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Abstract. This paper introduces a novel face verification approach
using the Gabor Region Covariance Matrices (GRCM). First, we repre-
sent the face images with d dimensional Gabor images. Then, we divide
these images into overlapping regions. From each region, we compute
a d × d covariance matrix. Inspired by the GMM-UBM speaker veri-
fication framework, we propose a new decision rule based on the Rie-
mannian mean of the Gabor region covariance matrices computed from
background faces. Finally, score normalization techniques are incorpo-
rated in the proposed framework to enhance the verification performance.
Extensive experiments on two benchmark databases, namely Banca and
SCface showed very interesting results which compare favorably against
many state-of-the-art methods.

1 Introduction

Because of its natural and non-intrusive interaction, identity verification and
recognition using facial information is among the most active and challenging
areas in computer vision research [13]. Despite the great deal of progress during
the recent years, face biometrics is still a major area of research. Wide range of
viewpoints, occlusions, aging of subjects and complex outdoor lighting are chal-
lenges in face recognition. Face recognition methods can generally be divided into
two classes: global matching methods and local or component matching meth-
ods. The global methods represent the whole face image with a single feature
vector which can be used as an input to a classifier. Among the several classi-
fiers proposed in the literature we can cite: the minimum distance classification
applied in the eigenspace [21], the Fisher discriminant analysis [3], the neural
network [6], the Support Vector Machine, SVM [4] . In term of performance,
the global methods give good results in classifying near frontal faces. However,
their robustness degrades against pose changes since the global feature vectors
are sensitive to rotation and translation. By dividing the face images into com-
ponents and allowing certain geometrical flexibility between these components
during the classification stage, the local matching methods have shown good
performances compared with the global methods [10].
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For both global and local methods, feature extraction and representation is
a crucial step. It is widely believed that the features extracted with a spatial-
frequency analysis are more robust to pose and illumination changes [26]. As
wavelet transformations are localized in both time and frequency domains, it can
be a good choice for representing the face images [17]. Among the various wavelet
techniques proposed in the literature, the Gabor functions provide the optimal
resolution in both spatial and frequency domains [5]. The application of the
Gabor wavelet in face recognition was pioneered by Lades et al. in 1993 [12], when
they proposed a face recognition system (Dynamic Link Architecture, DLA)
based on the Gabor jets extracted from the nodes of a rectangular grid. Later
on, Wiskott et al. extended the DLA methods and proposed the Elastic Base
Graph Matching method (EBGM) [24], where the rectangular grid was replaced
by a number of facial landmarks. Since then, a large number of face recognition
systems were proposed based on this Gabor wavelet transformation [20].

In 2006, Tuzel et al. [22] proposed a new object detection and classification
method called Region Covariance Matrices (RCMs). This method is based on the
analysis of the feature covariance matrices computed inside a region of interest.
As the covariance matrices do not encode information regarding the ordering
and the number of points, the RCMs method inherits certain robustness against
small rotation and scaling. Furthermore, the subtraction of the mean during the
covariance computation can reduce the effect of the global illumination changes.
In the original RCMs method [22], the covariance matrices were computed from
a set of features including pixels coordinates, color values and the norm of the
first and second order gradient. Although these features yield in good results in
detecting and tracking objects, their application to the face recognition prob-
lem [15] did not show promising performance. To enhance this performance,
Pang et al. [15] proposed a face recognition system using Gabor Region Covari-
ance Matrices (GRCMs), where the pixel location and the Gabor features were
used to construct the region covariance matrices. Their experimental results have
demonstrated the effectiveness of GRCM compared to the original RCM method.

In the present work, we adopt the idea behind the use of the Universal Back-
ground Model in the GMM-UBM speaker verification system [18], and propose
a new face verification approach based on the Gabor Region Covariance Matri-
ces (GRCM) [15]. After constructing symmetric definite positive GRCM from a
background set of human faces, we use the Riemannian mean function to com-
pute a Universal Background Gabor Region Covariance Matrices (UBGRCM).
These matrices are used later on, in the classification stage to estimate the sim-
ilarity between the GRCM extracted from the query and the target images.
Furthermore, we have studied the effect of the normalization methods on the
resulting scores. The experimental results on two challenging databases (Banca
and SCface) showed the efficiency of our proposed method compared to many
state-of-the-art methods.

The reminder of this paper is organized as follows. In Section 2, we
describe the Gabor wavelet transformation. In Section 3 and Section 4, we
present the GRCMs and our proposed approach, respectively. Section 5 presents
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the experimental setup whereas Section 6 discusses the obtained results. Finally,
Section ?? concludes this paper.

