Sliced Path Prefixes:
An Effective Method to Enable
Refinement Selection

Dirk Beyer, Stefan Léwe®), and Philipp Wendler

University of Passau, Passau, Germany
loewe@fim.uni-passau.de

Abstract. Automatic software verification relies on constructing, for
a given program, an abstract model that is (1) abstract enough to
avoid state-space explosion and (2) precise enough to reason about the
specification. Counterexample-guided abstraction refinement is a stan-
dard technique that suggests to extract information from infeasible error
paths, in order to refine the abstract model if it is too imprecise. Existing
approaches —including our previous work— do not choose the refinement
for a given path systematically. We present a method that generates al-
ternative refinements and allows to systematically choose a suited one.
The method takes as input one given infeasible error path and applies a
slicing technique to obtain a set of new error paths that are more abstract
than the original error path but still infeasible, each for a different rea-
son. The (more abstract) constraints of the new paths can be passed to a
standard refinement procedure, in order to obtain a set of possible refine-
ments, one for each new path. Our technique is completely independent
from the abstract domain that is used in the program analysis, and does
not rely on a certain proof technique, such as SMT solving. We imple-
mented the new algorithm in the verification framework CPACHECKER
and made our extension publicly available. The experimental evaluation
of our technique indicates that there is a wide range of possibilities on
how to refine the abstract model for a given error path, and we demon-
strate that the choice of which refinement to apply to the abstract model
has a significant impact on the verification effectiveness and efficiency.

1 Introduction

In the field of automatic software verification, abstraction is a well-understood
and widely-used technique, enabling the successful verification of real-world,
industrial programs (cf. [4,13,14]). Abstraction makes it possible to omit cer-
tain aspects of the concrete semantics that are not necessary to prove or dis-
prove the program’s correctness. This may lead to a massive reduction of a
program’s state space, such that verification becomes feasible within reasonable
time and resource limits. For example, SLam [5] uses predicate abstraction [18]
for creating an abstract model of the software. One of the current research

A preliminary version of this article appeared as technical report [12].

© IFIP International Federation for Information Processing 2015
S. Graf and M. Viswanathan (Eds.): FORTE 2015, LNCS 9039, pp. 228-243, 2015.
DOI: 10.1007/978-3-319-19195-9 15

Sliced Path Prefixes: An Effective Method to Enable Refinement Selection 229

1 extern int f(int x); true
2 int main() { *
3 int b = 0; ""tﬁe’
4 int i = 0; *
5 while (1) { v -
6 if(i > 9) break; 1 i
7 £(i+4); v
s } 7b=*=07 fa%se
9 if(b 1= 0) { v . 2
10 iF(i 1= 10) { Sl o
11 assert (0); 1, B 4
12 } Vfaisg _false
13 ¥ v v
14 } false false

Fig. 1. From left to right, the input program, an infeasible error path, and a “good”
and a “bad” interpolant sequence for the infeasible error path

directions is to invent techniques to automatically find suitable abstractions.
An ideal model is abstract enough to avoid state-space explosion and still con-
tains enough detail to verify the property. Counterexample-guided abstraction
refinement (CEGAR) [15] is an automatic technique that starts with a coarse ab-
straction and iteratively refines an abstract model using infeasible error paths.
If the analysis does not find an error path in the abstract model, the analy-
sis terminates with the result TRUE. If the analysis finds an error path, the
path is checked for feasibility. If this error path is feasible according to the con-
crete program semantics, then it represents a bug, and the analysis terminates
with the result FALSE. However, if the error path is infeasible, then the abstract
model was too coarse. In this case, the infeasible error path can be passed to
an interpolation engine, which identifies information that is needed to refine the
current abstraction, such that the same infeasible error path is excluded in the
next CEGAR iterations. CEGAR is successfully used, for example, by the tools
StaM [5], Brast [7], CPAcHECKER [10], and Uro [1].

Craig interpolation [16] is a technique that yields for two contradicting formu-
las an interpolant formula that contains less information than the first formula,
but is still expressive enough to contradict the second formula. In software veri-
fication, interpolation was first used for the domain of predicate abstraction [19],
and later for value-analysis domains [11]. Independent of the analysis domain,
interpolants for path constraints of infeasible error paths can be used to re-
fine abstract models and to eliminate the infeasible error paths in subsequent
CEGAR iterations. In this context, it is important to point out that the choice
of interpolants is crucial for the performance of the analysis. Figure 1 gives an
example: In this program, the analysis will typically find the shown error path,
which is infeasible for two different reasons: both the value of i and the value
of b can be used to find a contradiction. In general, it is now beneficial for the
verifier to track the value of the boolean variable b, and not to track the value of
the loop-counter variable i, because the latter has many more possible values,

230 D. Beyer et al.

and tracking it would usually lead to an expensive unrolling of the loop. Instead,
if only variable b is tracked, the verifier can conclude the safety of the program
without unrolling the loop. Thus, we would like to use for refinement the in-
terpolant sequence shown on the left (with only the boolean variable) and not
the right one (with the loop-counter variable). However, interpolation engines
typically do not allow to guide the interpolation process towards “good”, or away
from “bad”, interpolant sequences. The interpolation engines inherently cannot
do a better job here: they do not have access to information such as whether
a specific variable is a loop counter and should be avoided in the interpolant.
Instead, which interpolant is returned depends solely on the internal algorithms
of the interpolation engine. This is especially true if the model checker uses an
off-the-shelf interpolation engine, which normally cannot be controlled on such
a fine-grained level. In this case, the model checker is stuck to what the interpo-
lation engine returns, be it good or bad for the verification process.

