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Abstract. Multi-agent systems technologies have been widely investi-
gated as a promising approach for modelling and building distributed sys-
tems. However, the benefits of agents are not restricted to systems solely
comprised of agents. This paper considers how to ease the task of devel-
oping agents that perceive information from asynchronously executing
external systems, especially those producing data at a high frequency. It
presents a design for a percept buffer that, when configured with domain-
specific percept metadata and application-specific percept management
policies, provides a generic but customisable solution. Three application
case studies are presented to illustrate and evaluate the approach.

1 Introduction

Multi-agent systems (MAS) technologies have been widely investigated as a
promising approach for modelling and building distributed systems. In particu-
lar, much MAS research focuses on developing theories and tools that address
the requirements of autonomous distributed software components that must act,
interact and coordinate with each other in complex domains. Typically, agents
are conceptualised as having incomplete and changing knowledge, the ability to
act proactively to satisfy explicit goals, adaptive behaviour through the selec-
tion of plans that best respond to goals in a given situation, and the ability to
communicate knowledge and requests to each other.

This paper considers, in particular, agents based on the popular Belief-Desire-
Intention (BDI) agent model [4], which is inspired by human practical reasoning.
Agent development platforms implementing this model, such as Jason [3], allow
programmers to write code in terms of a dynamic belief base that is updated
as percepts are received from the external environment, and plans are triggered
by changes in beliefs and the creation of new goals by other plans. Plans can
also cause actions to be performed in the environment. The developer must
provide an environment class that models the application state visible to the
agent and/or affected by its actions. At its simplest, this is a simulation of
a physical environment. However, BDI agents have proven their value beyond
simple simulated systems. They have been used for implementing robots [16,15],
“intelligent virtual agents” [13,7,2] that control avatars in virtual worlds and
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multi-player games, and even for real-time control of satellites [6]. As well as
these situations where an agent’s ‘body’ is controlled by software external to the
agent, it may also be the case that an agent is only a component of a larger
distributed system involving multiple technologies and protocols. In this case,
it may be most convenient for the agent programmer to regard the external
systems as part of its environment, and therefore a source of percepts and the
target of actions [5].

This paper therefore considers the problem of providing an agent with a view
of one or more external system components as a source of percepts, extending our
previous architecture in which agent ‘endpoints’ act as a bridge between agents
and message-based routing and mediation middleware [5]1. There are several
aspects to this problem:
1) Agents perceive the environment periodically and asynchronously from the
changes occurring in the external systems. Therefore, multiple changes may occur
between agent perceptions, and it is necessary to buffer these changes. 2) BDI
agents have a relatively slow execution cycle, and thus information from external
systems such as virtual worlds and robot sensors may arrive much faster than the
agent’s perception rate. Delivering all buffered percepts to the agent on each per-
ception may exceed its ability to trigger and execute plans. Therefore, buffered
percepts should be amalgamated or summarised between perceptions. 3) The
question of whether a percept should replace an older buffered one is dependent
on the domain ontology. Thus, percept buffering requires domain knowledge. 4)
The logic for summarising related buffered percepts is application-dependent.
Thus, percept buffering needs application knowledge.

The first two issues above have been repeatedly encountered by researchers
[6,8,12,13,10]. However, as yet, agent development tools do not provide any
platform-level solution to these problems, leaving the agent programmer to im-
plement their own application-level solutions.

This paper provides a solution to this problem, informed by the third and
fourth observations above, by introducing the concepts of a percept buffer and
configurable percept management policies. Together, these control the number
and form of percepts provided to an agent. Given a generic percept buffer, a
developer can use this in conjunction with common policies from a library or
custom application-specific ones, to configure the buffer to avoid information
loss and reduce the cognitive load needed for percept handling. A percept buffer
therefore provides a general platform-, domain- and application-independent
framework for tackling the problems of handling percepts representing infor-
mation from external systems in a flexible way.

