
Blending Event-Based and Multi-Agent Systems

Around Coordination Abstractions

Andrea Omicini1(�), Giancarlo Fortino2, and Stefano Mariani1

1 Alma Mater Studiorum–Università di Bologna, Italy
{andrea.omicini, s.mariani}@unibo.it

2 Università della Calabria, Rende (CS), Italy
g.fortino@unical.it

Abstract. While event-based architectural style has become prevalent
for large-scale distributed applications, multi-agent systems seemingly
provide the most viable abstractions to deal with complex distributed
systems. In this position paper we discuss the role of coordination ab-
stractions as a basic brick for a unifying conceptual framework for agent-
based and event-based systems, which could work as the foundation of a
principled discipline for the engineering of complex software systems.

Keywords: Multi-agent systems · Event-based systems · Coordination
models · TuCSoN

1 Introduction

In order to address some of the most common sources of accidental complexity –
such as distributed interaction and large-scale concurrency [2] – the event-based
architectural style has become prevalent for large-scale distributed applications
in the last years [10]. At the same time, multi-agent systems (MAS) are ex-
pected to provide the most viable abstractions to deal with the modelling and
engineering of complex software systems [14,15]. As a result, MAS and event-
based system (EBS) stand nowadays as the two most likely candidate paradigms
for modelling and engineering complex systems—the targets of many research
activities on coordination models and technologies, too.

The relevance of interaction issues in both MAS and EBS suggests that co-
ordination abstractions and mechanisms could play an essential role in making
agent-based and event-based models coexist without harming conceptual integ-
rity of systems. Starting from the essential of both paradigms, we point out
the role of coordination in a unifying conceptual framework for MAS and EBS,
which could work in principle as the foundation of a coherent discipline for the
modelling and engineering of complex software systems.

2 MAS as Coordinated Systems

A common way to look at MAS is to interpret them according to the main
first-class abstractions: agents, societies, and environment [34].

c© IFIP International Federation for Information Processing 2015
T. Holvoet and M. Viroli (Eds.): COORDINATION 2015, LNCS 9037, pp. 186–193, 2015.
DOI: 10.1007/978-3-319-19282-6_12



Blending EBS and MAS Around Coordination 187

Agents are computational entities whose defining feature is autonomy [24].
Agents model activities for the MAS, expressed through their actions along
with their motivations—namely, the goals that determine and explain the agent’s
course of actions. When goals are explicitly represented through mentalistic ab-
stractions – as in the case of BDI agent architectures [28] – intelligent agents [35]
are involved, which set their course of actions according to their beliefs, desires,
goals, intentions, available actions, and plans.

A critical issue in MAS is handling dependencies between agents: that is, un-
derstanding how (intelligent) agent actions mutually interfere when each agent
aims at pursuing its own goal, and ruling them so as to make MAS achieve its
overall system goal. Handling dependencies is first of all a coordination problem
[16]. Through the notion of social action [4], MAS capture dependencies in terms
of agent societies, built around coordination artefacts [23]. Societies represent
then the ensembles where the collective behaviours of the MAS are coordin-
ated towards the achievement of the overall system goals. Generally speaking,
coordination models are the most suitable tools to harness complexity in MAS
[6], as they are explicitly meant to provide the coordination media that “glue”
agents together [12,5] by governing agent interaction in a MAS [33].

Besides agents and societies, environment is an essential abstraction for MAS
modelling and engineering [34], to be suitably represented, and related to agents.
The notion of environment captures the unpredictability of the MAS context, by
modelling the external resources and features relevant for the MAS, along with
their dynamics. Along with the notion of situated action – as the realisation
that coordinated, social, intelligent action arises from strict interaction with the
environment, rather than from rational practical reasoning [29] – this leads to the
requirement of situatedness for agents and MAS, often translated into the need
of being sensitive to environment change [9]. This basically means dependency,
again: so, agent behaviour should be affected by environment change.