Therefore, we present an approach that allows to guide the interpolation en-
gine to produce different interpolants, without changing the interpolation engine.
To achieve this, we extract from one infeasible error path a set of infeasible sliced
paths, each infeasible for a different reason. Each of these sliced paths can be
used for interpolation, yielding different interpolant sequences that are all ex-
pressive enough to eliminate the original infeasible error path. Our approach
fits well into CEGAR (with or without lazy abstraction [20]), because only the
refinement component needs customization, and the new approach remains com-
patible with off-the-shelf interpolation engines.

Contributions. We make the following key contributions: (1) we introduce a
domain- and analysis-independent method to extract a set of infeasible sliced
paths from infeasible error paths, (2) we prove that interpolants for such a sliced
path are also interpolants for the original infeasible error path, (3) we explain
that —and how— it is possible to obtain, given a set of infeasible sliced paths,
different precisions (interpolants) for the same infeasible error path, and that
the choice of the precision makes a significant difference for CEGAR, (4) we im-
plement the presented concepts in the open-source framework for software ver-
ification CPAcHECKER, and (5) we show experimentally that the novel approach
to obtain different precisions significantly impacts the effectiveness and efficiency.

While we use interpolation to compute the refined precisions, our method is
not bound to interpolation: invariant-generation techniques for refinement such
as path invariants [8] can equally benefit from the new possibility of choice.

Related Work. The desire to control which interpolants an interpolation engine
produces, and trying to make the verification process more efficient by finding
good interpolants, is not new. Our goal is to contribute a technique that is inde-
pendent from the abstract domain that a program analysis uses, and independent
from specific properties of interpolation engines.

The first work in this direction suggested to control the interpolant
strength [17] such that the user can choose between strong and weak interpolants.
This approach is unfortunately not implemented in standard interpolation en-
gines. The technique of interpolation abstractions [22], a generalization of term

Sliced Path Prefixes: An Effective Method to Enable Refinement Selection 231

abstraction [2], can be used to guide solvers to pick good interpolants. This is
achieved by extending the concrete interpolation problem by so called templates
(e.g., terms, formulas, uninterpreted functions with free variables) to obtain a
more abstract interpolation problem. An interpolant for the abstract interpola-
tion problem is also a solution to the concrete interpolation problem. Suitable
interpolants can be chosen using a cost function, because these interpolation ab-
stractions form a lattice. In contrast to interpolation abstractions, our approach
does not rely on SMT solving and is independent from the interpolation engine
and abstract domain, so it is also applicable to, e.g., value and octagon domains.

Path slicing [21] is a technique that was introduced to reduce the burden
of the interpolation engine: Before the constraints of the path are given to the
interpolation engine, the constraints are weakened by removing facts that are
not important for the infeasibility of the error path, i.e., a more abstract error
path is constructed. We also make the error path more abstract, but in different
directions to obtain different interpolant sequences, from which we can choose
one that yields a suitable abstract model. While path slicing is interested in
reducing the run time of the interpolation engine (by omitting some facts), we
are interested in reducing the run time of the verification engine (by spending
more time on interpolation and selection but creating a better abstract model).

2 Background

Our approach is based on several existing concepts, and in this section we remind
the reader of some basic definitions and our previous work in this field [11].

Programs, Control-Flow Automata, States, Paths, Precisions. We re-
strict the presentation to a simple imperative programming language, where all
operations are either assignments or assume operations, and all variables range
over integers.! A program is represented by a control-flow automaton (CFA).
A CFA A = (L, lh,G) consists of a set L of program locations, which model
the program counter, an initial program location ly € L, which models the pro-
gram entry, and a set G C L x Ops x L of control-flow edges, which model the
operations that are executed when control flows from one program location to
the next. The set of program variables that occur in operations from Ops is
denoted by X. A wverification problem P = (A,l.) consists of a CFA A, repre-
senting the program, and a target program location I, € L, which represents the
specification, i.e., “the program must not reach location ..

A concrete data state of a program is a variable assignment cd : X — Z,
which assigns to each program variable an integer value; the set of integer values
is denoted as Z. A concrete state of a program is a pair (I, cd), where [€ L is a
program location and cd is a concrete data state. The set of all concrete states
of a program is denoted by C, a subset r C C is called region. Each edge g € G
defines a labeled transition relation % C C x {g} x C. The complete transition

! Our implementation is based on CPAcurcker, which operates on C programs;
non-recursive function calls are supported.