2 Related Work

The difficulty of handling high frequency percepts in BDI agent systems has been
acknowledged by researchers implementing situated agents [12,13]. However, we
are not aware of any implemented concrete solution to this problem.
1 Our previous work also addresses interpreting actions as requests to external systems,

but here we focus on percepts.
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There is some research on abstracting the low-level sensor data received from
an external environment before providing it to a BDI agent [13,16]. Similar to
receiving low-level sensor data, it is also possible that the agent could receive a
continuous data stream from the environment. In such a case, this continuous
data stream should be discretized before providing it to the agent as percepts.
Such an abstraction engine has been described by Dennis et al. [6] in the context
of using BDI agents to control a satellite. By providing only abstract environment
information and/or discretized information to an agent, the problem of cognitive
overload can be minimised. However, this does not directly address the problem
of high frequency perception—the abstracted environment information may still
arrive at too high a frequency for a relatively slow BDI agent. Moreover, this
previous work implements the sensor data abstraction components outside the
BDI agent system, thus providing it with no control over the type and amount
of the percepts it provides to agents.

An alternative approach to minimising the cognitive overload is actively fil-
tering out percepts that do not fit certain criteria. Percept filtering is discussed
alongside attention theories, where it is argued that given the fact that agent
attention is a limited resource, the agent should be able to filter-out informa-
tion that falls outside its current attention. Filtering can be of two-forms: top-
down (goal-driven), or bottom-up. Top-down filtering refers to retaining only
those percepts that are relevant to the currently pursued goals of the agent [14].
Bottom-up filtering refers to identifying salient information in the incoming per-
cept stream that should catch the agent’s attention. The work of van Oijen and
Dignum [11] presents an example for goal-driven filtering of percepts by an in-
telligent virtual agent (IVA). When an agent adopts a new goal, it can specify
the type of percepts required for that goal. This filtering is terminated as soon
as the agent stops pursuing the current goal. Ideally, an IVA should be able to
strike a balance between the two types of filtering.

The use of a cache or a buffer to keep environment information required
by an agent is not new. For example, Oijen et al. [12] present the use of a
cache to store a high level domain model derived from lower-level game state
data. This information is kept until game state changes invalidate the cached
derived data. Their ontology loosely corresponds to our percept metadata (see
Sect. 5). However, although agents can filter the percepts they wish to perceive
via subscriptions, there is no counterpart to our policies for summarising or
aggregating multiple percepts received between perceptions.

3 Managing Agent Perception Using Policies

At the heart of our approach is the use of policies to manage the number of per-
cepts produced for the deliberation process of an agent. Policies may be generic
ones that are useful across a range of applications, and may be parameterised to
configure them for specific applications. On the other hand, agent programmers
may develop their own application-specific policies, which can be plugged into
our framework via a simple interface. We also allow agents to dynamically change
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the policies used to pre-process their incoming percepts in order to change the
focus of their attention—an example of this is given in Sect. 9.2.

Some useful application-independent policies are listed below.

Keep latest percept. This policy will simply replace the previously processed
matching percepts with the new one. This might be appropriate, for example,
for percepts that represent sensor readings (with the sensor identifier treated
as a percept key). If multiple readings for the same sensor arrive between two
agent perceptions, the agent may only need to perceive the latest reading.

Keep latest with history. As above, this policy will ensure that at most one
percept for a given functor (predicate name), arity (number of arguments)
and list of key argument values is kept in the queue of percepts waiting to be
perceived. However, in case the agent wishes to inspect the full recent history
of matching percepts (since the previous perception), the policy records this
history in the percept as an additional argument. This policy could also be
refined to associate a time stamp with each percept in the history list. This
policy illustrates an important feature of the design of our percept buffer:
we support the use of policies that change the structure of percepts, e.g. by
changing their functors and arities.

Keep most significant. Rather than keeping only the most recent percept
(e.g. from a sensor), this policy will keep the one with the most significant
value. For example, for a sensor monitoring Nitrogen Dioxide concentrations
at a city intersection, the agent may be interested in the highest reading
since the last perception.

4 Architecture

Figure 1 shows our architecture for using percept buffers to handle percept
buffering, amalgamation and summarisation. We assume that percepts relevant
to the agent are received via one or more channels, shown on the left hand side of
the figure. These are responsible for delivering percepts obtained from external
sources, such as virtual worlds, complex event detection engines and enterprise
messaging systems, to the appropriate agents’ percept buffers. It is the respon-
sibility of these channels to perform whatever data preprocessing is necessary to
produce percepts in an appropriate format for the agent platform used2.