In all, this means that (i) things happen in a MAS because of either agent
activity or environment change, (ii) complexity arises from both social and situ-
ated interaction. Also, this suggests that coordination – in charge of managing
dependencies [16] – could be used to deal with both forms of dependency in a
uniform way; so, furthermore, that coordination artefacts could be exploited to
handle both social and situated interaction [17].

3 EBS as Coordinated Systems

According to [10], an EBS is “a system in which the integrated components
communicate by generating and receiving event notifications” where an event
is an occurrence of a happening relevant for the system – e.g., a state change
in some component –, and a notification is the reification of an event within
the system, and provides for the event description and data. Components in
EBS basically act as either producers or consumers of notifications: producers
publish notifications, and provide an output interface for subscription; consumers
subscribe to notifications as specified by producers. According to the event-based



188 A. Omicini et al.

architectural style, producers and consumers do not interact directly, since their
interaction is mediated by the event bus, which abstracts away all the complexity
of the event notification service.

In distributed event-based systems (DEBS) [19], a fundamental issue is repres-
ented by distributed notification routing, that is, the way in which notifications
are routed to distributed consumers. Issues such as event aggregation and trans-
formation have to be addressed by making individual event notifications mean-
ingful for consumers. Relationships between events should be detected, and event
hierarchies could be required to provide for different levels of abstraction.

In the overall, EBS are basically coordinated systems, where coordination is
event-based [18]: process activities are mostly driven by event notifications gen-
erated by producers; transformed, aggregated, filtered, distributed by the event
bus; and finally interpreted and used by consumers. Producer / consumer co-
ordination is then mediated by the event bus, working as the system coordinator,
which encapsulates and possibly automates most of the coordination activities
in an EBS. As an aside, it should be noted that role of the event bus in EBS
typically raises the well-known issues of the inversion of control : that is, control
over the logic of program execution is somehow inverted [13].

4 EBS and MAS: Towards a Unifying Framework

Following [17], three are the steps for integrating MAS and EBS: recognising the
sources of events, defining the boundary artefacts mediating the interaction with
the event sources, and providing expressive event-based coordination models.

The first step is looking at agents and environment as event sources. MAS
could then be seen as EBS where agents encapsulate internal events, while en-
vironment models external events through dedicated abstractions – environment
resources – capturing the unpredictable dynamics of relevant external events.
Dually, producers in an EBS are to be classified as either agents – if responsible
for the designed, internal events – or environment resources—if used to model
external, unpredictable events. This induces a higher-level of expressiveness in
EBS: since agents encapsulate control along with the criteria for its manage-
ment – expressed in terms of high-level, mentalistic abstractions –, articulated
events histories can be modelled along with their motivations. In addition, since
MAS environment is modelled as a first-class event-based abstraction, all causes
of change and disruption in a MAS are modelled in a uniform way as event
prosumers (producers and consumers)—thus improving conceptual integrity.

The second main step deals with the need for a general event model, requir-
ing architectural abstractions mediating between event producers and the whole
system, aimed at uniformly handling hugely-heterogeneous event sources—both
agents and resources. Denoted as boundary artefacts, they make it possibile to
translate every sorts of occurrences into a uniform system of notifications accord-
ing to a common event model. This is, for instance, how Agent Communication
Contexts [8] and Agent Coordination Contexts [21] work for agents, and how
event mediators (or, correlators) work in the Cambridge Event Architecture [1].



Blending EBS and MAS Around Coordination 189

Thus, boundary artefacts could be conceived (i) in EBS as the abstraction me-
diating between components and the event bus, accounting for the many diverse
models for data in event notifications, (ii) in MAS as the constrainers for agent
interaction, accounting for environment diversity and agent autonomy [33].

5 EBS and MAS: The Role of Coordination

If agents and environment work as event prosumers, coordination abstractions
should deal with interaction of any sort – agent-agent, agent-environment,
environment-environment interaction – taking care of their mutual dependen-
cies, by coordinating the many resulting flows of events [16].

According to [10], the potential of event-based coordination is recognised both
in academia and industry, and there exists a considerable amount of related re-
lated literature on event notification systems. In fact, a number of event-based
middleware providing such services (e.g., JEDI [7]), as well as a number of event-
based coordination models [27,31], technologies [11], and formalisms [20,32], wit-
ness the role of event-based middleware in the engineering of complex distrib-
uted systems, as well as the event-based nature of the most relevant coordination
models, including tuple-based ones [20].