232 D. Beyer et al.

relation — is the union over all control-flow edges: — = J <4 . We write ¢-5¢/
if (¢,g,c) € —, and e¢—’ if there exists a g with el

An abstract data state represents a region of concrete data states, formally
defined as abstract variable assignment. An abstract variable assignment is ei-
ther a partial function v : X —e» Z mapping variables in its definition range to
integer values, or L, which represents no variable assignment (i.e., no value is
possible, similar to the predicate false in logic). The special abstract variable
assignment T = {} does not map any variable to a value and is used as ini-
tial abstract variable assignment in a program analysis. Variables that do not
occur in the definition range of an abstract variable assignment are either omit-
ted by purpose for abstraction in the analysis, or the analysis is not able to
determine a concrete value (e.g., resulting from an uninitialized variable decla-
ration or from an external function call). For two partial functions f and f/, we
write f(x) = y for the predicate (z,y) € f, and f(x) = f'(z) for the predicate
Jde: (f(x) =) A (f'(x) = ¢). We denote the definition range for a partial func-
tion f as def(f) = {z | Jy : f(z) = y}, and the restriction of a partial function f
to a new definition range Y as fjy = f N (Y x Z). An abstract variable assign-
ment v represents the set [v] of all concrete data states cd for which v is valid,
formally: [L] = {} and for all v # L, [v] = {ed | Va € def(v) : v(z) = cd(z)}.
The abstract variable assignment L is called contradicting. The implication for
abstract variable assignments is defined as follows: v implies v (written v = v')
if v =L, or for all variables € def(v’) we have v(z) = v'(x). The conjunction
for abstract variable assignments v and v’ is defined as:

1 ifv=_Lorv =1 or (3x € def(v) Ndef(v') : = v(x) = v'(x))
v U v’ otherwise

The semantics of an operation op € Ops is defined by the strongest-post
operator SP,,(-): given an abstract variable assignment v, SP,,(v) represents
the set of concrete data states that are reachable from the concrete data states
in the set [v] by executing op. Formally, given an abstract variable assignment v
and an assignment operation z := exp, we have SPy.—¢zp(v) = L if v = L, or
SPx::exp(’U) = U|x\{z} NV with
o — { {(z,¢c)} if ¢ € Z is the result of the arith. evaluation of expression exp,,

S otherwise (if exp,, cannot be evaluated)
where exp/,, denotes the interpretation of expression exp for the abstract variable
assignment v. Given an abstract variable assignment v and an assume opera-
tion [p], we have SP, (v) = L if v = L or the predicate p,, is unsatisfiable, or we
have SP,(v) = v A vp, with v, = {(z,¢) € (X \ def(v) x Z) | p/, = (z =)}
and Djw =PA A y=v(y).
yedef(v)

A path o is a sequence ((opq,4),...,(op,, L)) of pairs of an operation and a
location. The path o is called program path if for every i with 1 < i < n there
exists a CFA edge g = (L1, op;, ;) and [y is the initial program location, i.e., the
path o represents a syntactic walk through the CFA. The result of appending the
pair (op,,, l,) to a path o = ((opy, &), ..., (0D,,, bm)) is defined as o A (op,,,) =
<(0p17 ll)v) (Opm, lm)» (Opn, Zn)>

vAV =

Sliced Path Prefixes: An Effective Method to Enable Refinement Selection 233

Every path ¢ = {((op;,h),...,(op,, 1)) defines a constraint sequence
Yo = {0py,...,0p,). The conjunction v A~" of two constraint sequences
v ={opy,...,0p,) and v = (op,...,0pl,) is defined as their concatenation,

ie, yAYy = {(opy,...,0p,, 0D, .., 0p.,), the implication of v and v" (denoted
by v = 7') as the implication of their strongest-post assignments SP.,(T) =
SP./(T), and v is contradicting if SP,(T) = L. The semantics of a path ¢ =
((op1,14)y...,(0op,, ln)) is defined as the successive application of the strongest-
post operator to each operation of the corresponding constraint sequence 7,:
SP,, (v) = SPop (...SPop, (v)...). The set of concrete program states that re-
sult from running a program path o is represented by the pair (I,,SP,,(T)),
where T is the initial abstract variable assignment. A path o is feasible if
SP.,,(T) is not contradicting, i.e., SP, (T) # L. A concrete state (I,,,cd,) is
reachable, denoted by (I, cd,,) € Reach, if there exists a feasible program path
o = ((op1,h),...,(op,, k) with cd, € [SP+,(T)]. A location [is reachable
if there exists a concrete data state cd such that (I,cd) is reachable. A pro-
gram is safe (the specification is satisfied) if /. is not reachable. A program path
o= {(opy,h),...,(op,, L)), which ends in [, is called error path.

The precision is a function 7 : L — 2, where IT depends on the abstract
domain that is used by the analysis. It assigns to each program location some
analysis-dependent information that defines the level of abstraction of the anal-
ysis. For example, if using predicate abstraction, the set IT is a set of predicates
over program variables. If using a value domain, the set IT is the set X of program
variables, and a precision defines which program variables should be tracked by
the analysis at which program location.

