,454 18,139,039 13,696

Mrcem 17,686,843 59,658,990 552,735

We drew test queries from SP2 as follows: we partitioned SP2 into search
sessions and randomly selected 282 of them. From each session, we then randomly
drew a single query and generated the top 5 query suggestions based on each of
our six models. We also captured the top 5 query suggestions from the system’s
currently used CSE. On average, each session contained 2.9 (o = 1.65) queries.

Using Query-Log Based Collective Intelligence 177

Table 5 contains an example of query suggestions generated for the first query
(underlined) of the following search session consisting of two queries: {egon —
aegon}. Aegon is a multinational life insurance, pensions and asset management
company. The user misspelled the name of the company in the first query. The
final column lists the rating our human annotators assigned to the suggestion
when taking the whole context of the search session into account.

We merged all suggestions generated for a query into a single list, removing
duplications; due to the overlap in generated suggestions between the different
models, the final list had far fewer than the possible 5 x 7 = 35 suggestions. On
average 9.85 (0 = 3.49) unique suggestions were generated per query.

Table 5. Example of query suggestions generated for a query. From the short search
session {egon — aegon} the first query (egon) was selected as the query to generate
suggestions for. For each generated suggestion, all models generating it in the top 5
results are listed. Query suggestions that do not appear within 7 are marked with
t. The final column contains the rating our human annotators: either U (Useful), US
(Somewhat useful), or, NU (Not useful).

Query English Model(s) Rating
suggestions translation Orig GCS GPC GPS PCS TGM CSE
aegon aegon X X b X b U
egon zehnder egon zehnder X NU
aegon hypotheek aegon mortgage X X X X U
aego aego X NU
egon schiele egon schiele X NU
mijnaegon myaegon X U
mijn aegon my aegon X X U
egon f egon X NU
inloggen aegon login aegon X U
aeg aeg x SU
egon derksen | egon derksen X NU
aegon verzekering aegon insurance X X X X U
aegon.nl aegon.nl X X X b U
aegon inloggen aegon login X X X X U
egon krenz t egon krenz X NU

We recruited 31 native speakers of Dutch as human evaluators (11 human
annotators employed at startpagina and 20 startpagina users). The evalua-
tors were presented with a search session and the selected query (to derive sug-
gestions for) from that session. To ensure that our evaluators made high-quality
judgements, we asked them two initial questions for each session/query pair:
(1) do all queries in the session have the same search goal (yes/somewhat/no),
and, (2) do you understand the user’s search intent (yes/somewhat/no). Each
session/query pair was judged by a single evaluator. An evaluator could judge
up to 20 session/query pairs. From the 282 session/query pairs, 40 sessions were
judged by our evaluators as not having a single goal, while for an additional 53

178 D. Guijt and C. Hauff

sessions the evaluators were not able to clearly identify the intent of the ses-
sion. For the remaining 189 session/query pairs with a total of 1886 suggestions,
the evaluators were asked to rate the list of distinct suggestions with respect to
their usefulness. The suggestions were presented in random order and the evalu-
ators were unaware of the model(s) that generated the suggestion. In Table 6 we
present the different models’ effectiveness with respect to u-score and coverage.

Let’s first discuss the influence of the reformulation types, when compar-
ing the five reformulation type models (ignoring Mrpgas) generated based on
SP1. S & G are both important for coverage. This is not unexpected, as S-
class reformulations account for more than 52% of all reformulations (Table 3).
More interesting is the influence of the G-class edges. Although they account for
only 13% of all reformulations (less than P or C), they are essential to achieve
high coverage (Morig achieves 88% coverage, Mpcs only 56%). We reason that
startpagina’s annotations play a role here: complex long queries rarely appear
in 7, and thus simpler queries that generalise (i.e. are shorter and may appear in
T) are valuable. With respect to the u-score, i.e. the usefulness of the generated
suggestions, we find that including the P-class (i.e. parallel moves) has the most
negative effect (on average, models that include the P-class lose 10% in u-score).
We speculate that parallel moves connect several distinct search paths together,
thus adding noise to the reformulations.

The term-graph model (MTgm) exhibits the highest u-score across all our
models, i.e. it generates the best suggestions for those queries, for which it is
able to generate anything. At the same time though, the coverage is much lower
than any of the other models (less than 36%), making it unusable in practice.
This model was designed to have a higher coverage for queries that are not seen
before. It is therefore notable that the model has the lowest coverage in our
evaluation. The reason for this could be due to the limited tag space combined
with the term-query model specific random walk method for generating sug-
gestions. The individual lists of suggestions per random walk from a term are
already sparse and the overlap between them is expected to be even more sparse
(or non-existent). For future work it will be interesting to investigate models
that combine reformulation type models with term-query graph models. Unfor-
tunately, this is not feasible for the startpagina use case as the coverage for
this combination would be very low and almost no suggestions could be made.