2 Gabor Based Face Representation

Since the discovery of crystalline organization of the primary visual cortex in
mammalian brains by Hubel and Wiesel [11], an enormous amount of research
has been concentrated in understanding this area and the proprieties of its cells.
As these research works found that the simple cells in human visual cortex are
selectively tuned to orientation as well as spatial frequency, Daugman proposed
in [5] to approximate the response of these cells by the Gabor function:

ϕu,v(z) =
‖Ku,v‖

σ2
e(−‖Ku,v‖2‖z‖2/2σ2)[e(izku,v) − e−σ2/2] (1)

Where z = (x, y) is the pixel coordinate, ‖.‖ denotes the norm operator, σ is
the standard deviation of a Gaussian envelope and Ku,v is a wave vector defined
by:

Ku,v = Kveiφu (2)

Where, Kv = kmax/fv and φu = πu
8 . kmax is the maximum frequency and fv

is the spacing factor. v and u represent respectively the scale and the orientation
of the wave vector. This Gabor function is similar to enhancing the edge contours
as well as the valleys and the ridge contours of an image. In the case of face
images, this corresponds to enhancing eyes, mouth and nose which are the main
discriminating points in human faces.

Some previous works [14] [25] showed that the use of the Gabor kernels
computed in 5 scales (v ∈ {0 . . . 4}) and 8 orientations (u ∈ {0 . . . 7}) with
kmax = π/2, fv =

√
2

v
and σ = 2π give a good representation for the face

images. The real parts of these kernels are presented in Figure 1.

Fig. 1. The real parts of the Gabor Kernels computed in 5 scales and 8 orientations
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Finally, The Gabor representation of a face image I can be obtained by
convolving this image with the Gabor filters as follows:

Gu,v(z) = |I(z) ∗ ϕu,v(z)| (3)

Where z = (x, y), ∗ denote the convolution operator and |.| is the magnitude
operator.

3 Gabor Region Covariance Matrices

Let I be a face image and let Gu,v{u = 0...7, v = 0...4} its 2-D Gabor trans-
formation. Each pixel pi of the original image I will be represented by a row
pixel:

wi = [x, y,G0,0(x, y), G1,0(x, y), ..., G7,4(x, y)]

Where x and y are the location of the pixel pi.
The Covariance Matrix of a region R (Figure 2) is a matrix CR with diagonal

entries correspond to the variance of the features and the non-diagonal entries
correspond to their correlation.

CR =
1

n − 1

n∑

i=1

(wi − μR)(wi − μR)t (4)

In equation 4, n represents the number of the row pixels inside the region R
and μR is their corresponding mean:

μR = 1/n
n∑

i=1

wi (5)

Although the variance of the coordinates x and y is the same for all the regions
of the same size, they are still important since their correlations with the other
features are used as the non-diagonal entries of the matrix. Therefore, the con-
structed GRCMs capture both spatial and statistical properties.

Fig. 2. Computation of the Gabor Region Covariance Matrices (GRCMs)
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In [22], the authors used the integral images of each feature and the multipli-
cation of any two features to compute the covariance matrix of any region with
only few access memory. For more detail about this technique reader is refered
to [22].

The main advantages of using the covariance matrices to represent the face
images are 1) The covariance matrices provide a natural way to fuse multiple
features without the need of any normalization methods. 2) They are basically
invariant to scaling and rotation of the images, as the order and the number of
the points are not represented by the covariance matrices. 3) They are robust to
global illumination changes, since the mean is subtracted during the covariance
computation.

4 Proposed Approach

In this work, we assume that the region covariance matrices representing the
face images contain two types of information: discriminating information spe-
cific to each user and common information shared between the human faces.
Thus, to enhance the discrimination of the GRCMs method it is worth to reduce
the effect of the common information. Inspired by the use of the Universal Back-
ground Model (UBM) in Gaussian Mixtures Model-Universal Background Model
(GMM-UBM) speaker verification framework [18], we propose to model the com-
mon information by a Universal Background Gabor Region Covariance Matrices
(UBGRCMs), and use these matrices in the scoring stage to estimate the similar-
ity between the test and the enrollment GRCMs. The UBGRCMs are the mean
of the GRCMs extracted from a background set of human faces (Figure 3). As
the covariance matrices are symmetric definite positive and lie in the Riemannian
manifold, the Riemannian mean is used instead of the Euclidean mean.

4.1 Riemannian Mean

Let {C1, C2, ........, CP } a set of P covariance matrices. The Riemannian mean
[16] of these matrices is the matrix C which minimizes the sum of the squared
distances.

C = argmin
C

P∑

i=1

ρ2(Ci, C) (6)

Where ρ(Ci, C) is the distance between the two covariance matrices C and
Ci (see Section 4.2). As C is defined through a minimization procedure, we
approximate it by the intrinsic Newton gradient descent method. In the following
(Algorithm 1), we describe the algorithm computing the mean Riemannian of a
P covariance matrices.

