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Abstract. We present a method for 3D surface recovery in partial sur-
face scans. The method is based on an Active Shape Model, which is
used to predict missing data. The model is constructed using a bootstrap
framework, where an initially small collection of hand-annotated samples
is used to fit to and register unknown samples, resulting in an exten-
sive statistical model. The statistical recovery uses a multivariate point
prediction, where the distribution of the points is given by the Active
Shape Model. We show how missing data in a partial scan, once point
correspondence is achieved, can be predicted using the learned statistics.
A quantitative evaluation is performed on a data set of 10 laser scans
of ear canal impressions with minimal noise and artificial holes. We also
present a qualitative evaluation on authentic partial scans from an actual
direct in ear scanner prototype. Compared to a state-of-the-art surface
reconstruction algorithm, the presented method gives matching predic-
tion results for the synthetic evaluation samples and superior results for
the direct scanner data.

Keywords: Surface recovery + Hole closing - Multivariate statistics -
Shape modeling - In ear scanning * Active shape model

1 Introduction

Direct surface scanning of humans is an increasingly used modality where the
applications include model creation in the entertainment industry, plastic surgery
planning and evaluation, craniofacial syndrome evaluation [10,14], and in par-
ticular hearing aid production. In this paper, we are concerned with a particular
surface shape namely that of the ear canal. Ear canal surface scans are used in
custom hearing aid fitting. This is a very large industry that probably makes
the ear the most scanned part of the human anatomy. A standard hearing aid
producer generates more than a thousand scans per week. When producing cus-
tom in-the-ear devices like hearing aids and monitors, the standard routine is to
inject silicone rubber into the patients ear and then laser scan this impression.
While this technique normally creates complete surfaces, direct ear scanners are
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emerging and it is expected that probe scans with these devices will require
handling of missing data due to occlusion in the complex anatomy of the human
ear and the limited space for the scanner probe. In this paper we present a
method for predicting missing data based on the information in the partial scan.
Hole filling and missing data recovery is a well studied problem, in particular
for 2D images. In 3D, data recovery is sometimes considered a by-product of the
surface reconstruction algorithm. The algorithms used to generate triangulated
surfaces from point clouds will usually try to cover missing areas using some
mathematical or physical assumptions. One series of approaches uses Delaunay
triangulation of border points [12]. Such methods are obviously susceptible to
noise in the border points and will typically require some form of smoothing. An
alternative strategy is to interpolate implicit (signed distance) functions locally
or globally under various forms of regularisation [11,18]. Other methods, inspired
from 2D inpainting approaches have also been investigated [6,7,20]. These are
typically based on a variational definition of the behavior of the surface where
the holes are.

In our method, we predict the missing points based on the existing points in
the scan. Instead of using variational formulations or physical assumptions on
the behaviour of the surface, we utilise population statistics of the given class of
surfaces learned from an annotated and co-registered training set. We base our
population statistics of the ear canal on an extensive statistical shape model of
the ear canal constructed in a bootstrap framework. The method is general and
is applicable to all surface scans, where a statistical shape distribution can be
estimated. The 3D morphable models introduced for the analysis and synthesis
of 3D faces [5] can also be used to recover missing data in surface scans [4]. In
[5] a 3D statistical shape and texture model is built based on a set of registered
training samples and from this a principal component analysis is performed
giving a set of eigenvectors and values. To recover missing data the set of known
points are found in a pre-processing step and the missing data points are found by
computing the optimal linear combination of eigenvectors fitting the known data.
This is combined with a ridge regression regularisation to avoid non-plausible
shapes. The approach described in [5] is similar to our prediction step, but in
contrast we also include the steps needed to identify the missing points in the
described framework. Furthermore, we also weight the geodesic distance from
the missing points to the known points in the prediction.