Counterexample-Guided Abstraction Refinement (CEGAR). CEGAR,
a technique for automatic iterative refinement of an abstract model [15], is based
on three concepts: (1) a precision, which determines the current level of abstrac-
tion, (2) a feasibility check, which decides if an error path (counterexample) is
feasible, and (3) a refinement procedure, which takes as input an infeasible error
path and extracts a precision to refine the abstract model such that the infea-
sible error path is eliminated from further exploration. Algorithm 1 shows an
instantiation of the CEGAR algorithm. It uses the CPA algorithm [9, 11] for
program analysis with dynamic precision adjustment and an abstract domain
that is formalized as a configurable program analysis (CPA) with dynamic pre-
cision adjustment ID. The CPA uses a set E of abstract states and a set L — 271
of precisions. The analysis algorithm computes the sets reached and waitlist,
which represent the current reachable abstract states with precisions and the
frontier, respectively. The analysis algorithm is run first with my as coarse ini-
tial precision (usually mo(l) = {} for all I € L). If all program states have been
exhaustively checked, indicated by an empty waitlist, and no error was reached
then the CEGAR algorithm terminates and reports TRUE (program is safe). If
the CPA algorithm finds an error in the abstract state space, then it stops
and returns the yet incomplete sets reached and waitlist. Now the correspond-
ing abstract error path is extracted from the set reached, using the procedure
ExtractErrorPath, and passed to the procedure IsFeasible for the feasibility check.

234 D. Beyer et al.

Algorithm 1 CEGAR(D, eg, m), cf. [11]

Input: a CPA with dynamic precision adjustment D and

an initial abstract state ep € E with precision mo € (L — 27)
Output: verification result TRUE (property holds) or FALSE
Variables: a set reached of elements of E x (L — 27),
a set waitlist of elements of F x (L — 27), and
an error path o = ((opy,lh),...,(0p,,;)
reached := {(eo, o) }; waitlist := {(eo, 70)}; 7 := 7o

1:

2: while true do

3: (reached, waitlist) := CPA(ID, reached, waitlist)

4: if waitlist = {} then

5: return TRUE

6: else

7 o = ExtractErrorPath(reached)

8: if IsFeasible(c) then // error path is feasible: report bug
9: return FALSE

10: else // error path is infeasible: refine and restart

11: (1) := w(l) URefine(o)(l), for all program locations [
12: reached := {(eo, 7)}; waitlist := {(eo,)}

Algorithm 2 Refine(o)

Input: an infeasible error path o = ((opy, 1), ..., (0p,,)

Output: a precision 7 € L — 21
Variables: a constraint sequence I’

1: I':=)

2: 7(l) := {}, for all program locations [

3: fori:=1ton—1do

4: "= (op; s, 0p,)

5: I := Interpolate(I" A (op,;),7") // inductive interpolation
6: m(l;) := ExtractPrecision(I") // create precision based on I’
7: return w

If the abstract error path is feasible, meaning there exists a corresponding con-
crete error path, then this error path represents a violation of the specification
and the algorithm terminates, reporting FALSE. If the error path is infeasible,
i.e., is not corresponding to a concrete program path, then the precision was too
coarse and needs to be refined. The refinement step is performed by procedure
Refine (cf. Alg. 2) which returns a precision 7 that makes the analysis strong
enough to exclude the infeasible error path from future state-space explorations.
This returned precision is used to extend the current precision of the CPA al-
gorithm, which is started in CEGAR’s next iteration and re-computes the sets
reached and waitlist based on the new, refined precision. CEGAR is often used
with lazy abstraction [20] so that after refining, instead of the whole state space,
only some parts of reached and waitlist are removed, and re-explored with the
new precision.

Interpolation for Constraint Sequences. An interpolant for two constraint
sequences v~ and 4T, such that v~ A~ is contradicting, is a constraint

Sliced Path Prefixes: An Effective Method to Enable Refinement Selection 235

sequence I' for which 1) the implication v~ = I" holds, 2) the conjunction
I’ Ay is contradicting, and 3) the interpolant I' contains in its constraints only
variables that occur in both v~ and y+ [11].

Next, we introduce our novel approach, which extracts from one infeasible
error path a set of infeasible sliced path prefixes. Sect. 4 then uses this method to
extend the procedure Refine to perform precision extraction on a set of infeasible
sliced prefixes, offering to select the most suitable precision from several choices.

3 Sliced Prefixes

Infeasible Sliced Prefixes. A CEGAR-based analysis encounters an infeasi-
ble error path if the precision is too coarse. An infeasible error path contains
at least one assume operation for which the reachability algorithm computes a
non-contradicting abstract successor based on the current precision, but com-
putes a contradicting successor if the concrete semantics of the program is used.
Every infeasible error path contains at least one such contradicting assume op-
eration, but often, there exist several independently contradicting assume oper-
ations in an infeasible error path, which leads to the notion of infeasible sliced
prefixes: A path ¢ = ((opy,h),...,(op,, kw)) is a sliced prefiz for a program
path ¢ = ((opy,h),...,(0p,, 1)) if w < n and for all 1 <4< w, we have
¢.l; = o0.l; and (¢.op; = 0.0p; or (¢.op; = [true] and o.0p; is assume op)), i.e.,
a sliced prefix results from a program path by omitting pairs of operations and
locations from the end, and possibly replacing some assume operations by no-op
operations. If a sliced prefix for ¢ is infeasible, then o is infeasible.

