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Abstract. In this paper we direct our attention to the problem of dis-
cretization effects in intensity transformations of images. We propose to
use the Wasserstein metric (also known as the Earth mover distance)
to bootstrap the transformation process. The Wasserstein metric gives a
mapping between gray levels that we use to direct our image mapping.
In order to spatially regularize the image mapping we apply anisotropic
filtering and use this to steer our mapping. We describe a general frame-
work for intensity transformation, and investigate the application of our
method on a number of special problems, namely histogram equalization,
color transfer and bit depth expansion. We have tested our algorithms
on real images, and we show that we get state-of-the-art results.
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1 Introduction

Image intensity transformations are used in many applications. When we need to
change the color space in some way we can do this by applying a transformation
function from input colors to output colors. One problem that has to be handled
is the discrete nature of the signal. As an example consider the classic problem
of histogram equalization. This process is used to increase the contrast, in an
optimal way. This is achieved by applying a gray level transformation such that
when it is applied to the input image, the output image will get a completely flat
gray level distribution. This can be done exactly if we work with continuous gray
levels, but for a real image we will get discretization effects, which is illustrated
in Figure 1. To the left a dark input image is shown, with its corresponding gray
level distribution underneath. If we apply standard histogram equalization on
the image, we get the middle image, with its corresponding gray level distribu-
tion below. One can see that the overall distribution is more spread out, but it
is by no means flat. This is due to the discrete intensity gray values of the input
image. We will in this paper show how we can enforce a special output gray value
distribution using the so-called Wasserstein metric (or Vasershtein). To the right
in Figure 1 one can see the result of applying our proposed method in the case of
histogram equalization. Notice that we get less discretization effects in the image
and that the corresponding output gray value distribution is completely flat.

© Springer International Publishing Switzerland 2015
R.R. Paulsen and K.S. Pedersen (Eds.): SCIA 2015, LNCS 9127, pp. 275-286, 2015.
DOI: 10.1007/978-3-319-19665-7_23



276 M. Oskarsson

Fig. 1. Top row shows images, and bottom row shows the corresponding intensity
distributions. To the left is a dark input image. The middle shows the result of standard
histogram equalization. Due to the quantization of the input image, the distribution
of the equalized won’t be flat, and there will be gray levels that are not used. To the
right is the result of applying our Wasserstein regularization using algorithm 1. The
resulting distribution is flat, and we make use of all gray-level intensities. One can see
that we get less discretization effects in the image, see e.g. the coat.

Histogram equalization is one example where one would like to enforce a special
type of intensity value distribution, but there are numerous other applications,
within e.g. HDR imaging [3] and within Chromatic adaptation and Color con-
stancy [1,10]. We will in Section 5 give qualitative results on using our method for
histogram equalization and for color transfer between images. For other methods
on color transfer see e.g. [9].We will also in more detail study how we can use
our proposed method for bit depth increase. For most of today’s digital devices
for capture and display of image data the bit depth varies, from e.g. 6 to 10
bits per color channel, due to technical limitations. When transferring image
data between different modalities the need for changes in bit depth is apparent.
Decreasing the bit depth is in many cases quite straightforward, but increasing
it involves some form of interpolation. This problem is in general not well posed,
and we need to regularize it in some way. One often assumes conditions on spa-
tially nearby pixels, that they vary smoothly or piece-wise smoothly. There has
been a number of previous work done in the area of bit depth increase. Let’s
assume a p-bit input image, I;,, with gray values in the range [0,2? — 1] and a
g-bit output image, I, with range [0,2% — 1]. We further assume that p < gq.
A basic idea is to just zero pad the input image, or in some other way spread
out the dynamic range linearly so that I,.:(z,y) = Lin(x,y) - 297P. Variations
of these methods include multiplication with an ideal gain and then round to
nearest integer in the output range, or making a non-linear transformation, e.g.
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using gamma expansion. See [12] for details on these methods. Such methods
all construct a one to one mapping that is based solely on the gray level at a
given pixel, that for most problems leads to contouring artifacts along smooth
gradients. To overcome such shortcomings some form of spatial filtering can be
applied. We will in the experimental section compare our method to those of
[14] (based on flooding) and [7] (based on minimum risk).