1.1 Data and Preprocessing

The data consists of 310 scanned left-ear impressions. The scans have been
acquired from a traditional 3D scanner, resulting in meshes of arbitrary tri-
angulation. From this collection, 12 representatives are chosen and from these
point correspondence over the selected impressions is created using the method
initially described in [17]. Furthermore, the Markov Random Field regulariza-
tion of the correspondence field described in [16] was used to further optimize
the dense correspondence. This small subset of impressions with point correspon-
dence form the basis for the bootstrapping framework. This is used to encompass
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the entire collection of ear impressions, with the goal of constructing a statistical
shape model as for example described in [8,17]. The method described in [17]
requires manual annotation of anatomical landmarks which is non-trivial and
therefore an automated method is preferred. A small collection of scans have
been acquired by a prototype in-ear 3D scanner[1]. They are partial in the sense
that some areas of the surface are missing due to noise and/or occlusion. Finally,
a small set of scanned ear-impressions, not part of the original 310 samples, have
had holes cut in them to mimic the nature of the partial scans. We denote these
manually created partial scans as synthesized partial scans. This set is used for
controlled evaluation of our method. In the following, some parameters have been
assigned fixed values manually chosen for our data. These parameters should be
validated for other uses of the framework.

2 Bootstrapped Active Shape Model

In order to accurately recover missing information in a partial scan we construct
a statistical shape model [8]. For this, point correspondence is needed over the
training set. Initially a small subset of samples is manually annotated and reg-
istered using the approach described in [16,17]. Using this subset, an Active
Shape Model (ASM) is constructed as described in [8,17]. The statistical model
is aligned and fitted to each unknown sample. This is done iteratively, allow-
ing co-registration to and inclusion in the ASM, thereby expanding the model
sample by sample. The ASM thus grows in size as the bootstrapping proce-
dure processes unknown samples, allowing it to explain an increasing amount of
shape variation from the dataset. Intuitively this leads to the expectation that
the algorithm will become increasingly better at fitting to unknown shapes and
that later samples are better registered than former, wherefore a revisit of early
registrations may be chosen as a finalising step.

Assuming a collection of m aligned shapes, each consisting of p 3D points
v, = (T1,91, 215 - - - » Tp, Yp, zp)T € R™. These shapes can be interpreted as being
points in an n = 3p-dimensional space. The average shape is thus v = % Z:r;l A\
and the shape deviation from mean x; = v; — v. In order to investigate the
variation of the data, an observation matrix X = (x1,...,X;,) € R™™ ™ can be
constructed. The covariance matrix, 3, of X is found by

5 = LXXT e R, (1)
m

Performing an Eigenvalue decomposition of this covariance matrix, thus provides
insight in the primary modes of variation within the dataset & = PAP”, where
P = (p1,...,Pm) is a matrix consisting of columns of Eigenvectors and A =
diag(Aq, ..., Ap) is a diagonal matrix holding the Eigenvalues. These Eigenvalues
corresponds to the variation expressed of the respective Eigenvector directions,
i.e. \; = 02. In scenarios where m < n, only a subset of the Eigenvalues will be
non-zero, the size of this subset will be denoted m’.
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Given the collection of non-zero Eigenvalues and corresponding Eigenvectors
described above, these can be used as a basis. Any shape v can then be synthe-
sised by a linear combination of the Eigenvectors, weighted by their Eigenvalues:

M(c)=v = Zci)\ipi = P/Ac, (2)

where ¢ = (¢1,. .., ) is a vector of weights determining how much the individ-
ual Eigenvectors contributes in the synthesis. This constitutes the Active Shape
Model and hereby the ASM can be interpreted as a function of the weights in c,
ie. M(c).

The raw samples to be included in the ASM may not be positioned or oriented
correctly relative to each other. Multiple approaches to automatic alignment of
shapes exists, we have chosen to use 3D Shape Context Descriptors [9].