The channels also have the role of adding specific metadata to each percept
to specify how the agents’ percept buffers should combine this new information
with any percepts that are in the buffer waiting for the agent to perceive them.
Most importantly, this metadata includes the name of a policy to be used to
amalgamate matching percepts (if required). The notion of a matching percept
is defined by indicating the key argument indices, i.e. the argument positions
that form a (possibly compound) key for a percept with that functor and arity,

2 Eventually it may be possible to use a platform-independent format for percepts,
such as the “interface intermediate language” proposed by Behrens et al. [1].
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Fig. 1. The architecture and interfaces of a percept buffer

and whether or not the percept’s predicate is functional, i.e. whether it can only
have a single value at any time for given arguments at the key argument indices.
Percepts are also specified as being transient or persistent. Transient percepts
are only stored until the agent’s next perception, whereas persistent percepts are
treated as part of the environment’s state, and are also perceived by the agent
in subsequent perceptions (unless replaced by newer percepts, or they expire
as specified by the percept’s arrival time and tenure). Note that the aim of the
percept buffer is not to act as the agent’s memory in general. However, we see its
role as providing an agent environment that encapsulates the external sources of
percepts. We therefore allow an agent developer the option of using the buffer to
store persistent state that may not be made available repeatedly by the external
system.

The percept metadata, and the implementations of the policies used (con-
forming to a simple interface—see Sect. 6), provide the domain- and application-
specific information used by the percept buffers. Therefore, configuring our ap-
proach for a specific application involves providing a mechanism for the channels
to add the required metadata, e.g. application-specific rules. More detail on our
metadata scheme is given in Sect. 5.

The architecture allows agents to dynamically control their perception by
changing how channels assign policies to percepts (based on their functor and
arity), and the priorities of the threads that execute policies. The mechanisms
for providing this functionality will depend on the agent platform used. Our im-
plementation, using Jason [3], provides agent “internal actions” for this purpose.

Each agent has its own percept buffer, which has percepts, along with their
metadata, pushed to it from the channels. A single percept may be delivered at
a time, e.g. when a stream of data is being consumed by a channel, or a set of
percepts may be delivered together, with the intention that these represent a
complete state update for the agent. In the latter case, we assume that there is
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a single channel or that the channels have been designed so that the buffer does
not need to synchronise state updates from different channels. We also assume
that all percepts in the state update are to be processed by the same policy3,
or that it does not matter if a single state update results in different policies’
outputs being perceived by the agent at different times4.

For each percept-processing policy in use, a percept buffer maintains a (thread-
safe) queue of incoming percept sets that have been pushed on the queue by the
channels. Each percept set on the queue is either a singleton set (in the case
of percept streaming) or represents a state update. In addition, for each policy,
there is a list of processed but unperceived percepts and a list of previously
perceived but persistent percepts. These contain the buffered percepts that are
waiting to be delivered to the agent when it next perceives the environment. The
latter list contains percepts that should be repeatedly delivered to the agent, ac-
cording to the percept metadata. The percept buffer creates a thread for each
policy that repeatedly takes percept sets from the incoming queue and combines
them with the buffered percepts to produce an updated list of buffered percepts.

When the agent perceives, it consumes the percepts in the unperceived percept
list. It also receives percepts from the persistent percept list. At this time, the
persistent percept set is updated with the newly perceived percepts that are
annotated as being persistent. This may involve some instances of functional
percepts being replaced with new ones. As there is a separate perceived persistent
percept set for each policy, we require that functional persistent percepts with
a given functor and arity are always associated with the same policy; otherwise
the updating of persistent percepts cannot be guaranteed to be done correctly.

5 Percept Metadata

The following metadata scheme is used by channels when annotating percepts
before delivering them to the agents’ percept buffers. In this way, domain-
and application-specific knowledge can be provided on how percepts should be
treated.

Policy This metadata element specifies the name of the policy that should
be used to combine a new percept with any ‘matching’ ones that have been
processed by the policy but not yet perceived.

Persistent This element can be true or false, depending on whether the percept
should be stored in the percept buffer persistently and repeatedly perceived
by the agent until it is replaced by newer information or it expires.

KeyArgs As described above, the key arguments for a percept are those that
comprise a compound key. The value of this optional element is a list of argu-
ment indices. This defines which processed but unperceived percepts match a

3 It is possible for a single policy to process percepts with different functors.
4 Our current implementation adds an additional assumption: that all percepts in an

incoming percept set have the same persistence (transient or persistent), but this is
simpler to remove than the other assumptions.
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new one: percepts match if they have the same functor, arity, and values at
the key argument indices.