In this algorithm, ln(M) and exp(M) were computed as:

ln(M) = Uln(D)U t

exp(M) = Uexp(D)U t
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Algorithm 1. Computation of the mean Riemannian covariance matrix
Data: Covariance Matrices {C1, C2, ........, CP }
Result: Mean Covariance Matrix C
C= Ct (t ∈ {1..P});
nb iterations=5;
it=1;
while it<=nb iterations do

M=zeros(size(C));
for i=1:P do

M = M + C1/2ln(C−1/2CiC
−1/2)C1/2

M=M/P;
C = C1/2exp(C−1/2MC−1/2)C1/2;
it=it+1;

Where U is an orthogonal matrix and D is the diagonal matrix of the eigen-
values (M = UDU t).
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Fig. 3. Computation of the Universal Background Gabor Region Covariance Matrices
(UBGRCMs)

4.2 Distance Measure

To compare two covariance matrices (C1 and C2), the eigenvalue based distance
[7] is adopted. This distance is calculated as follows:

ρ(C1, C2) =

√√√√
n∑

i=1

ln2λi(C1, C2) (8)
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Where {λi(C1, C2)}i=1...n are the generalized eigenvalues of the two covari-
ance matrices C1 and C2.

Now, let X = {C1
x, C2

x, .....CN
x }, Y = {C1

y , C2
y , .....CN

y }, U = {C1
u, C2

u, .....CN
u }

be three sets of GRCMs corresponding respectively to the reference image r, the
test image t and the UBGRCMs of a background set images u.

In the first step, the similarity (D1) between the test and the reference Gabor
region covariance matrices is computed as follows:

D1(Y,X) =
N∑

i=1

ρ(Ci
y, Ci

x) (9)

In the second step and in order to reduce the effect of the common informa-
tion, the similarity between the test and the reference GRCM (D2) is computed
using the Log-Likelihood Ratio test.

D2(Y,X,U) = log(p(Y |X)) − log(p(Y |U)) (10)

As the similarity between two sets of GRCM (X1 and X2) is given by the
Eigen-value based distance (equation 9), we use the following approximation to
transform this distance into probability:

p(X1|X2) = exp(−αD1(X1,X2)) (11)

Where α is a positive constant. By substituting (11) into (10) we obtain:

D2(Y,X,U) = log(exp(−αD1(Y,X))) − log(exp(−αD1(Y,U)))
= −α(D1(Y,X) − D1(Y,U))

(12)

Because α is a positive constant, we consider only the difference between the
two distances D1(Y,X) and D1(Y,U) as a final score. Figure 4 illustrates the
computation of the two similarity measures D1 and D2.

5 Experimental Data and Setup

We tested our approach on two benchmark databases: Banca [2] and SCface [8].
Following, we describe these databases and their corresponding parameters.

SCface database: The Surveillance Cameras face database (SCface) [8] is a very
challenging database. It was acquired in a real-life scenario using commercially
surveillance equipments. In the DayTime authentication protocol used in this
study, the clients of the database were divided according to their ID numbers
into three subsets. The clients with ID numbers between 1-43 were used to
construct the training subset, used to learn the background parameters such
as the background models and the subspace matrices. In our work, we use the
high quality migshot images of this subset to compute the UBGRCMs. The
development and the test subsets are constructed respectively by the clients
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Fig. 4. Computation of the two distances D1 and D2

with ID numbers between 44-87 and 88-130. In both these subsets, the mugshot
images were used to construct the clients models, while the test images were
taken from 5 surveillance cameras at 3 different distances: close (1 m), medium
(2.60 m) and far (4.20 m). Because of the low quality of the SCface images, the
face images were cropped with dimension of 112×96 and histogram equalization
is applied to each cropped image. Finally, the GRCMs were computed from
16 × 16 pixels regions with 8 pixels step.

BANCA database: The multi-modal BANCA database [2] contains video
recordings of 52 subjects (26 male and 26 female). These recordings were cap-
tured over 12 different sessions spanning on three months. Sessions 1-4 con-
tain recordings under controlled scenario, while sessions 5-8 and 9-12 contain
degraded and adverse scenarios, respectively. Five pre-selected still face images
were taken from each video. The 52 subjects were divided into 2 equal groups:
G1 and G2 (13 male and 13 female each) which represent respectively the devel-
opment and the evaluation sets.

From the 7 authentication protocols proposed for BANCA database, our
experiments were done only on the pooled (P) protocol as it is the most chal-
lenging protocol. In this protocol, the client models of the two groups were cre-
ated using only 5 images from the controlled scenario, while the test images were
taken from the three scenarios (controlled, degraded and adverse). The GRCMs
are computed from 8 × 8 pixel regions with 4 pixels step. Before computing the
GRCM, the Banca face images were cropped and resized to 88 × 68 and Tan &
Triggs pre-processing was applied on each image. The GRCMs extracted from
the background set images are used to compute the UBGRCM.