Overall, we conclude that when balancing the needs for usefulness and cov-
erage, the basic model, i.e. Morig, which does not distinguish between reformu-
lation types, is the best one to use.

When comparing our models’ results to the CSE suggestions we first notice
the low coverage CSE suggestions achieve - less than 26% of the individual gen-
erated suggestions are tags in startpagina’s tag space 7. This is not surprising,
as the CSE suggestions are agnostic to startpagina’s content. With respect to
u-score (which ignores whether or not the suggestions are in 7), CSE suggestions
considerably outperform our models, indicating that there is a large potential for
future improvements. Thus, we conclude that although the suggestions provided
by the CSE are useful ones, they do not help in finding startpagina content
most of the time.

Using Query-Log Based Collective Intelligence 179

Table 6. Overview of the query-flow graph models’ effectiveness. All but the CSE
suggestions are generated using SP1 as training data.

u-score coverage

Morig 62.28% 88.36%
Mapc 63.78% 67.20%
Mecps 60.81% 78.31%
Mgcs 70.07% 72.49%
Mpcs 60.55% 55.67%
MrcewMm 72.056% 35.98%

CSE suggestions € 7 83.67% 25.93%
CSE suggestions overall 87.36% 96.30%

When we consider the overal effectiveness of our models to generate useful
suggestions, we find that more than half of all 1886 suggestions judged were
deemed at least somewhat useful by our evaluators; more specifically: 28.2% of
suggestions were deemed wuseful, 23.44% where somewhat useful, 44.11% were
not useful and 4.24% suggestions were rated as don’t know.

For 160 of the 189 queries, both My,ig and CSE suggestions overall could
generate suggestions. In 75% of these cases, there was no overlap in the top-
5 suggestions of both models. This indicates that our investigated approaches
relying on query-flow and term-query graphs and startpagina’s query log are
considerably different from the approaches and data employed by the CSE we
compare our work against.

6 Conclusions

In this paper, we implemented and evaluated a pipeline that, based on a query
log, generates query suggestions for unseen queries. We built on prior work, and
investigated established approaches for search session splitting, reformulation
type classification and the generation of query suggestions from query-flow and
term-query graphs. We were able to successfully apply the results obtained in
a regular Web search setting to the Dutch curated content search environment
of startpagina. While search session splitting and reformulation classification
yielded similar to existing work, the use of query-flow and term-query graphs
showed a number of differences:

— We can improve the usefulness score (u-score) of the suggestions when only
considering particular types of reformulations, as expected. In our case, leav-
ing out class P (parallel move) increases the effectiveness. Contrary to prior
work, S (specialisation) reformulation edges do not play a significant role.

— In contrast to the literature, which usually focuses on the u-score as effec-
tiveness measure, we also need to take the coverage of a model into account.

180 D. Guijt and C. Hauff

Here, we observe a considerable degradation in coverage when only a sub-
set of reformulations is considered; thus, there is a trade-off between accu-
racy and completeness. Depending on the optimisation goal, different models
would have to be chosen.

— The term-query graph model produces the highest u-scores but, surprisingly,
also has the lowest coverage by far. We reason that this is caused by the
limited tag space 7 combined with the use of the term-query model specific
random walk method.

Overall, we conclude that the state-of-the-art query suggestion models can
successfully be applied to search environments where the content is described
and indexed using tags. Not all user queries return results in such an environment
but through harnessing the collective intelligence stored in the query logs we are
still able to actively support individual users in their search missions. We found
that a trade-off has to be made between the percentage of user queries for which
we can generate suggestions and the usefulness of those suggestions. Although
our use case is not a social tagging website and the tags on startpagina do
not form a folksonomy, we believe that our results do apply to search engines
in these types of environments. Our results certainly invite us to investigate
combinations of the models described in this paper with collaborative filtering
methodologies that are currently being used to suggest queries or tags on social
tagging websites.