The descriptors describes a point on a 3D surface by a histogram of its local
neighbourhood, indicating the local geometric distribution of points. Given a
point q on a surface, any neighbouring point’s relative position to q can be
expressed in spherical coordinates (r, 0, ). Here r is the radial distance between
q and a neighbour q,. The inclination angle # and the azimuthal angle ¢
requires a choice of reference-frame in order to be intercomparable between dif-
ferently aligned samples. In this experiment, 3D data were acquired from a laser
scanner using a rotating platform. The 3D representations of the ear impres-
sions thus have a consistent vertical axis. This consistency can be utilised to
construct a common frame of reference. In this frame of reference the third
basis element is aligned with the normal of the point q. This is formulated as
bs; = ng = (ng,ny,n,)7. The first basis element is aligned with the vertical
axis, with the restraint of being orthogonal to bs. Denoting a vector pointing
along the fixed vertical axis v = (0,1,0)7, this is found by by =v — (v - 63)63,
i.e. a vector rejection of v on ng, where b denotes the normalised value of b.
As a result of orthogonal basis vectors in a right-handed coordinate-system, the
second basis element is thus restrained to being bs = bs x by. From this basis,
a rotation matrix, rotating to the local frame of reference can be constructed

R = [f)l b Bg} Any neighbouring point, q,, can thus be described in q’s local

frame of reference by q,, = R(q, — q). Within this frame of reference, the incli-
nation angle and the azimuthal angle of the point is given by § = arccos (Gy,,/7)
and ¢ = arctan (¢n,y/Gn,z)-

Based on the coordinates (r, 8, ), points in the proximity of q can be grouped
in a discrete set of bins. Hereby a histogram over the 3-dimensional distribution of
points surrounding q can be constructed and used as a feature vector. In our exper-
iment, (r, 6, ¢) of points within a radius of 10 mm were divided into (8, 13, 4) bins
respectively, yielding a 416-dimensional feature vector or Shape Context Descrip-
tor. The choice of utilising the vertical axis to construct a common frame of refer-
ence poses a constraint on the geometry as points having normals parallel to the
vertical axis cannot be used. In practice this means that perfectly horizontal sur-
faces cannot be evaluated. Through the Hungarian method [13], point-descriptors



216 R.R. Jensen et al.

are matched and based on this matching a corresponding transformation can be
computed in a least squares sense. The standard y? histogram distance is used as
cost function [3]. An illustration is shown in Fig 1. The resulting set of matched
points is used to compute the optimal translation and rotation in a least squares
sense [9].

Using this method, unknown samples are aligned to the mean of the ASM,
v, thus supplying a plausible pre-alignment. Failed pre-alignments are easily
detected by evaluating the average Euclidean point to point distance between
the mean shape and the aligned shape. In our dataset, alignments with average
point-to-point distances above 5 mm are rejected.

3.y

Fig. 1. The descriptor in the point marked by the red marker in a) is compared to the
descriptors in all points of b). Colouring in b) corresponds to the x* distance between
the descriptors. ¢) Lines indicating the 100 most significant Shape Context matches
between the two samples.

Given a roughly aligned unknown sample, v,, the alignment is refined and
the ASM, M(c), is fitted. This is done in an iterative manner, where an Iterative
Closest Point (ICP) [19] alignment of the sample is followed by an ASM-fitting
of the model, and repeated upon until convergence is met. In our ICP imple-
mentation the points from the ASM surface are matched to their nearest surface
neighbours on the new sample, with the constraint that points connected to a
border should be ignored.

For the fitting, we seek to find a deformation of the Active Shape Model
that minimises the error between the model and the unknown sample. An ASM
constructed from the shape analysis of m samples, each consisting of n points,
will be parametrised in an m’-dimensional space and thus have m’ modes of
variation.

Let q; € R3 be a point belonging to the ASM, M(c), and let g} € R3 be the
closest point on the target sample surface v,. We seek to find the set of weights
c* that minimises the sum of distances between q and q':

. 1
arg min ||[M(c) — v,|| = arg min — Z lla; — ;] (3)

¢ ¢ i=1
We solve this optimisation problem by utilising an implementation of the Nelder-
Mead method [15]. We reduced the number of parameters used to a number
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corresponding to 99% explained variance af the training data. As the model-
fitting is basically a synthesisation from a k-dimensional (assumed) normal-
distribution, a confidence level for an obtained set of parameters ¢* can thus
be computed by utilising the Mahalanobis distance M between the parameter
set and the ASM distribution since M? ~ y2. This allows validation of fittings
by setting a reasonable confidence limit. In our implementation, a confidence
level of 99.9% was used.

