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Abstract. We propose a method for weakly supervised segmentation
of natural images, which may contain both textured or non-textured
regions. Our texture representation is based on a dictionary of image
patches. To divide an image into separated regions with similar texture
we use an implicit level sets representation of the curve, which makes
our method topologically adaptive. In addition, we suggest a multi-label
version of the method. Finally, we improve upon a similar texture rep-
resentation, by formulating the computation of a texture probability in
terms of a matrix multiplication. This results in an efficient implemen-
tation of our segmentation method. We experimentally validated our
approach on a number of natural as well as composed images.

1 Introduction

Typically, image segmentation is based on obtaining regions with boundaries
in between. This involves modeling of both the image data and the segment
boundaries. Approaches ensuring boundary smoothness include modeling the
connection between image elements using e.g. Markov random fields [18] which
has been efficiently solved using st-cut [1,27]. Modeling the boundary using an
explicitly represented deformable curve is another approach that originates from
the snakes model [17].

Deformable curves may also be represented using level sets [5], with a number
of methods suggesting to use a global information obtained from the curve to
guide the segmentation, e.g. Chan and Vese [8] and Yezzi Jr et al. [34]. These
methods do not rely on a well defined intensity gradient between regions, but
still assume that regions are distinguished by their grey level.

In some cases, however, the average gray level is similar between regions
and only textures differ. Textures must therefore be handled differently than
intensity and color. The typical approach is to use a texture characterization,
mapping the image to a texture descriptor space for segmentation in a similar
manner to the intensity method. Here the assumption is that descriptors within
textures are similar while they differ between textures.

Such an approach was suggested by Chan and Vese [8] using texture orien-
tation, which has been extended in e.g. Rousson et al. [28] using the structure
tensor. Here they estimate the probability of different regions based on estimates
of the joint probability of the elements of the structure tensor to evolve the level
© Springer International Publishing Switzerland 2015

R.R. Paulsen and K.S. Pedersen (Eds.): SCIA 2015, LNCS 9127, pp. 26-37, 2015.
DOI: 10.1007/978-3-319-19665-7_3



Dictionary Based Image Segmentation 27

set. The structure tensor is, however, estimated at a certain scale and in images
with textures at different scale the segmentation might fail. To overcome this
problem a local texture scale estimate based on total variation was proposed
[3,4], where the scale estimate is used for obtaining an improved structure ten-
sor characterization and hereby an improved segmentation. In Brox et al. [2] they
use diffusion based on the structure tensor to obtain improved segmentation.

Many other texture descriptors characterizing the local image structure that
allow for discriminating between textures have been suggested. These include
local fractal features [32], gradient histograms [11,29], local binary patterns [25],
textons [22], and more. Often images contain texture on different scale that can
be deformed or rotated versions of the same texture. Typically, this is handled
in by designing descriptors invariant to such properties.

A related approach for image segmentation is based on sparse dictionaries
of image patches [12,19]. Coding the image using sparse dictionaries has shown
impressive results for image processing problems like denoising or inpainting.
The idea for segmentation is to utilize the strong reconstructive properties of
sparse coding by building a dictionary for each texture class. High segmentation
performance is obtained by utilizing that the texture class used for learning
the dictionary can be reconstructed well whereas other texture classes cannot.
Methods focusing on optimal reconstruction have been suggested [26,30], and
improved performance has been obtained by also optimizing for discrimination
[20,21]. Recently Gao et al. [13] suggested to use sparse dictionaries together with
an active contour for segmentation. The algorithm learns the sparse dictionaries
from rough user input in the image that must be segmented, and they show
accurate segmentations of natural images.

Our texture representation is based on a dictionary of image patches similar
to our earlier work [9], where the dictionary is obtained from the image that
we want to segment. This approach does not assume any characteristics of the
texture, instead we consider texture being information obtained from the image
at a given scale. In this broad sense, a texture may also be intensity or color.
As such, this dictionary based texture representation is different and in some
ways simpler than both texture descriptors and sparse coding. The method [9]
uses snakes to divide an image into a object and background. In contrast, in
this work we evolve a curve using a level sets representation. By doing so, we
obtain topological adaptivity, where disjoint regions with similar texture can be
segmented to have the same label. In addition, our novel method can segment an
image into an arbitrary number of textures, instead of the two in the formulation
from [9]. Finally, we provide an improved texture encoding based on matrix
multiplication, resulting in a efficient implementation of the method.