FuncPred This has value true if the percept is an instance of a predicate
that is functional, i.e. only one instance of the predicate can exist for any
specific values of the key arguments. Subsequent percepts with the same key
arguments must replace older ones. This is only used when updating the per-
ceived persistent percepts. This is because policies have the responsibility of
deciding how to resolve the co-existence of new and old matching unperceived
percepts—the developer may wish the agent to receive all percepts that have
arrived since the last perception, or an aggregation or summary of them.

ArrivalTime This records the time at which the percept arrived.
Tenure This optionally specifies an interval after which the percept is no longer

useful and should be deleted even if not perceived. This is most useful for
persistent percepts.

public interface Policy {
public List<WrappedPercept> applyPolicy(

WrappedPercept percept,
List<WrappedPercept> queuedPercepts);

public List<WrappedPercept> eventToStatePercepts(WrappedPercept p);

public WrappedPercept transformPerceptAfterPerception(WrappedPercept p);
}

Fig. 2. The policy interface

6 Defining and Applying Policies

A policy is defined by a class that implements the interface shown in Java in
Fig. 25. The key method is applyPolicy. This is called for each percept in the
new percept set in turn. The first argument, of class WrappedPercept, represents
a newly received percept, wrapped by another object recording its metadata.
The second argument, queuedPercepts, should be a list of the percepts that
have been previously output by this method, are not yet perceived by the agent,
and which match the new percept based on the functor, arity and KeyArgs
metadatum. As new percepts arrive, the applyPolicy method will be repeatedly
called to combine newly arrived percepts with those queued for perception by
the agent. For some policies this will result in reducing the number of percepts
received by the agent on each perception. By providing application-specific policy
classes, the developer can customise how this is done. Some example policies were
outlined in Sect. 3.

The other two methods in the policy interface are optional (they can just
return a null value) and are discussed in Sections 7 and 8.

Pseudocode for the run method of a policy thread is shown in Algorithm 1.
The key line of the algorithm is line 19, which obtains the application-specific
5 A separate policy factory class is used to associate names with policy classes.
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Algorithm 1. The policy thread’s algorithm
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���
��
��
�

��
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policy object for the given policy name and calls the applyPolicy method. For
brevity, in the algorithm we write “percept” to mean wrapped percept (a percept
with its metadata). The percepts processed by the policy but not yet perceived,
as well as the perceived persistent percepts, are represented as “percept list par-
titions”. This data structure stores a list of percepts as a set of sublists. Each
sublist contains the percepts with a given partition key: a triple combining a
functor, arity and specific tuple of values for the key arguments of the predicate
with that functor and arity, e.g. 〈sensor_reading, 2, 〈sensor72〉〉. This is a spe-
cial case of a map, and we write p[k] for the sublist of percept list partition p
with partition key k.

The algorithm runs an infinite loop that takes each (possibly singleton) set of
new percepts from the new percepts queue and processes it. Line 2 retrieves a
set of new percepts and line 3 looks up the percepts that have been previously
processed by this thread but not yet perceived. Lines 4–6 create a new percept list



Handling Agent Perception in Heterogeneous Distributed Systems 177

partition if there are no previously processed but unperceived percepts. Line 7
calls a procedure (lines 15–21) that, for each new percept, looks up the matching
percepts in the percept list partition, gets the policy object and applies it, and
then updates the percept list partition with the results. The main algorithm
(line 8) then checks whether the list of previously processed percepts for this
policy, stored in unperceivedPercepts with the policy name as a key, has been
consumed by the agent since the policy thread last retrieved it. The agent signals
that this has occurred by removing the concurrent map entry for that key. In
this case, the policy thread applies the policy to all new percepts starting with
an empty percept partition list as the list of old percepts (lines 10–12). These
policy applications cannot be skipped in case the policy is designed to change
the structure of the incoming percepts, as in the “keep latest with history” policy
described in Sect. 3.

The policy thread runs concurrently with the channels, which add new percept
sets to newPerceptQueue, and the agent, which consumes the percepts stored in
unperceivedPercepts for each policy. Therefore, the algorithm must be defined
in terms of thread-safe data structures to ensure correct behaviour. In particular,
we have chosen the BlockingQueue and ConcurrentMapdata structures provided
by Java for the implementations of newPerceptQueueand unperceivedPercepts,
respectively. The take method (line 2) is used to retrieve a set of new percepts,
and if the queue is empty, this method will block until a channel adds new percepts
to the queue. Line 8 calls the replace operation on a concurrent map. This is an
atomic operation that replaces the value for a given key in the map, and returns
the previous value, or null if there was no previous value.