2 Problem Formulation and Motivation

We will in this section describe the general problem that we address in this paper.
Assume that we have an input (gray value) image I;,(z,y) with (z,y) € D C R?,
whose intensity values we would like to transform in some way. One way is to
apply a function f : R — R so that I, (x,y) = f(Lin(x,y)). As described in the
introduction, this often introduces discretization effects due to the discrete values
of I;,. In order to remove these effects one might apply some form of spatial
regularization so that f is not only a function of the intensity value but also of
the position in the image, i.e. f: D X R — R and L (x,y) = f(z,y, Lin(x,y)).
Often this function f is not explicitly given, instead the spatial regularization is
done using some form of filtering. We will now look at the specific case where we
have a priori information about the gray value distribution of the output image.
We will look at the following problem.

Problem 1. Given an input image I;;,, and an output intensity distribution %, (t)
find an output image I,,+ with gray value distribution equal to hy,:(t) and such
that |[L;n — Tout|| is small.

This is a quite general formulation and we will see in Section 5 that many differ-
ent problems can be cast in this way. We will in this paper decribe a constructive
non-iterative method that solves problem 1. We will use the Wasserstein metric
to find a function that prescribes how we transfer the gray values in an optimal
way in order to get a specific output intensity distribution. We will then use
non-linear anisotropic smoothing of the input image to find the closest output
image.

The paper is organized as follows. In Section 3 we present the Wasserstein
metric and its application to our problem. In Section 4 we describe the basic
outline of our method. The method applied to histogram equalization, color
transfer and bit depth expansion is described in Section 5. Using our general
method, we show results comparable to state-of-the-art methods.

Our method could be incorporated as a step in many existing image pro-
cessing applications where one wants to avoid discretization effects. Our aim
in this paper is not to present a novel method — for say bit depth expansion
— but rather show that using a novel combination of standard components —
not specifically tuned to a special application — we can achieve results that are
very much comparable to state-of-the-art methods. One of the major strengths
that we see with our proposed method is the hard regularization effect we get
from using the Wasserstein metric. In many cases one could get good results



278 M. Oskarsson

by applying spatial regularization using anisotropic smoothing, but without the
Wasserstein regularization, problems with parameter choices and over-smoothing
become apparent.

3 The Wasserstein Metric

We will in this section describe how we use the Wasserstein metric. The general
metric was introduced in [13] and the name was coined in [4]. In computer
science it is known as the Earth mover’s distance (EMD). Informally the metric
measures the minimum work of transforming one distribution into another.

We will start by defining the metric. It can be defined on an arbitrary metric
space for which every probability measure is a Radon measure, but we will use
it in a more simple form. We use the metric space R with the normal Euclidean
distance. Let P(R) denote the collection of all probability measures p on R with
finite second moment: for some sy in R,

/]R(s — 50)3 dpu(s) < +oo0. (1)

Then the second Wasserstein distance between two probability measures p and
v in P(R) is defined as

1/2
woe) = (it [ s-aen) 2)
Yel(1v) JRxR
where I'(i1, v) denotes the collection of all measures on R x R with marginals u
and v on the first and second factors respectively. The function (s, t) describes
how this transformation is done. The minimizing y is called optimal transport.
Here we will use the Wasserstein metric between the gray value distributions
of two images. We will represent these distributions as discrete histograms. There
are efficient algorithms for calculating the Wasserstein distance between two dis-
crete distributions. We have used the fast method described in [8]. By estimating
the distance we also get the optimal transport -, which in this case is a matrix.
The number (s, t) tells how many pixels of gray value s in the input image that
should be transformed to gray value ¢ in the output image. As an illustration
consider again the example in Figure 1. We have calculated the Wasserstein met-
ric between the middle and the right histogram in Figure 1. Three rows of the
corresponding optimal transport v are shown in Figure 2. The estimated v gives
a number of constraints on the transformation that we apply on the input image.
These constraints are in general not enough to give a unique output image, i.e.
there are many output images that will yield the same output histogram. So we
will need to add some more constraints to regularize our solution. This could be
done in a number of ways, e.g. minimizing the difference between the input and
output image or minimizing the gradients of the output image to get a smooth
solution. This could of course also be application dependent, but one important
point is that we can in many cases easily use the Wasserstein metric to ensure
that the output image follows the desired gray value distribution. We will in the
next section describe our proposed method based on anisotropic filtering.
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Fig. 2. Three rows of the transformation matrix v between the middle histogram in
Figure 1 and the histogram to the right in Figure 1. The bars depict from left to right
~v(35,:), v(74,:) and (97, :). The sum of the bars equals the number of pixels with gray
levels 35,74 and 97 in the input image in Figure 1.