2 Method

Our algorithm is strongly motivated by a region based segmentation method,
called active contours without edges, which was originally proposed by Chan and
Vese [6] (see also [34] for a related approach) and has led to a number of exten-
sions [7,33] and various numerical implementations [14,16,31]. Our segmentation
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uses the same fundamental principle but we utilize a dictionary-based texture
representation. In the description of our method, we will briefly go through the
basic elements of active contours without edges in order to clarify the connection
to our model. When explaining our texture representation, we start by consid-
ering two labels and then generalize to a multi-label segmentation.

Region Based Curve evolution. Early deformable models [5,17,23] are based on
finding edges in the image, which provides only local support and is unsuitable
for noisy or textured images. Region based approaches [6,8], on the other hand,
utilize the global information obtained from the curve to guide the segmentation.

For example, consider an image I : 2 C R? — R containing an object and a
background characterized by two different intensities. A curve initialized in the
image, and represented by a zero level set of a function ¢ : 2 — R, leads to
labeling of pixels as either inside or outside. The mean label intensities m;, and
Meus are calculated given this labeling, and here we assume that inside contains
more of the object, while outside contains more of the background. Now the
curve is evolved to segment the image. The curve shrinks where pixel intensities
are close to Moy, while the curve expands where pixel intensities are close to mjy,.
The value (miy + Moyt )/2 defines a threshold between shrinking and expanding.
This two-step proces is repeated. As the curve evolves, mean label intensities are
recalculated to more accurately discriminate the intensities of the object and the
background, and the curve eventually segments out the object.

Such an evolution of a zero level set is given by
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where Kk = V- ( %) is a curvature of the level set curve and the term weighted

with b is minimizing the length of the curve. To extend the evolution to all level
sets, and depending on the implementation of the level sets, a regularization of
the delta function d.(¢), may be replaced with |Vé|, or left out [14].

Texture Dictionary. The central part of our method is a dictionary based tex-
ture representation, with overlapping image patches being assigned to dictio-
nary elements just as in [9,10]. In this section we will show how this dictionary
assignment defines a transformation from an arbitrary labeling of the image
into a related probability image. If parts of the image are labeled as inside or
outside this transformation will result in pixel-wise probability of belonging to
inside or outside. The probabilities are computed based on the textures present
in the two labels. Having a probability image, we can evolve the curve so that
it shrinks where probability for inside is smaller and expands where probability
for inside is larger. Just as with region based image segmentation, we can iterate
this two-step process, by recomputing probabilities and evolving the curve.

To construct the dictionary we extract a certain number of M x M patches
from an image, collect pixel intensities in patch-vectors of length m = M?, and
cluster the patches in n clusters using the k-means algorithm with Euclidian
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distance. It is the cluster centers that define our dictionary. Figure 1 shows a
small image and a small dictionary computed from the image. In this case, the
first dictionary element represents the background, elements 2-8 represent the
textured object, while elements 9-16 represent transitions from the object to
the background. In general, to make sure that the nature of the textures present
in an image is captured by the dictionary, we need a large number, typically a
few hundred, of dictionary elements, which results in a significant redundancy.
Having a texture dictionary we can assign overlapping image patches to the
closest dictionary element, again using Euclidian distance. This assignment, also
shown in Figure 1 is crucial for our method, because it defines a binary relation
between image pixels and dictionary pixels.

Notice the following important property of this construction. Each image
patch is assigned to a single dictionary element, but since image patches are
overlapping, every image pixel relates to m = M? dictionary pixels. (Image pixels
in a margin of width M — 1 relate to less than m dictionary pixels.) In other
words, an assignment of a certain image patch to a certain dictionary element
makes m pixels from the image patch relate to m pixels from the dictionary
element. This binary relation between image pixels and dictionary pixels may be
represented using a sparse binary matrix B with |{2| rows and nm columns, where
|£2] is a total number of image pixels and nm is a total number of dictionary
pixels. Note that the matrix B captures the texture information of the image by
simultaneously encoding two things: a dictionary assignment of each image patch
and a spatial relationship between the patches. Notice also that for calculating
the matrix B we only need an assignment image.

In case of having an RGB image as an input, we would collect intensities from
all three color channels when constructing the dictionary. Once the assignment
of image patches to dictionary elements is completed, all computations are the
same for any number of color channels.

Label to Probability Transformation. Having an assignment image (i.e. being
able to calculate B) we can define the transformation from a label image to a
probability image. A label image is an arbitrary partitioning of {2 in discrete
labels, see Figure 1. In case of inside or outside segmentation, it is sufficient to
consider only one label, e.g. inside. For this one label, a label image is a binary
map Li, : 2 — {0,1}. Each patch from an image I has a corresponding (i.e.
extracted from the same position in the image space) label patch from Lj,. In
turn, each dictionary element has a number of image patches assigned to it.
This allows us to compute labels of dictionary elements. A label of a dictionary
element is computed as a pixel-wise average of the label patches corresponding
to image patches that are assigned to the dictionary element in question. Due
to averaging, dictionary labels are no longer binary. Figure 1 shows how dic-
tionary labels capture the texture information, e.g. the labels of the dictionary
elements representing the transition from the texture to the background show
this transition.