7 Agent Perception

Algorithm 2 presents the procedure run when the agent initiates a perception.
For each policy in use, the percepts output by the policy but not yet perceived
are retrieved, along with the persistent percepts, and added to the result set
to be returned to the agent. In line 5, the remove method is called on the
concurrent map unperceivedPercepts. This is an atomic operation to remove
the map’s value for the given key (the policy name in this case) and return the
value retrieved, or null if there was no value. Removing the value signals to
the policy thread that the percepts have been (or are in the process of being)
perceived.

Lines 10–18 handle persistent percepts. In line 10 the policy’s eventToState-
Percepts method is invoked on the percept. This allows a single percept
from a channel (e.g. an update for some element of the state) to be trans-
lated to a set of percepts representing the updated (persistent) state informa-
tion. This is described further in Sect. 8. If there is a non-null result from
this call, the original policy-processed but unperceived percept p is treated
as a representation of a transient event and added to the set of percepts
to be returned to the agent. The transformed ‘state percept’ is then passed
to procedure updatePersistentPercepts to update the persistent state. If
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Algorithm 2. Handling an agent request for percepts

����: ����������	
�������, ����������
�������: Concurrent maps from policy
names to percept list partitions

1 ������	� ����������: Set of percepts

2 ����
� ← empty list
3 �������� ← current time
4 
	����
 ��
������� �� ���� 	
 ����������	
������� �	

5 ���
�������
�������� ← ����������	
�������.��	
�����
��������

6 ����
�������
�������� ← ����������
�������.������
��������

7 �
 ���
�������
�������� �= ��

 �
��

8 
	����
 � ∈ ���
�������
�������� �	

9 �
 ���
���
�
������ �
��

10 �����
������� ←
����
�������������
��������.������
������������
���

11 �
 �����
������� �= ��

 �
��

// There are separate event and state representations
// The event percept goes directly to the agent

12 ����������������������
����������� ����
�� ���������

13 
	����
 �����
������ ∈ �����
������� �	

14  ��������
�
�����������
������
������� ���������

����
�������
���������
15 ���

16 ����

17  ��������
�
�����������
��� ���������

����
�������
���������

18 ���

19 ����

20 ����������������������
����������� ����
�� ���������

21 ���

22 ���

23 ���

24 
	����
 � ∈ ����
�������
�������� �	

25 �����
���������
������ ← ����
�������������
��������.
26 ����
�
�	�������!������������
����

27 �
 �����
���������
������ �= ��

 �
��

28 Remove � from ����
�������
��������

29 Add �����
���������
������ to ����
�������
��������

30 ���

31 ����������������������
����������� ����
�� ���������

32 ���

33 ����������
�������.� ����
�������� ����
�������
���������

34 ���

35 ������ ����
�

eventToStatePercepts returned null, the unmodified percept is passed to that
procedure.
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The algorithm for updatePersistentPercepts is not shown due to lack of
space. This uses the percept’s partition key (its functor, arity and key argu-
ment values) to obtain the sublist of persPerceptsPartition that matches the
percept. If the percept’s predicate is functional (according to the percept meta-
data), the matching percepts are removed from that sublist. If not, any expired
percepts are removed from the sublist (using their ArrivalTime and tenure
metadata, if present, and currTime). In either case, the (still wrapped) percept
is added to the sublist if it has not expired.

Transient percepts are handled in line 20. They are added to the result set if
not already expired.

Finally, in lines 24–32 all persistent percepts are added to the result set. There
is one wrinkle here. The policy may have added extra information to the percept,
as in the “keep latest with history” policy described in Sect. 3. The policy method
transformPerceptAfterPerception gives developers the option to remove this
extra information from persistent percepts if it should only be perceived once.

8 Events and States

As discussed above, Algorithm 2 calls two optional policy methods:
eventToStatePercepts and transformPerceptAfterPerception. The role
played by these methods has been explained above. In this section we briefly
explain the motivation for these methods.

