
© IFIP International Federation for Information Processing 2015
A. Bessani and S. Bouchenak (Eds.): DAIS 2015, LNCS 9038, pp. 179–192, 2015.
DOI: 10.1007/978-3-319-19129-4_15

The Impact of Consistency on System Latency
in Fault Tolerant Internet Computing

Olga Tarasyuk1, Anatoliy Gorbenko1, Alexander Romanovsky2(),
Vyacheslav Kharchenko1, and Vitalii Ruban1

1 Department of Computer Systems and Networks,
National Aerospace University, Kharkiv, Ukraine

{O.Tarasyuk,A.Gorbenko}@csn.khai.edu, V.Kharchenko@khai.edu
2 School of Computing Science, Newcastle University, Newcastle upon Tyne, UK

Alexander.Romanovsky@ncl.ac.uk

Abstract. The paper discusses our practical experience and theoretical results in
investigating the impact of consistency on latency in distributed fault tolerant
systems built over the Internet. Trade-offs between consistency, availability and
latency are examined, as well as the role of the application timeout as the main
determinant of the interplay between system availability and performance. The
paper presents experimental results of measuring response time for replicated
service-oriented systems that provide different consistency levels: ONE, ALL
and QUORUM. These results clearly show that improvements in system consis-
tency increase system latency. A set of novel analytical models is proposed that
would enable quantified response time prediction depending on the level of
consistency provided by a replicated system.

Keywords: Internet computing · Fault-tolerance · Consistency · Latency ·
Response time · Modelling

1 Introduction

Distributed computing has become an industrial trend, indispensable in dealing with
enormous data growth. High availability requirements for many modern Internet ap-
plications require the use of system redundancy and data replication. Basic fault toler-
ant solutions such as N-modular, hot- and cold-spare redundancy usually assume a
synchronous communication between replicas, which means that every message is
delivered within a fixed and known amount of time [1]. This is a reasonable simplifi-
cation for the local-area systems whose components are compactly located, for in-
stance, within a single data centre.

This assumption does not appear to be relevant, however, for the wide-area sys-
tems, in which replicas are deployed over the Internet and their updates cannot be
propagated immediately, which makes it difficult to guarantee consistency.

The Internet and, more generally, the wide-area networked systems are character-
ized by a high level of uncertainty, which makes it hard to guarantee that a client will
receive a response from the service within a finite time. It has been previously shown

180 O. Tarasyuk et al.

that there is a significant uncertainty of response time in service-oriented systems
invoked over the Internet [2–4]. Besides, our experience and other studies [4–7] show
that failures are a regular occurrence on the Internet, clouds and in scale-out data cen-
tre networks. When developers apply replication and other fault tolerant techniques in
the Internet- and cloud-based systems, they need to understand the time overheads
and be concerned about delays and their uncertainty.

In this paper we examine, both in experimental and theoretical terms, how different
fault-tolerance solutions [8] implemented over the Internet affect system latency
depending on the level of consistency provided. The paper discusses the trade-offs
between consistency, availability and latency. Although these relations have been
identified by the CAP theorem in qualitative terms [9, 10], it is still necessary to quan-
tify how different fault-tolerant techniques affect system latency depending on the
consistency level. The main contributions of the paper are probabilistic models that
can predict the system response time depending on the chosen fault-tolerance tech-
nique and/or the selected consistency level, with the probabilistic behaviour of replicas
as an input parameter.

The rest of the paper is organized as follows. In Section 2 we discuss the impact of
the CAP theorem [9, 10] on distributed fault-tolerant systems and examine the trade-
offs between system consistency, availability and latency. Section 3 summarises the
results of experimental response time measurements for testbed fault-tolerant systems
that have three replicas distributed over the Internet and support different consistency
levels. The probabilistic models introduced in Section 4 define the relation between
system response time and the consistency level provided. Section 5 evaluates the ac-
curacy of the proposed analytical models by applying them in practice and comparing
their results with our experimental data. Finally, some practical lessons learnt from
our experimental and theoretical work are summarised in Section 6.

2 Understanding Trade-offs Between Consistency, Availability
and Latency in Distributed Fault-Tolerant Systems

The CAP conjecture [9], which first appeared in 1998-1999, defines a trade-off be-
tween system availability, consistency and partition tolerance, stating that only two of
the three properties can be preserved in distributed replicated systems at the same
time. Gilbert and Lynch [10] view the CAP theorem as a particular case of a more
general trade-off between consistency and availability in unreliable distributed
systems which assume that updates are eventually propagated.