Dictionary labels can be computed efficiently by arranging the pixels of the
label image in a binary vector l;;; and multiplying with B which is normalized
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Fig. 1. Elements of the dictionary based texture representation. For a better illustra-
tion, both the image and the dictionary are small. Top left: input image. Top middle:
dictionary consisting of 16 dictionary elements, ordered in rows. Top right: assignment
of the image patches to the dictionary elements, shown as a color of the central patch
pixel. The colorbar (far right) runs from darkest blue color representing 0 to red repre-
senting 16. Bottom left: An initial labeling of the image. Bottom middle: A dictionary
labeling shown in the same order as dictionary elements. Bottom right: A probability
image. The colorbar (far right) for the dictionary labeling and the probability image
runs from 0 to 1.

so that all its rows sum to 1. The resulting vector
di, = diag(B1) 'Bl;, (2)

contains a pixel-wise frequency of dictionary elements belonging to inside. Here,
1 is a column vector of ones. To obtain dictionary labels, elements of d;;, need
to be re-arranged according to the size of the dictionary.

Labels d;, and doyy = 1 — d;, are biased due to the ratio of the area inside
[£2in] and area outside |2out| = |£2] — |£2in]. For example, had the initial labeling
covered just a small part of the textured object, the frequency of inside label
would be small also for the dictionary elements representing texture. To alleviate
this we define a pixel-wise normalization function

7 1 din din dout
in = ) = + ) 3
Z |~Qin‘ |~Qin| |-Qout| ( )

which operates on each element of dj,.

The next transformation involves computing pixel-wise image probabilities
from the dictionary labels. This is again performed by averaging. Each dictionary
label is placed in the image space at the positions of image patches that are
assigned to the dictionary element in question. Due to the patch overlap, up to
m values need to be averaged to compute a pixel probability.
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The efficient computation is performed by multiplying
pin = diag(BT1)7'BT dy,, . (4)

Rearranging elements of p;, into an image grid results in the probability image
Py, : 2 — [0,1]. Note that P, is different from L;,, because image patches from
both inside and outside may be assigned to the same dictionary element. The
binary values from L;, will therefore diffuse according to the texture information
encoded in B. We will utilize this diffusion to drive the curve evolution.

Our way of obtaining a probability image is closely related to the method
described in [9]. However, our approach is more efficient. In [9] a sequences
of patch averaging is performed every time a probability image needs to be
computed. Here we notice that the relation between dictionary and image is
unchanged, and that computing probability image includes two linear transfor-
mations. This allows us to precompute the matrix B, significantly speeding up
the computation of a probability image. Note that B is a binary and sparse
matrix, so storing this large matrix may be done space efficiently.

Multiple Labels. To handle multiple labels, and not just inside or outside, we
create a layered label image with layers L to Lk . Each layer is a binary indicator
of a label, and layers sum to one in each pixel. The transformation (2) is applied
to each layer, resulting in dictionary labels d; to dx. Area normalization is now
performed pixel-wise for all layers

K
~ ~ 1 di  ds di dp,
(dl,dg,...,dK):<,,...,>, A L (5)
Z [l [ [ox] 2 o]

After area normalization the transformation (4) is applied to each ak, resulting
in K probability images, P; to Pk, which sum to one in each pixel, but are no
longer binary.

Curve Evolution. We can now define a curve evolution for texture segmentation.
Again we initially consider segmentation into inside and outside. A closed curve
represented as a zero level set of a function ¢ : {2 — R defines a label image Lj,
which attains value one where ¢ is negative and zero otherwise. The label image
is transformed into probability image P, as described above. Curve points at
locations with large P, should move outwards, curve points with large Py, =
1 — P, should move inwards, and the curve should converge in a band where
P, = P,u. To obtain the desired behaviour we define a curve evolution as

o9 1
a - 5 _Rn +b/‘i‘v¢|a (6)

with a curve length minimization term as in (1). Notice that 0.5—P;, = 0.5(Pout—
Pa).