Plans in a BDI agent program can be triggered by the addition of new beliefs
to the agent’s belief base. The belief base can also be queried from within the
context conditions or bodies of its plans. These illustrate two different uses of
percepts within a BDI program: (i) to react to new information by triggering
a plan, and (ii) to look up previously received information in the course of
instantiating or executing a plan. We believe that in many agent programs this
distinction corresponds to the difference between using percepts to encode (i)
events, and (ii) state information. However, it is also the case that some percepts
can represent both an event and state information. In particular, a percept may
encode a change of state, and may be used in the agents’ plans both to trigger
a plan and for looking up the current state at a later time. Our design for
percept management policies aims to support developers in achieving separation
of concerns when handling event and state information in their agent plans.
Specifically, the policy method eventToStatePercepts, shown in Fig. 2 and used
in Algorithm 2, will be applied to a policy-processed persistent percept p, just
before the agent perceives it. The method can return null if this functionality
is not required. Otherwise, the result is a list of percepts, which encode the
information in the original percept in a different way for storage in the persistent
percept list. The original percept p is treated as transient and sent to the agent
once only.

For example, a percept approved(ag , doc, stg) received from a channel may
indicate that agent ag has approved document doc to move to stage stg of a pub-
lishing workflow. The policy method eventToStatePercepts can be used to gen-
erate a persistent record of the state of the document, e.g. doc_state(doc, stg).
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9 Case Studies

We have implemented a prototype percept buffer by extending our open source
camel-agent software [5]. This provides a connection between the Jason BDI
agent platform [3] and the Apache Camel message routing and mediation engine
[9]. We use Camel message-processing routes as our channels. These routes re-
ceive information from external systems using Camel’s wide range of endpoints
for various networking technologies and protocols. The resulting Camel messages
are transformed and filtered as required, using one of Camel’s domain-specific
languages. Percept metadata is added in the form of message headers, and the
messages are then delivered to camel-agent’s agent percept endpoints. These use
endpoint configuration information or Camel message headers to identify the
recipient agents(s), and the messages are then delivered to these agents’ percept
buffers.

We also provide Java implementations for Jason internal actions to dynam-
ically control the processing of percepts within the percept buffer by altering
the logic used by channels to assign policies to percepts, and by changing the
priorities of policy threads.

To demonstrate and evaluate the use of percept buffers, we developed policies
to handle three different sources of streaming data: two demonstration data
streams on the web and a live stream of events from a Minecraft server.

9.1 Demo Data Streams

We first evaluated the utility of our approach by configuring channels to con-
sume data from two data streams streamed live over the web by PubNub, Inc.6:
the Game State Sync stream and the Sensor Network stream. These provide
simulated data streams described as (respectively) “updated state information
of clients in a sample online multiplayer role-playing game” and “sensor informa-
tion from artificial sensors”. For each of these data streams we used the PubNub
Java client library to create a channel that subscribes to the stream and sends
the data received (translated to Jason syntax), along with the required percept
metadata, to the queue of incoming percepts for the single agent used in this
scenario. For the Game State Sync stream, the channel produces a single per-
cept for each data item on the stream. For the Sensor Network stream, a single
data item is converted to four percepts recording different aspects of the sensor
reading.

The formats of the data items in the two streams are shown below, after
translation to Jason literals.

Game State Sync:

action(PlayerId,CoordX,CoordY,
ActionName,ActionType,ActionValue)

6 http://www.pubnub.com/developers/demos/

http://www.pubnub.com/developers/demos/
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Sensor Network:

radiation(SensorUUID,Radiation)
humidity(SensorUUID,Humidity)
photosensor(SensorUUID, LightLevel)
temperature(SensorUUID,Temperature)

Consuming the Game State Stream. As the messages received from the
Game State Sync stream represent events, we configured the channel connected
to this stream to mark all action percepts as transient (and so the FuncPred
metadata element is not relevant). As the stream uses (seemingly) randomly
generated three digit numbers as identifiers in action percepts, the chance of two
or more matching agent IDs occurring between consective agent perceptions is
very low, so we did not specify any key arguments for the action predicate. This
means that all action percepts match each other. A simple, but non-trivial, Jason
agent program was used to handle the percepts received7. We investigated the
effect of three different policies for handling these percepts. Our purpose here is
not to analyse or criticise the operation of any specific agent platform (and Jason
in particular), but to illustrate the problems that arise when handling streams
of percepts.