System partitioning, availability and latency are tightly connected. A replicated
fault-tolerant system becomes partitioned when one of its parts does not respond due
to arbitrary message loss, delay or replica failure, resulting in a timeout. System
availability can be interpreted as a probability that each client request eventually
receives a response.

In many real systems, however, a response that is too late (i.e. beyond the applica-
tion timeout) is treated as a failure. High latency is an undesirable effect for many
interactive web applications. In [13] the authors showed that if a response time

 The Impact of Consistency on System Latency in Fault Tolerant Internet Computing 181

increases by as little as 100 ms, it dramatically reduces the probability of the customer
continuing to use the system.

Failure to receive responses from some of the replicas within the specified timeout
causes partitioning of the replicated system. Thus, partitioning can be considered as a
bound on the replica’s response time. A slow network connection, a slow-responding
replica or the wrong timeout settings can lead to an erroneus decision that the system
has become partitioned. When the system detects a partition, it has to decide whether to
return a possibly inconsistent response to a client or to send an exception message in
reply, which undermines system availability.

The designers of the distributed fault-tolerant systems cannot prevent partitions
which happen due to network failures, message losses, hacker attacks and components
crashes and, hence, have to choose between availability and consistency. One of these
two properties has to be sacrificed. If system developers decide to forfeit consistency
they can also improve the system response time by returning the fastest response to
the client without waiting for other replica responses until the timeout, though this
would increase the probability of providing inconsistent results. Besides, timeout
settings are also important. If the timeout is lower than the typical response time, a
system is likely to enter the partition mode more often [11].

It is important to remember that none of these three properties is binary. For exam-
ple, modern distributed database systems, e.g. Cassandra [14], can provide a discrete set
of different consistency levels for each particular read or write request. The response
time can theoretically vary between zero and infinity, although in practice it ranges
between a minimal affordable time higher than zero and the application timeout. Avail-
ability varies between 0% and 100% as usual.

The architects of modern distributed database management systems and large-scale
web applications such as Facebook, Twitter, etc. often decide to relax consistency
requirements by introducing asynchronous data updates in order to achieve higher
system availability and allow a longer response time. Yet the most promising ap-
proach is to balance these properties. For instance, the Cassandra NoSQL DDBS in-
troduces a tunable replication factor and an adjustable consistency model so that a
customer can choose a particular level of consistency to fit with the desired system
latency.

The CAP theorem helps the developers to understand the system trade-offs be-
tween consistency and availability/latency [12]. Yet even though this theorem
strongly suggests that better consistency undermines system availability and latency,
developers do not have quantitative models to help them to estimate the system re-
sponse time for the chosen consistency level and to achieve a precise trade-off be-
tween them.

Our interpretation of the CAP theorem and the trade-offs resulting from the CAP is
depicted in Fig. 1. The application timeout can be considered as a bound between
system availability and performance (in term of latency or response time) [15]. Thus,
system designers should be able to set up timeouts according to the desired system
response time, also keeping in mind the choice between consistency and availability.

182 O. Tarasyuk et al.

Fig. 1. The CAP trade-offs

In the following sections we discuss our practical experience on measuring latency
of fault-tolerant service-oriented system depending on the provided consistency level
and also introduce analytical models predicting system response time.

3 Experimental Investigation of the CAP Impact on
Fault-Tolerant Service-Oriented Systems

3.1 Description of the Testbed Architecture

To investigate the CAP impact on fault-tolerant distributed systems we developed a
testbed service-oriented system composed out of the three replicated web services
(see Fig. 2). This is a typical setup employed in many fault-tolerant solutions.

Fig. 2. Fault-tolerant service-oriented system

 The Impact of Consistency on System Latency in Fault Tolerant Internet Computing 183

A testbed web service was written in Java and its replicas uploaded to Amazon
Elastic Beanstalk and were deployed in the three different location domains: (i) US
West (Oregon); (ii) South America (Sao Paulo) and Asia Pacific (Tokyo). Each web
service replica performs a heavy-computational arithmetic calculation such as finding
the n digit of Pi when n is a large number and returns the result to the driver. The
driver is responsible for invoking each of the replicated web services, waiting for the
web services to complete their execution and return response, and, finally, implement-
ing a particular fault-tolerant scheme upon the obtained results.