Having determined c¢* for M and v,, the model mesh M(c*) = v is propa-
gated to the sample shape v, in order to perform a point-wise registration using
the procedure described in [16]. The result is a mesh of p points, following the
shape of v,, all with correspondence to the model, M. The quality of the regis-
tration is determined by computing the 20" percentile of the minimum angle in
the projected triangles and rejecting registration where this is below 15°. This
measure is valid since the model mesh has been optimised and has near equi-
lateral triangles. Secondly, the normals of the projection are compared to the
normals of v. Registrations having an average dot-product between the normals
of v and the projection below 0.75 are rejected.

When an alignment and a registration is obtained using the iterative scheme
above, they are both refined iteratively. During each iteration the registration-
mesh is smoothed using simple meaning of the nearest neighbours. The surface
normals of the smoothed mesh are found and regularised using local averaging
of directions. A new set of correspondence points are found in the sample scan
in the direction of the regularised normals and the alignment, v,, is adjusted
accordingly. This process is repeated until convergence. As the sample input scan
is expected to be more densely sampled than M (c*) the iterative update ensures
a regular mesh with evenly distributed vertices. Each sample that is successfully
fitted is added to the ASM. ASM is hereby improved to cover additional shape
variation.

3 Surface Recovery on Partial Scans

As described, a crucial, and not easily solved, part of recovering missing data is
to co-register a partial mesh with the ASM. This is required in order to obtain
point-correspondence between model and surface, creating a partial scan with
a mesh structure identical to that of the model. The process of co-registering
an unknown scan to the ASM is basically addressed in section 2. In the case of
reconstructing partial scans, however, the exact same approach may not suffice.
This is mainly due to the fact that an automatic alignment between a partial scan
and model may prove to be difficult for Shape Context features. The difficulties
arise in scenarios where the key shape features of the model are not present on
the scan or vice-versa. We limit ourselves to the already existing Shape Context
alignment approach, and where this failed, manual alignment was used. The
result of registering and fitting the ASM to a partial scan is that the ASM
template mesh is deformed and propagated to the partial scans in areas where
there are valid data. The template mesh vertices are marked as missing when
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the corresponding point or area in the partial scan is not present or valid. If
an area is missing in the partial scan, the point projection will often result
in that the project point is placed on a boundary in the partial scans, thus
enabling detection of missing point correspondences. Given a registration, we
aim to recover missing surface data in a partial scan such that the recovered
data are anatomically correct. We approach this by using a statistical model
and define the set of known and unknown data in a partial scan as follows:

I . R A
missing vertices: s; = (w11, Y11, 211, %12, Y12, 212, - - -)

A
known vertices: sy = (221, Y21, 221, T22, Y22, 222, - - -)

The correspondence allows for differentiation between known vertices and miss-
ing vertices in the partial scan. We will determine how the unknown data s;
are predicted from known vertices in sp. Without any prior knowledge of the
distribution of data, we consider a shape s consisting of s; and s as belonging
to the normal distribution:

S1 1 311 B2 T
= eEN , , M, =2 4
° [52] ([W] {221 222}) 2 2! @

The expected value of s; given sg is E{s;|sa} = pu1 + 21222_21 (sg — p2). With
the variance V{si|sa} = ¥1; — 2122;21221 From the ASM we get an aligned
set of shapes. This training set is denoted Xgiigneq- From the training set the
covariances X1; and X5 as well as the means (1, o) are learned. As there are
far less shapes than points, X9y will be singular. Let X9y = PAPT be the Eigen-
value decomposition. We restrict oo to its affine support, i.e. the dimensions
spanned by the Eigenvectors corresponding to the k positive Eigenvalues, such
that A* = diag(A1, Aa,...,A\;) and P* = [p; p2 ... pg]- The projection of s9
using the k selected Eigenvectors P*: yo = P*Ts, has affine support for sy and
the variance:

V{ys} = V{P*sy} = P* TS0, P* = A* (5)

The covariance of s; and ys is:
C{Sl,yg} = C{Sl, P*TSQ} = C{Sl7SQ}P* = 212P* (6)

Finally, the prediction of the unknown data s; can be done using the projection
ya: et
E{sily2} = p1 + Z12P"A* " "P* " (s2 — pi2) (7)

This expected value can be used for any unknown set of vertices s; given a partial
scan sg, be that a single missing vertex or all the missing data. If every unknown
vertex is predicted according to the described method the known triangulation
from the training set can be propagated to the predicted data set and will then
constitute a full surface reconstruction. The method can also be used to filter
data for noise if the known scan data are also recovered. By varying the number
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k values of Eigenvectors used in the projection the fraction of described variance
can be controlled.

Practically, the set of known vertices found during the registration of the
partial scan is s9 and the full scan as provided by the scanner is Sgcqn. Let s] be
the predicted missing data, s5 the prediction of the partial scan and s* be the
full reconstructed shape. The full average shape is denoted u. With an initial
registration the algorithm works as follows: We repeat the loop body with two

Algorithm 1. Anatomical surface recovery

: procedure ANATOMICALSURFACERECOVERY (X aligned, S2, Sscan) >

S <
S2

1
2
3: repeat
4: Procrustes align s™ to p and apply same transformation to Sscan
5

Predict s] using the described method > the described variance is
increased in each iteration
6: Predict s5 using the described method > the described variance is
increased in eac*h iteration
* S1
7 s* «— s}
8: Find vertex correspondence between s* and sscan
9: Update s2 and s™ with the correspondence vertices from sscan
10: until convergence
11: return sj and s >

12: end procedure

different recovery approaches. First s} and s3 are predicted all at once. In the last
few loops the data are predicted vertex by vertex using only the nearest vertices
in the prediction. The vertex distances are found as the geodesic distances on
the mean shape, so these only have to be calculated once. The geodesic distances
are used to ensure topological consistency when selecting a neighbourhood. Our
shape model has 3096 vertices and in the local recovery we only use the 10 nearest
of these. In the local prediction the recovered data is locally very true to the
original scan. We restrict the Eigenvalues in the recovery to the ones describing
30% of the variance and then gradually raise this to 99.9%. Gradually raising
the percentage of described variance helps the algorithm produce anatomically
correct shapes and prevents the influence of bad correspondences in the initial
iterations.

4 Results

Based on the method described in section 2, we were able to construct an exten-
sive Active Shape Model of the left ear based on the available dataset. A total
of 310 samples were processed and from these, 241 passed the automatic quality
verification. As the Active Shape Model processes new samples, the complexity
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of the model increases and thus the fraction of variation explained per principal
component must be expected to drop. The fraction of variation explained by the
10 first principal components were computed as the ASM grew in size and it was
stabilising, indicating that the shape model eventually captures the true class
variability. In the ASM 90% of all variance is contained within the first 37 modes
of variation. We do, however, expect that the automatic registration procedure
has induced an amount of false variation in form of vertex drifting along the
sample surfaces. Such variation of course directly affects the compactness of the
ASM in the form of low-variance principal components, assuming that the drifts
are uncorrelated. The actual shape variation from the ear is therefore expected
to be found within the first principal components. A final manual inspection of
mesh distortions resulted in an additional 80 registrations being removed from
the ASM. Effectively this resulted in the final ASM consisting of 161 shapes.

In order to compare our approach with existing methods for reconstruction,
a collection of 10 scanned ear impressions, not included in the training data, was
chosen and all scans had a reasonable sized hole cut in them. The holes were
cut between first and second bend of the ear canal, in an area that is known
to often be occluded when using experimental optical in-ear scanners. Hereby
any reconstruction of these partial scans can be compared to the ground-truth,
allowing for a quantitative comparison of methods.