First, using the policy “keep latest percept” as a baseline case confirmed (not
surprisingly) that buffering is needed when percepts are being produced and
consumed asynchronously. This policy stores no more than one percept between
consecutive agent perceptions. During a ten minute run, 5625 messages were
received from the Game State channel (9.4 messages per second). Although Ja-
son’s perception rate was significantly higher (an average of 60.2 per second),
404 percepts were lost (7.2%) due to the lack of buffering. In addition, although
5221 action percepts were delivered to the agent, there were only 5216 plan in-
vocations8. The missing plan invocations were not just delayed slightly—after
an additional minute the count was the same.

In another ten minute run using the default policy (to queue all percepts until
they are perceived), 5369 messages (all distinct) were received on the channel
and these were all delivered to the agent. However, there were only 5260 plan
invocations, suggesting that Jason was unable to cope with this load. For this,
and the previous policy, similar results were observed in a previous run (which
used an older version of Jason).

A final run was performed using the “keep latest with history” policy. For each
set of matching percepts (as determined by the KeyArgs metadata element), this
policy retains only the latest percept in the unperceived percepts data structure,
but stores a list of older matching percepts within an additional argument (or by
using some other method provided by the agent platform for adding information
7 The plan handling action percepts updates a belief counting plan invocations, checks

that the player ID is not in a given five-element list (chosen to never match any player
IDs), and calls a subgoal that is handled by a plan with the trivial body ‘true’. Ten
other trivial plans handle belief additions that never occur.

8 All percepts were distinct, and therefore were genuinely new beliefs.
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to percepts—we used a Jason annotation). The result is fewer percepts for the
agent plans to handle, and the programmer can choose under what conditions
the history of older recent percepts should be examined.

When using this policy, 5597 messages were received on the channel during
a 10 minute run. Fewer percepts, 5111, were delivered to the agent when using
this policy, but there were still two plan invocations missing. Similar results
were observed in a second run, when three plan invocations were missing. In
this case the percept buffer and choice of policy have not completely solved the
problem of missing plan invocations. Jason has a configuration option to set
the number of BDI reasoning cycles that are performed beween two consecutive
perceptions. Setting this to 2 allowed the “keep latest with history” to further
amalgamate percepts between perceptions, and 5416 percepts from the channel
were amalgamated into 1096 percepts delivered to the agent. All these led to
plan invocations, Two more runs produced similar results.

These results show that setting appropriate policies in a percept buffer can
significantly reduce the number of percepts that a BDI plan must handle. How-
ever, it may also be necessary to control the rate of agent perception to allow
the buffer time to amalgamate or summarise percepts over a longer period of
time.

Consuming the Sensor Network Stream. In this section we use the sen-
sor network stream to demonstrate how the percept buffer gives developers the
flexibility to customise the delivery of percepts to the agent.

First, we consider default percept metadata settings that label all percepts
as being transient and to be queued until perceived (the default policy). As the
first argument of each of the sensor reading predicates is the sensor identifier, we
declare this to be the key argument. However, for this setting to be useful we had
to customise the channel to replace the sensor identifier with a random number
from 0 to 19—the stream unrealistically uses random IDs that never appear to
reoccur. For the purposes of our discussion, we assume that the agent is only
interested in monitoring radiation settings, and the agent has a plan to count
these percepts, as well as two more plans that handle percepts related to report-
ing (and which only consist of a println action). With these settings, during a
ten minute run, 22508 percepts were delivered to the percept buffer. A quarter
of these (the 5627 radiation percepts) should have triggered plan invocations, but
only 5307 plan invocations were counted.

We next considered the combined use of two policies. The radiation percepts
were handled by a policy that, for given key argument values, keeps a single
percept with an added timestamp in the unperceived percepts list (using a Ja-
son annotation). Also, when a new percept arrives and a matching unperceived
percept is present, the policy keeps whichever of the two has the maximum radi-
ation reading. This assumes that the agent is monitoring for peak readings and
should not miss any. The other percepts were sent to a policy that ignores them
by simply removing them from the incoming queue. With this combination of
policies, 5622 messages on the channel resulted in 5613 percepts delivered to
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the agent, all of which resulted in plan invocations. This demonstrates that for
this application, filtering out the unwanted percepts by using the “ignore” policy
achieved a better outcome than delivering them and letting the agent code ignore
them. The use of a “keep maximum” policy had little effect on reducing percept
numbers, but ensured the agent would not miss the most significant events.