Along this line, the third step in the integration of MAS and EBS is the
comprehension that coordination media [5] can handle multiple event flows [25]
according to their mutual dependencies in both MAS and EBS. From the MAS
viewpoint, this means that the role of coordination models in MAS [6] is to
provide event-driven coordination media governing event coordination in MAS.
From the EBS viewpoint, coordination in EBS is event-based [18], and the event
bus and service work as the system coordinators. This means that coordination
media could work as the core for an event-based architecture, and that EBS could
be grounded in principle upon a suitably-expressive coordination middleware,
designing the event bus around the coordination services [30].

As a result, since all events are uniformly represented through the same gen-
eral event model, coordination artefacts can be used to deal with both social
and situated dependencies, governing every sorts of interaction through the
same set of coordination abstractions, languages, and mechanisms [17]—thus
enforcing conceptual integrity. Then, coordination artefacts provide a specific
computational model for dealing with event observation, manipulation, and
coordination—which should make life easier for programmers and engineers.

In the context of EBS, coordination media provide a suitable way to automat-
ise event handling, and to encapsulate the logic for the coordination of multiple
related flows of events, thus counterfeiting the negative effects of inversion of
control on the large scale for EBS.

6 Case Study: TuCSoN Coordination as Event-Based

The TuCSoN coordination model and infrastructure [26] can be used to illustrate
in short the role of coordination in blending MAS and EBS, in particular pointing
out the notions of boundary and coordination artefacts.



190 A. Omicini et al.

In detail, the basic TuCSoN architecture can be represented as in Figure 1,
and explained in terms of the following MAS-EBS components.

Agents. A TuCSoN agent is any computational entity exploiting TuCSoN co-
ordination services. To act within a TuCSoN-coordinated MAS, agents should
obtain an ACC from the TuCSoN node. Any action from any agent towards the
MAS – either social or situated – is mediated by its associated ACC.

ACC. Agent coordination contexts [21]) represent TuCSoN boundary artefacts
devoted to agents. ACC both enable and constraint agents interactions, mapping
every agent operation into events asynchronously dispatched to tuple centres.
ACC thus decouple agents from MAS in control, reference, space, and time.

Probes. TuCSoN environmental resources. They are handled as sources of per-
ceptions (sensors) or makers of actions (actuators) in a uniform way. Probes do
not directly interact with the MAS, but through mediation of their transducer.

Transducers. The boundary artefacts devoted to probes [3]. Each probe is as-
signed to a transducer, specialised to handle events from that sort of probe, and
to act on probes through situation operations. Transducers thus decouple probes
from tuple centres in terms of control, reference, space and time.

Events. TuCSoN adopts and generalises the ReSpecT event model [22]. Re-
SpecT is the logic-based language used to program the behaviour of TuCSoN
tuple centres [22]. ACC and transducers translate external events (activities and

Fig. 1. TuCSoN event-based architecture



Blending EBS and MAS Around Coordination 191

change) into internal events that tuple centres can handle to implement the
policies required for MAS coordination. Thus, internal events essentially corres-
pond to event notifications in standard EBS.

Tuple Centres. Tuple centres [22] constitute TuCSoN architectural component
implementing coordination artefacts, thus in charge of managing dependencies.
As such, they are meant to govern both social and situated interactions [17].
By adopting ReSpecT tuple centres, TuCSoN relies on (i) the ReSpecT language
to program coordination laws, and (ii) the ReSpecT situated event model to
implement events [3].

By looking at a TuCSoN-coordinated MAS with a event-based perspective,

– ACC and transducers are the boundary artefacts representing agents and
environment, respectively, in the MAS, by translating activities and changes
in a common event (notification) model;

– tuple centres are the coordination artefacts dealing with both social and
situated dependencies by making it possible to program the coordination of
events of any sorts in a clean and uniform way.