Extracting Infeasible Sliced Prefixes from an Infeasible Error Path.
Algorithm 3 extracts from an infeasible error path a set of infeasible sliced pre-
fixes. The algorithm iterates through the given infeasible error path o. It keeps
incrementing a feasible sliced prefix o¢ that contains all operations from o that
were seen so far, except contradicting assume operations, which were replaced by
no-op operations. Thus, o is always feasible. For every element (op, [) from the
original path o (iterating in order from the first to the last pair), it is checked

Algorithm 3 ExtractSlicedPrefixes(o)
Input: an infeasible path o = ((opy, l1),..., (0p,,, n))

Output: a non-empty set X' = {o1,...,04,} of infeasible sliced prefixes of o
Variables: a path o; that is always feasible
X =4}
op =)

: for each (op,!l) € o do
if P, 7(op,)(T) = L then
// add o5 A (op, 1) to the set of infeasible sliced prefixes
Y :=XU{os A (op, 1)}
o5 = oy A ([true],) // append no-op
else
oy =05 A(op,l) // append original pair
return Y

QL XAD T W

[

236 D. Beyer et al.

(a) Error path (b) Sliced-prefix cascade (c) Sliced prefixes

Fig. 2. From one infeasible error path to a set of infeasible sliced prefixes

whether it contradicts oy, which is the case if the result of the strongest-post
operator for the path oy A (op, [) is contradicting (denoted by _L). If so, the algo-
rithm has found a new infeasible sliced prefix, which is collected in the set X' of
infeasible sliced prefixes. The feasible sliced prefix o is extended either by a no-
op operation (Line 7) or by the current operation (Line 9). When the algorithm
terminates, which is guaranteed because o is finite, the set 3’ contains infeasible
sliced prefixes of ¢, one for each ‘reason’ of infeasibility. There is always at least
one infeasible sliced prefix because o is infeasible.

The sliced prefixes that Alg. 3 returns have some interesting characteristics:
(1) Each sliced prefix ¢ starts with the initial operation op;, and ends with an
assume operation that contradicts the previous operations of ¢, i.e., SP4(T) = L.
(2) The i-th sliced prefix, excluding its (final and only) contradicting assume
operation and location, is a prefix of the (i + 1)-st sliced prefix. (3) All sliced
prefixes differ from a prefix of the original infeasible error path o only in their
no-op operations.

The visualizations in Fig. 2 capture the details of this process. Figure 2a
shows the original error path. Nodes represent program locations and edges rep-
resent operations between these locations (assignments to variables or assume
operations over variables, the latter denoted with brackets). To allow easier dis-
tinction, program locations that are followed by assume operations are drawn as
diamonds, while other program locations are drawn as squares. Program loca-
tions before contradicting assume operations are drawn with a filled background.

Sliced Path Prefixes: An Effective Method to Enable Refinement Selection 237

The sequence of operations ends in the error state, denoted by l.. Figure 2b de-
picts the cascade-like sliced prefixes that the algorithm encounters during its
progress. Figure 2¢ shows the three infeasible sliced prefixes that Alg. 3 returns
for this example.

The refinement procedure can now use any of these infeasible sliced prefixes to
create interpolation problems, and is not bound to a single, specific interpolant
sequence for the original infeasible error path: a refinement selection from dif-
ferent precisions is now possible. The following proposition states that this is a
valid refinement process.

Proposition. Let o be an infeasible error path and ¢ be the i-th infeasible sliced
prefix for o that is extracted by Alg. 3, then all interpolant sequences for ¢ are
also interpolant sequences for o.

Proof. Let 0 = ((op1,h),...,(op,, 1)) and ¢ = ((op1,h),-.., (0D bw))-
Let I'y; be the j-th interpolant of an interpolant sequence for ¢, i.e., for the
two constraint sequences 7, = (opy,...,0p;) and ’y(;'j = (0Pj11r-50Py),s
with 1 < j < w. Because ¢ is infeasible, the two constraint sequences Vi and
'y;; are contradicting, and therefore, I';; exists [11|. The interpolant I',; is also
an interpolant for v = (opy,...,0p;) and v, = (op;,,...,0p,), if (1) the
implication v_; = I'4; holds, (2) the conjunction I's; A ’y:j is contradicting, and
(3) the interpolant I'y; contains only variables that occur in both v and W;rj.
Consider that Vs WaS created from ~y_; by replacing some assume operations by
no-op operations, and that 'y;- was created from ’yjj by replacing some assume
operations by no-op operations and by removing the operations (op,,, 1, ..., 0p,,)
at the end. Thus, both Vi and ’y(;- do not contain any additional constraints
(except for no-op operations) than v_; and 'y;rj, respectively.

Because I'y; is an interpolant for Vi and ’y;'j, we know that Vgi = I'y; holds,
and because v_; can only be stronger than Vi Claim (1) follows. The conjunction
Lyi N ’y;'j is contradicting, and W;rj can only be stronger than ’y;'j. Thus, Claim (2)
holds. Because I'y; references only variables that occur in both Vi and W(Zj , which
do not contain more variables than «_; and 71, resp., Claim (3) holds.

o

4 Slice-Based Refinement Selection

Extracting good precisions from the infeasible error paths is key to the CEGAR
technique, and the choice of interpolants influences the quality of the precision,
and thus, the effectiveness of the analysis algorithm. By using the results intro-
duced in the previous section, the refinement procedure can now be improved by
selecting a precision that is derived via interpolation from a selected infeasible
sliced prefix.