References

1. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A.: An optimization frame-
work for query recommendation. In: WSDM 2010, pp. 161-170 (2010)

2. Baeza-Yates, R., Hurtado, C.A., Mendoza, M.: Query recommendation using query
logs in search engines. In: Lindner, W., Fischer, F., Tiirker, C., Tzitzikas, Y., Vakali,
AL (eds.) EDBT 2004. LNCS, vol. 3268, pp. 588-596. Springer, Heidelberg (2004)

3. Bai, L., Guo, J., Cheng, X.: Query recommendation by modelling the query-flow
graph. In: Salem, M.V.M., Shaalan, K., Oroumchian, F., Shakery, A., Khelalfa, H.
(eds.) AIRS 2011. LNCS, vol. 7097, pp. 137-146. Springer, Heidelberg (2011)

4. Bai, L., Guo, J., Cheng, X., Geng, X., Du, P.: Exploring the query-flow graph with
a mixture model for query recommendation. In: Proceedings of SIGIR Workshop
on Query Representation and Understanding (2011)

5. Baraglia, R., Castillo, C., Donato, D., Nardini, F.M., Perego, R., Silvestri, F.: Aging
effects on query flow graphs for query suggestion. In: CIKM 2009, pp. 1947-1950
(2009)

6. Beeferman, D., Berger, A.L.: Agglomerative clustering of a search engine query
log. In: SIGKDD 2000, pp. 407-416 (2000)

7. Boldi, P., Bonchi, F., Castillo, C., Donato, D., Gionis, A., Vigna, S.: The query-flow
graph: model and applications. In: CIKM 2008, pp. 609-618 (2008)

8. Boldi, P., Bonchi, F., Castillo, C., Donato, D., Gionis, A., Vigna, S.: Query sug-
gestions using query-flow graphs. In: Proceedings of the 2009 Workshop on Web
Search Click Data, pp. 56-63 (2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Using Query-Log Based Collective Intelligence 181

Boldi, P., Bonchi, F., Castillo, C., Vigna, S.: From “dango” to “japanese cakes”:
query reformulation models and patterns. In: WI 2009, pp.183-190 (2009)
Bonchi, F., Perego, R., Silvestri, F., Vahabi, H., Venturini, R.: Efficient query
recommendations in the long tail via center-piece subgraphs. In: SIGIR 2012, pp.
345-354 (2012)

Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer networks and ISDN systems 30(1), 107-117 (1998)

Bruza, P., Dennis, S.: Query reformulation on the internet: empirical data and the
hyperindex search engine. In: RIAO 1997 (1997)

Cao, H., Jiang, D., Pei, J., He, Q., Liao, Z., Chen, E., Li, H.: Context-aware
query suggestion by mining click-through and session data. In: SIGKDD 2008,
pp. 875-883 (2008)

Craswell, N.; Szummer, M.: Random walks on the click graph. In: SIGIR 2007,
pp. 239-246 (2007)

Gayo-Avello, D.: A survey on session detection methods in query logs and a pro-
posal for future evaluation. Inf. Sci. 179(12), 1822-1843 (2009)

Hagen, M., Gomoll, J., Beyer, A., Stein, B.: From search session detection to search
mission detection. In: OAIR

Hagen, M., Stein, B., Riib, T.: Query session detection as a cascade. In: CIKM
2011, pp. 147-152 (2011)

Huang, C.-K., Chien, L.-F., Oyang, Y.-J.: Relevant term suggestion in interactive
web search based on contextual information in query session logs. JASIST 54(7),
638-649 (2003)

Huang, J., Efthimiadis, E.N.: Analyzing and evaluating query reformulation strate-
gies in web search logs. In: CIKM 2009 (2009)

Lau, T., Horvitz, E.: Patterns of search: analyzing and modeling web query refine-
ment. In: UMAP 1999, pp. 119-128 (1999)

Mei, Q., Zhou, D., Church, K.W.: Query suggestion using hitting time. In: CIKM
2008, pp. 469-478 (2008)

Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web (1999)

Song, Y., Zhou, D., He, L.-w.: Query suggestion by constructing term-transition
graphs. In: WSDM 2012, pp. 353-362 (2012)

Szpektor, 1., Gionis, A., Maarek, Y.: Improving recommendation for long-tail
queries via templates. In: WWW 2011, pp. 47-56 (2011)

White, R.W., Dumais, S.T.: Characterizing and predicting search engine switching
behavior. In: CIKM 2009, pp. 87-96 (2009)

	Using Query-Log Based Collective Intelligence to Generate Query Suggestions for Tagged Content Search
	1 Introduction
	2 Background
	2.1 Search Sessions
	2.2 Query Reformulations
	2.3 Query Suggestion

	3 Startpagina
	4 Approach
	4.1 Pre-processing
	Search Session Splitting.
	Reformulation Type Classification.

	4.2 From Query-Flow Graphs to Query Suggestions
	Query-Flow Graph.
	Slicing the Query-Flow Graph.
	Term-Query Graph.
	Generating Suggestions.
	Training and Evaluation.

	5 Experiments
	5.1 Data Set
	5.2 Pre-processing
	5.3 From Query-Flow Graphs to Query Suggestions

	6 Conclusions
	References