For each mesh in the collection of synthesised partial scans the missing data
was recovered. This was done using our method, both with and without smooth-
ing, and the Markov Random Field (MRF) surface reconstruction approach [18].
The MRF approach has previously shown to reconstruct anatomical surfaces
well. All reconstructions were then compared to the ground truth, by computing
a signed distance (based on surface normals) between all reconstructed points
and the original surface. In Fig. 2 the reconstructions of synthetic partial scans
are shown, where the surface values denotes the signed distance between recon-
struction and truth (in millimeters). The average signed point-distances between
surface reconstructions can be seen in the table below:

#| MRF |Proposed Proposed # |MRF|Proposed Proposed
+local smoothing +local smoothing

1-0.07| -0.17 -0.27 610.07| -0.05 -0.08

2| 0.05 0.01 -0.01 710.08 | -0.001 0

31-0.04| 0.02 0.001 810.01| -0.02 -0.03

41-0.001| -0.015 -0.02 910.02| 0.03 0.01

51-0.07| -0.01 -0.013 10(-0.01| 0.07 0.07

A significant outlier in the error is observed in sample #1. After inspection,
this sample revealed an abnormal cavity in the skin of the ear-canal, explaining
the higher error. It should be noted that no prior, neither statistical or physi-
cal, would be able to predict such errors. Although this comparison proves high
performance of our method, it does not fully illustrate the strength of having a
statistically based prior. The MRF approach predicts missing points based on
the existing curvature of data in contrast to our method that predicts missing
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AAX
K
222

Fig. 2. Reconstruction of missing data for 3 different scans (rows), using Markov Ran-
dom Field (MRF) reconstruction (column 1), our method (column 2) and the smoothed
variant of our method (column 3). Surface values corresponds to the signed distance
between reconstruction and ground truth.

IO.éOO

0.300

0.000

-0.300

-0.600

Fig. 3. Partial scans from a prototype direct ear scanner. Raw data is shown with grey.
Surfaces reconstructed using the MRF method are red and the surfaces reconstructed
using the proposed method are green.
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points based on knowledge of the shape variation of an ear population. Effec-
tively this means that where either noisy edges exists or data is sparse, the MRF
approach has little chance of estimating the true surface. In this test each hole
is surrounded by smooth noiseless surface areas providing an optimum setting
for the MRF reconstruction. In the following, we will present a qualitative com-
parison based on authentic optical 3D scans of the ear, suffering from high noise
and sparse point support.

We have tested our algorithm on 12 scans from a prototype direct in ear
scanner [1]. In cases with a lot of noise, our strong prior enables our method to
produce anatomically correct meshes that are also locally true to the covered
areas. Qualitative inspection shows very good hole closing in the 12 scans. In
addition all 12 scans were 3D printed as earplugs and tested by the respective
test subjects with positive feedback. Fig 3 shows scans with a big part of the ear
canal missing. The missing part has been recovered with both the MRF method
and the proposed method. As can be seen, our proposed method produces what
seems to be a much more plausible surface in the missing part.

5 Conclusion

We have shown that we can predict the missing parts of partial scans using a
statistical model. The ability to predict missing data is comparable to state-of-
the-art algorithms, when holes are relatively small and the data is fair without
too much noise. On scans from a real in-ear scanner probe prototype, the quali-
tative results produced with the proposed method are much more plausible when
visually inspected. The more extensive prior knowledge about the shape to be
reconstructed makes the recovery much more robust, when recovering larger
holes. The results also seem invariant to the presence of noise, and as such the
method can also function as a noise filter. Surface reconstruction algorithms that
only use the immediate vicinity in the reconstruction are very sensible to noise
on the edges of the area to be recovered.

After using the proposed data recovery method on 12 scans they were 3D
printed on a stereolithograpy (SLA) machine [2] and worn by the test subjects
for a substantial time. They all proved to be well fitting in the subjects ears
even though the hard material from the SLA machine makes the ear plugs very
susceptible for non-accurate fitting. We have therefore demonstrated a complete
pipeline from direct ear scanning to production of well fitting hearing devices.
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