Slice-based refinement selection extracts from a given infeasible error path
not only one single interpolation problem for obtaining a refined precision, but
a set of (more abstract) infeasible sliced prefixes and thus, a set of interpolation
problems, from which a refined precision can be extracted. The interpolation

238 D. Beyer et al.

Algorithm 4 Refine™ (o)

Input: an infeasible error path o = ((opy, 1), ..., (0p,,)
Output: a precision 7 € L — 27
Variables: a constraint sequence I,
a set X' of infeasible sliced prefixes of o,
a mapping 7 from infeasible sliced prefixes and program locations to precisions
X := ExtractSlicedPrefixes(o)
// compute precisions for each infeasible sliced prefix
for each ¢; € X do
7(¢;) := Refine(¢p;) // Alg. 2
// select suitable sliced prefix (based on the sliced prefixes and their precisions)
Pselected := SelectSlicedPrefix(7)
// return precision for CEGAR based on selected sliced prefix
return T(¢selected)

problems for the extracted paths can be given, one by one, to the interpolation
engine, in order to derive interpolants for each sliced prefix individually. Hence,
the abstraction refinement of the analysis is no longer dependent on what the
interpolation engine produces, but instead it is free to choose from a set of
interpolant sequences the one that it finds most suitable. The move from solving
a single interpolation problem to solving multiple interpolation problems, and
understanding refinement selection as an optimization problem, is a key insight
of our novel approach.

Algorithm 4 shows the algorithm for slice-based refinement selection, which is
an extension of Alg. 2 in the CEGAR algorithm, allowing to choose a suitable pre-
cision during the refinement step. First, this algorithm calls ExtractSlicedPrefixes
to extract a set of infeasible sliced prefixes. Second, it computes precisions for
the sliced prefixes and stores them in the mapping 7. Third, one sliced prefix is
chosen by a heuristic (in function SelectSlicedPrefix), and fourth, the precision
of the chosen sliced prefix is selected for refinement of the abstract model. The
heuristic can decide based on the information contained in the sliced prefixes as
well as in the precisions, e.g., which variables are referenced.

Refinement-Selection Heuristics. We regard the problem of finding and se-
lecting a preferable refinement as an independent direction for further research,
and here, we restrict ourselves to presenting some ideas for a few refinement-
selection heuristics. There are two obvious options for refinement selection that
are independent of the actual interpolants. Using the interpolant sequence de-
rived from the very first, i.e., the shortest, infeasible prefix may rule out many
similar infeasible error paths. The downside of this choice is that the analysis
may have to track information rather early, possibly blowing up the state-space
and making the analysis less efficient. The other straight-forward option (similar
to counterexample minimization [2]) is to use the longest infeasible sliced prefix
(containing the last contradicting assume operation) for computing an inter-
polant sequence. This may lead to a precision that is local to the error location
and does not require refining large parts of the state space at the beginning of the
error path. However, it may also lead to a larger number of refinements if many

Sliced Path Prefixes: An Effective Method to Enable Refinement Selection 239

error paths with a common prefix exist. A more advanced strategy is to analyze
the domain types [3] of the variables that are referenced in the extracted preci-
sion. Each precision can be assigned a score that depends on the domain types
of the variables in the precision such that the score of the infeasible sliced prefix
is better if its extracted precision references only ‘easy’ types of variables, e.g.,
boolean variables, and no integer variables or even loop counters. This allows to
focus on variables that are inexpensive to analyze, avoiding loop unrolling where
possible, and keeping the size of the abstract state space as small as possible.
As future work, we plan to systematically investigate many different refine-
ment heuristics; such heuristics can be integrated without changing the overall
algorithm, by replacing only the function SelectSlicedPrefix in Alg. 4 accordingly.

5 Experiments

We implemented our approach in the open-source verification framework
CPAcHECKER [10], which is available online? under the Apache 2.0 license.
CPAcHECKER already provides several abstract domains that can be used for
program analysis with CEGAR. We only extended the refinement process to
work according to Alg. 4 (Refinet), and did neither change the abstract domains
nor the interpolation engines. Our implementation is available in the source-code
repository of CPAcueckER. The tool, the benchmark programs, the configuration
files, and the complete results are available on the supplementary web page .

Setup. For benchmarking, we used machines with two Intel Xeon E5-2650v2
eight-core CPUs with 2.6 GHz and 135 GB of memory. We limited each verification
run to two CPU cores, 15 min of CPU time, and 15 GB of memory. We measured
CPU time and report it rounded to two significant digits. BencuExec 4 was used
as benchmarking framework to ensure precise and reproducible results.

Configurations. Out of the several abstract domains that are supported by
CPACHECKER, we choose the value analysis with refinement [11] for our experi-
ments. We use CPACHECKER, tag cpachecker-1.4.2-slicedPathPrefixes.