The final policy we consider is one that converts events to state information
using the eventToStatePercepts method. We note that the stream does not
deliver information for all sensors at once—sensor readings arrive one at a time.
We assume that the developer wishes to treat the received sensor readings as
state information that can be queried in plan context conditions and bodies and
not just as events that trigger plans. Therefore we configured the channel to label
the radiation percepts as persistent. However, the readings are time-dependent
and lose their validity over time, so we set a 10 second tenure period for per-
cepts. We specify that the first argument of the radiation predicate has no key
arguments. This allows a policy to collect all unperceived percepts with this
predicate into a list, wrapped in a radiation_list percept. On agent perception,
this is sent as a one-off percept to the agent, while a set of persistent percepts
are produced by the eventToStatePercepts method. The persistent percepts
use a functor (radiation_state) that is different from the original percepts. This
predicate is specified as functional with its first argument being the key argu-
ment, so that the persistent percepts are appropriately maintained over time.
With this configuration, over a ten minute run, 5748 messages were collected
into 5491 radiation_list percepts that were delivered to the agent, all of which
resulted in plan invocations (although, it should be noted that the plan is very
simple: it just updates a count belief). In addition, the persistent percepts ac-
counted for another 500087 percepts. These included repeated percept deliveries,
which would cause no “new percept” events to be output from Jason’s belief up-
date function, but also prevented Jason from removing these percepts from the
agent’s belief base.

9.2 Sensing Data from Minecraft

An additional case study involved connecting the percept buffer to a chan-
nel linked (via a web socket) to a mineflayer9 JavaScript bot for Minecraft.
Minecraft10 is a single or multiplayer game in which players mine the environ-
ment for materials, construct buildings, and (in “survival mode”) fight monsters.
We investigated the impact of the percept buffer on the speed of an agent per-
forming a specific sensory task over a stream of events from Minecraft. The events
represented the position of the bot and the movements of various creatures in
the simulated world, and the task was to detect ten distinct squid and then ten
distinct bats within a certain range. This task can be achieved using a simple
Jason program comprising two short plans, but as 100–200 events arrive per
second, we endeavoured to provide a policy to ease the task. Our policy treated

9 https://github.com/andrewrk/mineflayer
10 https://minecraft.net

https://github.com/andrewrk/mineflayer
https://minecraft.net
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the percepts as transient, and ignored percepts from outside the specified range
as well as percepts related to creatures other than the target species (initially
squid). It also kept only the latest unperceived percept for a given individual
creature. We connected two agents to the same Minecraft event stream. One
used our special policy, while the other used the null policy (buffering only).
The channel was configured to treat percepts recording the bot’s own position
as persistent for both agents. The Jason plan for the null policy agent performed
range checking as well as counting and tracking which of the target creatures
had already been seen (using their identifiers). The plan for the agent with the
special policy did not need to perform range checking, and received a smaller
number of percepts. Once the first part of the task was completed (counting
10 distinct squid), the plan used an internal action to request the channel to
change the policy used for its percepts so that only bat percepts were delivered
to it. This demonstrates the ability to change policies dynamically to change an
agent’s focus of attention.

Unfortunately the task performance times for the two agents were almost
identical to within a few milliseconds for each of eight runs. This is probably
due to the task needing only simple plans that can do all necessary percept
filtering using plan “context conditions”, for which Jason is (presumably) well
optimised. However, this case study demonstrates that the use of the percept
buffer allowed the agent code to be simplified and did not add any overhead for
the performance of the task, even though the performance was not improved.

10 Conclusion

This paper has presented a design for an agent percept buffer to simplify the
handling of percepts from external systems—especially high frequency streams.
Rather than relying on programmers to build a custom agent environment encap-
sulating external sources of percepts, a percept buffer provides a generic solution
that can be customised for a given application. This is done by (a) configuring
the channels that deliver percepts to the buffer to attach domain-specific infor-
mation about those percepts, and (b) providing appropriate application-specific
policies. This work provides the first platform-independent and detailed proposal
for addressing a problem that is often faced, but which must currently be tackled
in an ad hoc application-specific manner.

We defined the architecture and algorithms for processing percepts in the
percept buffer and for responding to perception requests from agents. We also
defined a percept metadata scheme used for providing the buffer with domain-
specific information about the percepts. Three case studies were presented to
illustrate the flexibility offered by our approach for handling percept streams,
and to evaluate its benefits.

Future work includes extending the metadata scheme to allow the absence of
certain percepts in a stream to be considered significant, based on some form
of local closed world reasoning. Further experimentation with larger and more
realistic applications is also needed.
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