4 Enforcing the Wasserstein Metric

We are now ready to describe how we can enforce the Wasserstein metric exactly.
We will do this using a filtering approach, where we by smoothing the image steer
our transformation.

We assume that we have calculated the optimal transport «(s,¢) between
the input and output gray levels. We then take the input image and smooth it
anisotropically. You can use your favorite smoothing method; we will in Section 5
show results using three different smoothing methods, and the results are quite
similar. The important thing is that we smooth enough to eliminate the dis-
cretization effects but so that not too much of the true edges in the image are
lost. This means that some form of anisotropic filtering should be used. This will
give us a smoothed version I, of the input image I;,,. We can then for each pixel
calculate the signed distance between the input image and the smooth image:

AI(m,y)zlsm(:v,y)—fin(x,y), ($7y) €D. (3)

This gives a weighting for each pixel if it wants to decrease or increase its gray
level. By sorting these distances for a certain input gray value, we get a priority
list on the pixels of that color. We then use 7 to transform the gray values in
the order of this priority list. The method is summarized in algorithm 1.

Regarding color, we propose to use our method on each color channel sep-
arately. Since we specify the output distribution, the risk of color artifacts is
small.

One crucial part of algorithm 1 is the construction of the smoothed version
of the input image. This should be done by some form of edge preserving noise
filtering. In our experiments we have tried three well performing noise reduction
methods, namely Bilateral filtering [11], BM3D [2] and anisotropic filtering based
on the structure tensor [6]. The results vary slightly, with BM3D giving the best
PSNR values. However BM3D gives also in some cases some unwanted artifacts.
More details can be found in the experimental evaluation.
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Algorithm 1. Wasserstein regularized intensity transformation

1: Given I;, and a desired output intensity distribution houe(t).

2: Calculate the histogram hin(s) of Iin.

3: Estimate (s, t) from the Wasserstein metric between hin(s) and hout(t)

4: Estimate a smoothed version I, by anisotropically filtering I;, spatially.

5: Calculate the distance function Al(x,y) = Ism(z,y) — Lin(z,y) (z,y) € D.

6: for each gray level s do

7 Sort the pixels with I;, = s according to Al to get a priority list.

8: Redistribute these pixels according to (s, :) in the order of the priority list into
the output image Ioue.

9: end for

5 Applications

We will in this section describe how the method presented in the previous sec-
tions can be used in a number of applications. We give examples on histogram
equalization, color transfer and bit-depth increase.

5.1 Histogram Equalization

We have already in the introduction seen an example of histogram equalization.
We simply start by performing standard histogram equalization on the input
image. We then run algorithm 1 with this image as input, and a flat target
histogram h,,;. Since histogram equalization normally is used to increase the
intensity constrast, when running it on a color image one usually first trans-
forms the image to a new colorspace (e.g. HSV) that separates color and inten-
sity information. One then runs the algorithm on the intensity channel alone
and transfers back to the original colorspace. The details are summarized in
algorithm 2. In Figure 3 we show the result of running algorithm 2 on an over

Algorithm 2. Wasserstein regularized histogram equalization

1: Given an input image I;, convert the image to an HSV representation Ir sy .
2: Perform traditional histogram equalization on the V-channel Iy to get Ivng.
3: Estimate Iy nq2 using algorithm 1 with input Iv g and a flat hou:.

4: Convert Igsyve2, with V-channel equal Iy 42, to RGB to get Iou:.

saturated image. To the left is the input image, in the middle is traditional his-
togram equalization and to the right is the result running our method. One can
see that the discretization effects are much smaller.