To segment multiple labels we represent each of the K labels with a single
level set function ¢, &k = 1,..., K. Using such an approach a care has to be
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taken to avoid vacuum and overlap [35]. Indeed, if we generalized to multiple
labels by evolving each level set ¢ using (6) and a corresponding probability
image Py, a vacuum would occur. This is because probabilities sum to one in
each pixels, and situation might occur where none of the label probabilities Py
are larger than 0.5 in some places, leading to all level set curves shrinking, and
causing vacuum. Therefore we perform a following pixel-wise transformation of
probabilities for all labels

(P1, P2 PK) = P P2 PK (7)
’ IR - 3 geeey .
P+ r;l;f(p]) P2 + rygg(pj) PK + g,rﬁc(pj)

Basically, we normalize the probability p; not by using the sum of all p;,j =
1,..., K, but only considering the most probable of other labels. Resulting prob-
abilities (p1, Do, ..., i) have the property that the two largest values sum to 1,
therefore avoiding vacuum (as at least one value is larger or equal to 0.5) and
avoiding overlap (as only one value may be larger than 0.5). Notice also that the
transformation defined by (7) reduces to an identity for K = 2.
The resulting level set evolution for a multi-label segmentation is
0Py, 1

Yk _ - _p =1,... K.
0t 9 k)+b"{|v¢k|a k ’ ) (8)

Our relative probabilities P, do not guarantee elimination of vacuum and over-

lap. However, based on experiments we concluded that the level set curves align
well.

Algorithm. Our deformable model for the dictionary based image segmentation
is initialized with an image I, an initial curve ¢° (or, in the case of multiple labels
curves ¢2, but we will from now leave out the subscript k) and a few parameters
defining the dictionary: patch size m, dictionary size n and normalization flag.
Normalization flag indicates whether the image patches have been normalized to
unit length. In a preprocessing step, the dictionary is constructed, overlapping
image patches are assigned to the dictionary patches, and a sparse binary matrix
B is constructed.

After preprocessing, a curve is iteratively evolved. In each evolution step a
(multi-layered) label image L is obtained by thresholding ¢. The label image is
transformed to a dictionary labels using (2), area normalization is performed as
in (5), and result is transformed back to the image using (4). In the case of a
multi-label segmentation the resulting probability images are transformed using
(7). Finally, the curve is updated by (6) or (8) in a multi-label case, withe

o¢
L= ot 4 At—— 9
¢ o'+ Ato 9)
until convergence. This leaves us with the resulting segmentation (/B and the
resulting probability images P.
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Fig. 2. Three leopard, star fish, and fish images. For each image we show the initial-
ization at the top row and segmentation result at the bottom. Left — the proposed
method. Middle — dictionary snakes [9]. Right — sparse texture active contours [13].
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Fig. 3. Zebras and lions images. For each image we show the initialization at the top
row and segmentation result at the bottom. Left — the proposed method. Middle —
dictionary snakes [9]. Right — sparse texture active contours [13].

Fig. 4. Two composite and two natural images with three-label and four-label segmen-
tation. For each image we show the initialization to the left and the segmentation to
the right. One label (the background) is not shown by the curve, as it is the region not
covered by other labels.
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Implementation Details. Without the term minimizing the curve length, our iter-
ative algorithm converges very fast, since the large time steps can be taken. On
the other hand, the regularization by the length of the curve imposes a stringent
time step restriction. This issue is addressed in [14-16] where fast approximations
are obtained by replacing or supplementing the curve evolution with smoothing.
Our current implementation is therefor as follows. When evolving the curve using
a forward Euler step we use a large time step, ignoring the stability restrictions.
This might introduce numerical errors, which we damp by smoothing the level
set function with a Gaussian kernel.

3 Results

To demonstrate the strengths of our algorithm, we show results on the images
from the Berkley segmentation dataset [24], such that we can make a direct com-
parison with related scientific work. We use the same parameters for all results
shown in this section. Our dictionary is build from clustering 20000 randomly
sampled image patches of size 3 x 3 pixels into 1000 clusters. The parameter b
from (6) is set to 1.5 and the smoothing is performed by a Gaussian kernel with
a standard deviation of 1.5.

Figures 2 and 3 show our inside-outside segmentation results compared to
a number of images presented in [9] and [13]. The advantages of our method
compared to [9] are topological adaptivity and a higher accuracy due to easier
curve regularization. Compared to [13], our method accepts a much simpler ini-
tialization than the elaborated marking of both the object and the background.

Neither [9] or [13] support multiple labels, so for a multi-label case we bring
only our results in Figure 4.

4 Discussion and Conclusion

Our texture representation with image patches clustered in a relatively large
number of clusters might seem redundant. Indeed, some dictionary elements
might be very similar. Therefore, a small variation in an image patch may result
in a change in an assignment. This is, however, not an issue as long as similar
dictionary elements have similar labels.

The experiments show a good discriminative properties of our texture repre-
sentation, especially when we consider the simplicity and the general nature of
the approach. Likewise, our segmentation results are encouraging compared to
related work, especially considering the limited user input for initialization.
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