In both Banca and SCface databases, the scores generated on the develop-
ment set were used to compute the Equal Error Rate (EER) which represent
the point where the False Acceptance Rate (FAR) and the False Rejection Rate
(FRR) are equal. The threshold θ corresponding to this point was then applied
to the evaluation scores to obtain the Half Total Error Rate (HTER), which is
the mean of the FAR and FRR at that threshold.
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Table 1. The performance of the GRCM method on BANCA and SCface databases

BANCA SCface
Method EER% HTER% EER% HTER%

GRCM +D1 18.8 19.8 31.3 34.7
GRCM +D2 9.1 10.7 16.9 19.8

GRCM +D2+ Z-NORM 9.8 8.9 15.0 16.2
GRCM +D2+ T-NORM 6.2 9.3 16.5 24.6
GRCM +D2+ ZT-NORM 6.2 6.0 13.6 15.7

Table 2. Comparison of the proposed approach with state-of-the-art methods on Banca
and SCface databases

BANCA SCface
Method EER% HTER% EER% HTER%

MRH [19] 14.3 13.8 42.6 42.5
GMM [23] 11.9 12.8 30.3 29.8

LBP 15.2 15.4 41.1 42.8
LGBPHS [9] 13.2 16.1 - -

Gabor Graphs [9] 11.7 12.4 - -
GRCM +D2 9.1 10.7 16.9 19.8

MRH+ZT-Norm [19] 9.3 8.4 28.3 30.3
GMM+ZT-Norm [23] 8.3 7.0 23.3 22.7

LBP+ZT-Norm 6.7 5.0 17.4 19.0
GRCM +D2+ZT-Norm 6.2 6.0 13.6 15.7

In this work, we have also studied the effect of the score normalization tech-
niques on the performance of our system. Three normalization methods [1] have
been tested: Zero-Normalization (Z-Norm), Test-Normalization (T-Norm) and
ZT-Norm which is a combination of the two previous methods. The Z-Norm
method aims to characterize the response of each client model to a variety of
(impostor) test images, while the T-Norm is used to compensate the variations of
the testing image. As in both Banca and SCface databases the development and
the evaluation sets are independent, the normalization statistics of the develop-
ment set were estimated using the evaluation set data and vice versa.

6 Results and Discussion

In this section, we report the performance of the proposed approach on the afore-
mentioned databases. First, a comparison between the performance of the two
decision rules (D1 and D2) is presented. From Table 1, we can clearly see that the
D2 method provides performance improvement for both databases compared to
the D1 method. Specifically, the HTER is reduced with 42.93% and 45.95 % on
Banca and SCface databases, respectively.
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To further improve these performances, we applied normalization on the
obtained scores. Although these methods were proposed for speaker recognition,
their application to the face modality showed significant performance improve-
ments [23]. The results also show that the ZT-Norm method improves the perfor-
mance with 20,70% and 43,92%, on SCface and Banca databases, respectively.

Tables 2 compares the performance of the proposed method against some
state-of-the-art face verification methods. From this table, we can observe that
without the ZT-Norm normalization our proposed approach outperforms the
Local Binary Pattern (LBP), the Multi-Region probabilistic Histograms (MRH)
and the Gaussian Mixture models (GMM) methods on both Banca and SCface
databases. Our method gives better results than the Local Gabor Binary Pat-
tern Histogram Sequence (LGBPHS) and the Gabor graph methods on Banca
database. With the ZT-Norm normalization, our approach still gives the best
performance compared to LBP, GMM and MRH methods, except on the devel-
opment set of Banca database where the LBP method outperforms our approach.

7 Conclusion

In this work, we investigated the use of the Gabor Region Covariance Matrices
(GRCMs) in the face verification problem. First, we represented the face images
with W × H × d dimensional feature matrices which are divided into many
overlapping regions. For each region, we computed a d × d covariance matrix.
The direct use of the eigenvalue-based distance between the covariance matrices
extracted from the test and the enrollment images did not yield in reliable per-
formances. To overcome these limitations, we proposed a new decision rule using
UBGRCMs computed from a background set of human faces. The UBGRCMs
theoretically represent the common information of different human faces which
should be ignored when comparing two faces. The conducted experiments showed
that the proposed decision rule improved the performance of our system on two
challenging databases: Banca and SCface. In addition, we have further improved
the obtained results by applying different scores normalization methods. Finally,
a comparison with some state-of-the-art methods showed the efficiency of our
proposed method.
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