5.2 Color Transfer

In this section we look into how we can use our method to transfer the color
distribution of one image to another. One application where this can be used is
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Fig. 3. The result of running algorithm 2 on an over saturated image. To the left is the
input image, in the middle is the rersult of running traditional histogram equalization
and to the right the result of our method. One can see that we get less quantization
effect in the right hand image. The results are best viewed on screen.

the case when we have taken multiple images of the same scene with different
illunination. An example where we have used our method is shown in Figure 4.
To the left and in the middle two images of the same scene are depicted. To
the left the image is taken without flash and in the middle with flash. In many
cases one gets a more desirable illumination without flash but one also gets a
more noisy image since the illumination is poor. There has been a number of
previous work on how to combine two images taken with and without flash, see
e.g. [9]. Here we just simply transfer the color distribution from the image with
no flash to the image with flash. We do this by first calculating the distribution
of the no flash image. Since we want to transfer color information we do this
for each color channel separately. We then proceed in the same manner as we
did for the histogram equalization, i.e. we start by applying a discrete histogram
transformation on the flash image using the calculated color distribution from
the no flash image. We do this by finding the tranformation f(s) that minimizes

s f(s)
||/O hm(u)duf/o howt (w)dul|2. (4)

We have used the Matlab function histeq to do this. We then use f(I;,(z,y))
together with the desired distribution h,,; as input to algorithm 1. The result
can be seen to the right in Figure 4. One can see that we get an image without
the noise from the no flash image but with the same color tone.

5.3 Bit Depth Increase

We will now show how our ideas can be used in bit depth expansion. We will
base our method on the assumption that the high bit image should have the
same gray level distribution as the low bit output image, but on a finer scale.
In order to ensure this we start by estimating the high bit distribution from
the low bit distribution. This is in many case a much better posed problem
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Fig. 4. An example of color transfer using our proposed method. To the left is a noisy
image taken without flash. In the middle is an image of the same scene taken with flash.
To the right is the middle image where the colors have been transformed to match the
distribution of left hand image.

than the actual bit expansion problem. We do this by interpolating the low bit
distribution to a continuous distribution, and then resampling this distribution to
the desired bit depth. From the low-bit input image we calculate the histogram,
hin(s),s = 0,...,(n — 1), where n = 2P. We assume that the input image is
sampled from some ideal image with continuous probability distribution hg(u)
so that
s—0.5
hin(s) = / ho(u)du, s=0...(n—1). (5)
s+4+0.5
In order to estimate hg from h;,, we need to regularize the problem somewhat.
We will use a spline-based approach. To this end we assume that hg can be
approximated by a piece-wise polynomial of degree two,

ho(u) = as + bsu + csu?, (5 —0.5) <u < (s+0.5). (6)

Equation (5) together with the assumption that hy and its derivative are con-
tinuous, gives a linear system of equations in ag, bs and cs. This in turn gives us
an estimate of ho(u), —0.5 < u < n — 0.5, from which we can discretize to get
hout (t) with the desired output number of bins.

We now have all the components of our bit depth expansion. From a low
bit input image we start by expanding it to the desired bit depth using ideal
gain. From the gray value distribution of this image we can estimate the desired
output gray value distribution using the method just described. We now are in
the setting described in Section 4 and we can use algorithm 1 in order to estimate
an output image that follows the desired gray value distribution. The steps in
our bit expansion method are summarized in algorithm 3.

We have tested our algorithms on a number of real images. The originals were
8-bit color images, with gray values between 0 and 255. We then constructed low
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Algorithm 3. Wasserstein regularized bit depth increase
1: Given an input image [;, with p bits.
2: Calculate the ideal gain ¢ bit image I,.
3: Calculate the gray value distribution hin(s) of I,.
4: Estimate the output distribution hoyt(t) from hin(s) using a spline based interpo-
lation.
5: Estimate I,u: using algorithm 1 with input I; and hoyt.

Table 1. Peak Signal to Noise-ratio for a number of test images with different input
bit-depth. See text for details.

6 to 8 bit 4 to 8 bit
Image IG MR CA BF BM IG MR CA BF BM

pepper 47.06 45.11 47.32 43.64 44.27 34.67 33.89 37.31 36.19 36.99
building 47.14 44.39 46.36 44.67 45.36  34.84 34.84 35.08 34.20 35.27
tree 47.14 44.49 46.14 44.59 45.05 34.89 34.94 35.57 34.89 35.98
flower  46.88 46.77 49.64 47.84 48.97  34.40 32.18 37.37 36.31 35.91
spider  47.10 41.19 48.71 46.70 47.80  34.86 34.47 38.03 38.08 37.43