In order to evaluate the potential of our approach, we compare four differ-
ent heuristics for refinement selection (function SelectSlicedPrefix in Alg. 4):
(1) shortest sliced prefix, (2) longest sliced prefix, (3) sliced prefix with best
domain-type score, and (4) sliced prefix with worst domain-type score. The
domain-type score of a sliced prefix is computed based on the domain types [3] of
the variables that occur in the precisions, i.e., variables with a boolean character
are preferred over loop counters and other integer variables.

Benchmarks. To present a thorough evaluation of our approach, we need a large
number of verification tasks, and thus, we use the repository of SV-COMP [6]
as a source of verification tasks. We select all verification tasks that fulfill the
following characteristics, which are necessary for a valid evaluation of our ap-
proach: (1) the verification tasks relate to reachability properties, because the

2 http://cpachecker.sosy-lab.org/
3 http://www.sosy-lab.org/~dbeyer /cpa-ref-sel /
* https://github.com/dbeyer /benchexec

http://cpachecker.sosy-lab.org/
http://www.sosy-lab.org/~dbeyer/cpa-ref-sel/
https://github.com/dbeyer/benchexec

240 D. Beyer et al.

Table 1. Number of solved verification tasks for different heuristics for slice-based
refinement selection on different subsets of benchmarks

Heuristic Sliced-Prefix Length Score Oracle

Tasks Shortest Longest Best Worst Best Worst Diff
DeviceDrivers64 619 326 395 399 319 403 315 88
ECA 1140 489 512 570 478 611 410 201
ProductLines 597 456 361 402 360 463 353 110
Sequentialized 234 29 22 30 27 30 19 11
All Tasks 2696 1369 1359 1470 1252 1577 1165 412

analysis that we use does not support other properties; (2) the reachability prop-
erty of the verification tasks does not rely on concurrency, recursion, dynamic
data structures or pointers, because the analysis that we use does not support
these features; and (3) there is at least one refinement during the analysis with
more than one infeasible sliced prefix, i.e., in at least one refinement iteration,
a refinement selection is possible. More restrictions are not necessary because
our goal is to show that there exists a significant difference in effectiveness and
efficiency, depending on the choice of which sliced prefix is used for precision
refinement. The scope of our experiments is not to evaluate which refinement
selection is the best. The set of all verification tasks in our experiments contains
a total of 2696 verification tasks.

Results. Table 1 shows the number of verification tasks that the analysis could
solve using refinement selection with one of the four heuristics described above.
We also show hypothetical results of a fictional heuristic “Oracle”, which, for a
given program, always selects the best (or the worst) of the four basic heuristics.
In other words, the column “Oracle Best” shows how many tasks could be solved
by at least one of the heuristics, and the column “Oracle Worst” shows how many
tasks could be solved by all of the heuristics. The difference between these num-
bers (column “Diff”) gives an approximation of the potential of our approach and
provides evidence how important refinement selection is. We list the results for
the full set of 2696 verification tasks as well as for several subsets (categories of
SV-COMP’15). We consider these categories to be especially interesting because
they contain larger programs than the remaining categories and our approach fo-
cuses on improving refinements in large programs (with long and complex error
paths, and many contradicting assume operations per error path).

The results show that selecting the right refinement can have a significant
impact on the effectiveness of an analysis. In our benchmark set there are more
than 400 verification tasks for which the choice of the refinement-selection heuris-
tic makes the difference between being able to solve the task and running into
a timeout. Without our refinement-selection approach, the choice of the refine-
ment depends solely on the internal algorithm of the interpolation engine, and
this potential for improving the analysis would be lost. The results show that
none of the presented heuristics is clearly the best. The heuristic that uses the

Sliced Path Prefixes: An Effective Method to Enable Refinement Selection 241

£1000 ¢ 1000 ¢

a 3) 3

el o

(7] O

L2 v

@ B

.:;; o

& 100 - = 100 |

c L C

S @

° 5

z £

5 u

[9] L

T

= 10 v 10 ¢

L £ ° £

a £

g S

= S

>

& 1 | Ll L 1 | Ll L

1 10 100 1000 1 10 100 1000

CPU Time (s) for Heuristic Shortest Sliced Prefix CPU Time (s) for Heuristic Best Score

(a) Heuristic “Shortest” vs. “Longest” (b) Heuristic “Best Score” vs. “Worst
Score”

Fig. 3. Scatter plots comparing the CPU time of the analysis with different heuristics
for slice-based refinement selection for all 2696 verification tasks

refinement with the best score regarding the domain types of the variables that
are contained in the precisions is the best overall (as expected, because it is the
only one that systematically tries to select a refinement that hopefully makes it
easier for the analysis). However, there are still verification tasks that cannot be
solved with this heuristic but with one of the others (as witnessed by the differ-
ence between columns “Score Best” and “Oracle Best”). Thus, finding a better
refinement-selection heuristics is promising future work.