Under such a perspective, TuCSoN already provides in some way both a model
and a technology to engineer coordinated MAS as EBS. Essentially, this means
that when using TuCSoN for the coordination of a distributed system, either per-
spectives – event-based and agent-based – can be adopted by engineers according
to their specific design needs, and blended together in a coherent way around
the coordination abstractions provided by the TuCSoN model and middleware.1

7 Conclusion

Many large-scale distributed systems are nowadays designed and developed
around event-based methods and technologies. At the same time, agent-based
abstractions (and, in spite of their limited maturity, agent technologies, too) are
more and more adopted to face the intricacies of complex systems engineering, in
particular when requirements such pervasiveness, intelligence, mobility, and the
like, have to be addressed. Altogether, this suggests that a conceptual framework
blending together abstractions and technologies from both EBS and MAS could
represent a fundamental goal for the research on complex system engineering.

In this position paper we suggest that a fundamental role in such a conceptual
framework could be played by coordination models and technologies, with the
focus on coordination artefacts working as both event-based and agent-based ab-
stractions. Coordination models and middleware could then provide the technical
grounding for a principled, comprehensive methodology for complex system en-
gineering, allowing for the integration of event-based and agent-based tools and
techniques without harming conceptual integrity.

1 http://tucson.unibo.it

http://tucson.unibo.it


192 A. Omicini et al.

References

1. Bacon, J., Moody, K., Bates, J., Heyton, R., Ma, C., McNeil, A., Seidel, O.,
Spiteri, M.: Generic support for distributed applications. Computer 33(3), 68–76
(2000)

2. Brooks, F.P.: No Silver Bullet Essence and Accidents of Software Engineering.
Computer 20(4), 10–19 (1987)

3. Casadei, M., Omicini, A.: Situated tuple centres in ReSpecT. In: Shin, S.Y.,
Ossowski, S., Menezes, R., Viroli, M. (eds.) 24th Annual ACM Symposium on
Applied Computing (SAC 2009), vol. III, pp. 1361–1368. ACM, Honolulu (2009)

4. Castelfranchi, C.: Modelling social action for AI agents. Artificial Intelli-
gence 103(1-2), 157–182 (1998)

5. Ciancarini, P.: Coordination models and languages as software integrators. ACM
Computing Surveys 28(2), 300–302 (1996)

6. Ciancarini, P., Omicini, A., Zambonelli, F.: Multiagent system engineering: The
coordination viewpoint. In: Jennings, N.R., Lespérance, Y. (eds.) Intelligent Agents
VI. LNCS (LNAI), vol. 1757, pp. 250–259. Springer, Heidelberg (2000)

7. Cugola, G., Di Nitto, E., Fuggetta, A.: The JEDI event-based infrastructure and
its application to the development of the OPSS WFMS. IEEE Transactions on
Software Engineering 27(9), 827–850 (2001)

8. Di Stefano, A., Pappalardo, G., Santoro, C., Tramontana, E.: The transparent
implementation of agent communication contexts. Concurrency and Computation:
Practice and Experience 18(4), 387–407 (2006)

9. Ferber, J., Müller, J.P.: Influences and reaction: A model of situated multiagent
systems. In: Tokoro, M. (ed.) 2nd International Conference on Multi-Agent Systems
(ICMAS 1996), pp. 72–79. AAAI Press, Tokio (1996)

10. Fiege, L., Mühl, G., Gärtner, F.C.: Modular event-based systems. The Knowledge
Engineering Review 17(4), 359–388 (2002)

11. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces Principles, Patterns, and Practice:
Principles, Patterns and Practices. The Jini Technology Series. Addison-Wesley
Longman (June 1999)

12. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
munications of the ACM 35(2), 97–107 (1992)

13. Haller, P., Odersky, M.: Event-based programming without inversion of control.
In: Lightfoot, D.E., Ren, X.-M. (eds.) JMLC 2006. LNCS, vol. 4228, pp. 4–22.
Springer, Heidelberg (2006)

14. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117(2),
277–296 (2000)

15. Jennings, N.R.: An agent-based approach for building complex software systems.
Communications of the ACM 44(4), 35–41 (2001)

16. Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM
Computing Surveys 26(1), 87–119 (1994)

17. Mariani, S., Omicini, A.: Coordinating activities and change: An event-driven ar-
chitecture for situated MAS. Engineering Applications of Artificial Intelligence 41,
298–309 (2015)

18. Milicevic, A., Jackson, D., Gligoric, M., Marinov, D.: Model-based, event-driven
programming paradigm for interactive Web applications. In: 2013 ACM Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on Programming
& Software (Onward! 2013), pp. 17–36. ACM Press, New York (2013)



Blending EBS and MAS Around Coordination 193

19. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer,
Heidelberg (2006)

20. Omicini, A.: On the semantics of tuple-based coordination models. In: 1999 ACM
Symposium on Applied Computing (SAC 1999), pp. 175–182. ACM, New York
(1999)

21. Omicini, A.: Towards a notion of agent coordination context. In: Marinescu, D.C.,
Lee, C. (eds.) Process Coordination and Ubiquitous Computing, chap. 12, pp.
187–200. CRC Press, Boca Raton (2002)

22. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer
Programming 41(3), 277–294 (2001)

23. Omicini, A., Ricci, A., Viroli, M.: Coordination artifacts as first-class abstractions
for MAS engineering: State of the research. In: Garcia, A., Choren, R., Lucena, C.,
Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS 2005. LNCS, vol. 3914,
pp. 71–90. Springer, Heidelberg (2006)

24. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)

25. Omicini, A., Ricci, A., Zaghini, N.: Distributed workflow upon linkable coordin-
ation artifacts. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006.
LNCS, vol. 4038, pp. 228–246. Springer, Heidelberg (2006)

26. Omicini, A., Zambonelli, F.: Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems 2(3), 251–269 (1999)

27. Papadopoulos, G.A., Arbab, F.: Coordination models and languages. In: Zelkowitz,
M.V. (ed.) The Engineering of Large Systems. Advances in Computers, vol. 46, pp.
329–400. Academic Press (1998)

28. Rao, A.S., Georgeff, M.P.: BDI agents: From theory to practice. In: Lesser, V.R.,
Gasser, L. (eds.) 1st International Conference on Multi Agent Systems (ICMAS
1995), pp. 312–319. The MIT Press, San Francisco (1995)

29. Suchman, L.A.: Situated actions. In: Plans and Situated Actions: The Problem of
Human-Machine Communication, chap. 4, pp. 49–67. Cambridge University Press,
New York (1987)

30. Viroli, M., Omicini, A.: Coordination as a service. Fundamenta Informaticae 73(4),
507–534 (2006); special issue: Best papers of FOCLASA 2002

31. Viroli, M., Omicini, A., Ricci, A.: On the expressiveness of event-based coordination
media. In: Arabnia, H.R. (ed.) International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA 2002), vol. III, pp. 1414–1420.
CSREA Press, Las Vegas (2002)

32. Viroli, M., Ricci, A.: Tuple-based coordination models in event-based scenarios.
In: 22nd International Conference on Distributed Computing Systems, Workshop
Proceedings, pp. 595–601. IEEE CS (2002)

33. Wegner, P.: Coordination as constrained interaction. In: Hankin, C., Ciancarini, P.
(eds.) COORDINATION 1996. LNCS, vol. 1061, pp. 28–33. Springer, Heidelberg
(1996)

34. Weyns, D., Omicini, A., Odell, J.J.: Environment as a first-class abstraction in
multi-agent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30
(2007)

35. Wooldridge, M.J., Jennings, N.R.: Intelligent agents: Theory and practice. Know-
ledge Engineering Review 10(2), 115–152 (1995)


	Blending Event-Based and Multi-Agent Systems around Coordination Abstractions
	1 Introduction
	2 MAS as Coordinated Systems
	3 EBS as Coordinated Systems
	4 EBS and MAS: Towards a Unifying Framework
	5 EBS and MAS: The Role of Coordination
	6 Case Study: TuCSoN Coordination as Event-Based
	7 Conclusion