bit versions by dividing the gray values by 2¥ and rounding, to get an (8 — k)-bit
image. As a first example, the result from running algorithm 3 using bilateral
filtering on the pepper image can be seen in Figure 5. The top row shows close
ups of the ideal gain version of the input image. From left to right we have 5, 4
and 3 bit input images. The bottom row shows the output of our algorithm using
bilateral filtering. In Figure 6 the resulting color distributions for 5 bit expansion
is shown. It also shows the corresponding ground truth distributions in black.
One can see that they follow each other very well. We have also conducted a
test on a number of other real test images. These are taken from the database
described in [5]. In this case the original images were 8-bit, that were converted to
low bit images. We have also run two state-of-the-art bit expansion algorithms for
comparison, namely the method of [7], based on minimum risk and the content
adaptive bit-depth expansion algorithm of [14]. We have constructed 4-bit and
6-bit versions of the test images and run the algorithms to — in all cases — produce
8-bit results. The output images have then been compared to the ground truth
8-bit images. The results from this evaluation can be seen in table 1 where
the peak signal to noise ratio is presented. We include results from ideal gain
(IG), Mittal et al. (MR), Wan et al. (CA) and our approach using bilateral
filtering (BF), BM3D (BM) and the structure tensor anisotropic filtering (ST).
The corresponding results for the structure similarity index, SSIM [15] can be
found in table 2. A number of observations can be made. We see that for small
bit increase problems, the ideal gain actually performs very well. This is due to
the fact that the error is always bounded by a small amount in this case. However
when looking at the images one can see that the other algorithms output more
pleasing results. This serves as a reminder that just looking at the PSNR values
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Fig. 5. Close-up results from running algorithm 3 on the pepper image, for a number
of different bit depth inputs. In these examples bilateral filtering was used for the
smoothing step. Top row shows, from left to right, five, four and three bit color input.
Bottom row shows the resulting output images. The results are best viewed on screen.

I Ouiput Image
Or

| — Original Image

I Ouiput Image
— origial image

Fig. 6. The figure shows the result from running algorithm 3 using bilateral filtering.
The resulting gray value distributions of the output image, for the red, green and blue
channel respectively are shown. Also shown are the corresponding distributions for the
ground truth 8-bit image. One can see that they follow each other well.

Fig. 7. Magnified results from running algorithm 3 using the three different filtering
methods. From left to right it shows the result using the structure tensor adaptive
filtering, using bilateral filtering and using BM3D. The results are best viewed on
screen.
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Table 2. SSIM for a number of test images with different input bit-depth. See text for
details.

6 to 8 bit 4 to 8 bit
Image IG MR CA BF BM ST IG MR CA BF BM ST

pepper 0.99 0.98 0.99 0.98 0.98 0.99 0.87 0.89 0.93 0.93 0.91 0.93
building 0.99 0.99 0.99 0.99 0.99 0.99 0.93 0.93 0.94 0.93 0.92 0.94
tree 0.99 0.99 0.99 0.99 0.99 0.99 0.91 0.92 0.92 0.92 0.91 0.93
flower 0.97 0.99 0.98 0.98 0.98 0.98 0.84 0.91 0.90 0.91 0.90 0.87
spider  0.99 0.95 0.99 0.99 0.99 0.99 0.89 0.91 0.96 0.96 0.95 0.93

is not always a good way of evaluating the results. The SSIM measure gives a
somewhat better way of comparing, but also suffers to some extent from the
same problems. Setting this caveat aside one can see that our simple algorithm
performs on par with the highly specialised state-of-the-art methods for 4-6 bit
input.

In Figure 8 close ups for the results on the test images are shown for our
method using bilateral filtering. From table 1 and 2 one can see that running
our method using bilateral filtering or BM3D gives comparable results to each
other. In Figure 7 a comparison for our method using the different filtering types
is shown. One can see that we get some undesirable artifacts near edges using
BM3D.

a b c d

e f g h
Fig. 8. Results from algorithm 3 for the test images from table 1. The top row (a-
d) are close ups of parts of the four-bit input images. The optimal gain transformed

images are shown. The bottom row (e-h) shows the resulting output 8-bit images, using
algorithm 3 with bilateral filtering. The results are best viewed on screen.
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6 Conclusion

We have in this paper introduced the notion of using the Wasserstein metric to
regularize image intensity transformations. Using the optimal transport function
~ and anisotropic filtering of the image we can steer the intensity transforma-
tion in a robust way and avoid discretization effects. We specifically tested our
approach on the problem of bit depth expansion with state-of-the-art results.
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