Figure 3 shows scatter plots for comparing the CPU times of the analysis with
two of the four heuristics for slice-based refinement selection. The large number of
data points at the top and right borders of the boxes show those results that were
solved using one of the heuristics but not by the other. In addition, one can see
that the choice of the refinement-selection heuristic can also have a performance
impact of factor more than 10 even for those programs that can be solved by both
heuristics (witnessed by the data points in the upper left and lower right corners).
This effect also results in a huge performance difference in total: the CPU time
for those 1 165 verification tasks that could be solved with all heuristics varies be-
tween 110 h (heuristic “Score Worst”) and 57 h (heuristic “Score Best”), a potential
improvement due to refinement selection of almost 50 %.

6 Conclusion

This paper presents our novel approach of sliced prefizes of program paths, which
extracts several infeasible sliced prefixes from one single infeasible error path.
From any of these infeasible sliced prefixes, an independent interpolation prob-
lem can be derived that can be solved by a standard interpolation engine, and

242 D. Beyer et al.

the refinement procedure can choose from the resulting interpolant sequences
the one that it considers best for the verification. Our novel approach is inde-
pendent from the abstract domain (in particular, does not depend on using an
SMT solver) and can be combined with any analysis that is based on CEGAR,
while previous work on guided interpolation [22] is applicable only to SMT-
based approaches. Finally, we demonstrated on a large experimental evaluation
on standard verification tasks that the choice, which sliced prefix to take for
precision extraction, has a significant impact on the effectiveness and efficiency
of the program analysis. In future work, we plan to systematically explore more
criteria for ranking sliced prefixes, and then investigate guided techniques for
automatically selecting a preferable refinement. Furthermore, we plan to extend
our experiments to other abstract domains, such as predicate abstraction and
octagons; preliminary results already look promising.

References

1. Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: Uro: A framework for
abstraction- and interpolation-based software verification. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 672-678. Springer, Heidelberg
(2012)

2. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: An extension
of lazy abstraction with interpolation for programs with arrays. Formal Methods
in System Design 45(1), 63-109 (2014)

3. Apel, S., Beyer, D., Friedberger, K., Raimondi, F., von Rhein, A.: Domain types:
Abstract-domain selection based on variable usage. In: Bertacco, V., Legay, A.
(eds.) HVC 2013. LNCS, vol. 8244, pp. 262-278. Springer, Heidelberg (2013)

4. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Verifier:
Technology transfer of formal methods inside Microsoft. In: Boiten, E.A., Derrick,
J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 1-20. Springer, Heidelberg
(2004)

5. Ball, T., Rajamani, S.K.: The SLAM project: Debugging system software via static
analysis. In: Launchbury, J., Mitchell, J.C. (eds.) POPL, pp. 1-3. ACM, New York
(2002)

6. Beyer, D.: Software verification and verifiable witnesses (Report on SV-COMP
2015). In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 401-416.
Springer, Heidelberg (2015)

7. Beyer, D., Henzinger, T.A.; Jhala, R., Majumdar, R.: The software model checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5-6), 505-525 (2007)

8. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
Ferrante, J., McKinley, K.S. (eds.) PLDI, pp. 300-309. ACM, New York (2007)

9. Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic preci-
sion adjustment. In: ASE, pp. 29-38. IEEE, Washington, DC (2008)

10. Beyer, D., Keremoglu, M.E.: CPACHECKER: A tool for configurable software ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184-190. Springer, Heidelberg (2011)

11. Beyer, D., Lowe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Cortellessa, V., Varr6, D. (eds.) FASE 2013. LNCS, vol. 7793,
pp. 146-162. Springer, Heidelberg (2013)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Sliced Path Prefixes: An Effective Method to Enable Refinement Selection 243

Beyer, D., Lowe, S., Wendler, P.: Domain-type-guided refinement selection based
on sliced path prefixes. Technical Report MIP-1501, University of Passau (January
2015), arXiv:1502.00045

Beyer, D., Petrenko, A.K.: Linux driver verification. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2012, Part II. LNCS, vol. 7610, pp. 1-6. Springer, Heidelberg (2012)
Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Cytron, R.,
Gupta, R. (eds.) PLDI, pp. 196-207. ACM, New York (2003)

Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752-794 (2003)
Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J.
Symb. Log. 22(3), 250-268 (1957)

D’Silva, V., Kréning, D., Purandare, M., Weissenbacher, G.: Interpolant strength.
In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944,
pp. 129-145. Springer, Heidelberg (2010)

Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
0. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72-83. Springer, Heidelberg (1997)
Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Jones, N.D., Leroy, X. (eds.) POPL, pp. 232-244. ACM, New York
(2004)

Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Launch-
bury, J., Mitchell, J.C. (eds.) POPL, pp. 58-70. ACM, New York (2002)

Jhala, R., Majumdar, R.: Path slicing. In: Sarkar, V., Hall, M. (eds.) PLDI,
pp. 38-47. ACM, New York (2005)

Rimmer, P., Subotic, P.: Exploring interpolants. In: Jobstmann, B., Ray, S. (eds.)
FMCAD, pp. 69-76. IEEE, Washington, DC (2013)

http://arxiv.org/abs/1502.00045

	Sliced Path Prefixes: An Effective Method to Enable Refinement Selection
	1 Introduction
	2 Background
	3 Sliced Prefixes
	4 Slice-Based Refinement Selection
	5 Experiments
	6 Conclusion
	References