AWS SDK for Java was used to connect web service replicas on Amazon EC2
from clients (driver) programming code that helps to take the complexity out of cod-
ing by providing Java APIs for AWS services.

In our study we investigated the three basic fault-tolerant patterns for web services
[16] corresponding to different consistency levels (ONE, ALL, QUORUM). In all
cases the driver simultaneously forwards client’s request to all replicated web ser-
vices. The consistency level determines the number of replicas which must return a
response to the driver before it sends an adjudicated result to the client application:

• ONE (hot-spare redundancy) – when the FASTEST response is received the driver
forwards it to the client. This is the weakest consistency level though it guarantees
the minimal latency;

• ALL (N-modular redundancy) – the driver must wait until ALL replicas return
their responses. In this case the response time is constrained by the slowest replica
though the strongest consistency is provided;

• QUORUM – the driver must wait for the responses from a QUORUM of replica
web services. It provides a compromise between the ONE and ALL options trading
off latency versus consistency. The quorum is calculated as:
(amount_of_replicas / 2) + 1, rounded down to an integer value. As far as in our
experiments we use the replication factor of 3, the quorum is 2.

The driver also implements a timeout mechanism aimed to protect clients from end-
less waiting in case of network or web-services failures or cloud outages.

3.2 Response Time Measurement

The driver was implemented as part of the Java client software. The client software
was run at a host in the Newcastle University (UK) corporate network. It invoked
replica web services several thousand times in a loop using the driver as a proxy.

For the particular client’s request we measured the response time of the each web
service replica and also times when the driver produces responses corresponding to
different consistency levels. The delay induced by the driver itself was negligible in
our experiments.

The measurement results obtained for the first 100 invocations are presented in
Figs. 3 and 4. Table 1 summarizes basic statistical characteristics of the measured data
whereas probability density series (pds) of system and replicas response times are depicted
in Figs. 5 and 6.

184 O. Tarasyuk et al.

As expected, when the system is configured to provide consistency level ONE its
latency in average is less than the average response time of the fastest replica. Aver-
age system latency in case it provides consistency level ALL is larger than the aver-
age response time of the slowest replica. System latency associated with consistency
level QUORUM is in the middle.

However, our main observation is that it is hardly possible to make an accurate
prediction of the average system latency corresponding to the certain consistency
level when the only common statistical measures of replicas response time (i.e. mini-
mal, maximal and average estimates and standard deviation) are known.

This finding resulting from our massive experiments and also confirmed by other
researches [17] show that it is extremely difficult to predict the timing characteristics
of various types of wide-area distributed systems, including fault-tolerant SOAs, dis-
tributed databases and file systems (e.g. Cassandra, GFS, HDFS), parallel processing
systems (e.g. Hadoop Map-Reduce). The dynamic and changing nature of timing
characteristics of such systems can be better captured by employing probability den-
sity functions.

In the next section we propose a probabilistic modelling approach that addresses
this problem. It relies on using probability density functions (PDF) of replica response
times to predict system latency at different consistency levels.

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

3100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Response time, ms

Invocation No

Replica1 - US West (Oregon)

Replica2 - South America (SaoPaulo)

Replica3 - Asia Pacific (Tokyo)

Fig. 3. Response time of different web service replicas

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

3100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Response time, ms

Invocation No

ONE

QUORUM

ALL

Fig. 4. System response time corresponding to different consistency levels

 The Impact of Consistency on System Latency in Fault Tolerant Internet Computing 185

Table 1. Response time statistics

Response
Time, ms

Replica1
(Oregon)

Replica2
(Sao Paulo)

Replica3
(Tokyo)

System consistency level
ONE QUORUM ALL

Minimal 2324 2164 2344 2164 2324 2386
Average 2428 2434 2588 2342 2449 2660

Maximal 2821 3371 5573 2509 2830 5573
Std. deviation 60 228 522 80 72 529

4 Probabilistic Models of System Response Time for Different
Consistency Levels

We propose a set of probabilistic models that allow us to build a combined probability
density function of system response time by taking into account provided consistency
level and incorporating response time probability density functions for each replica.

When the system is configured to provide consistency level ALL, the probability of re-
turning response to the client at time t is equal to the probability that one of the replicas
(e.g. the first one) returns its response exactly at time t, i.e. g1(t) while two other replicas

return their responses not later than t (by time t), i.e.)()(tGtg
t

20 2 =∫ and

)()(tGtg
t

30 3 =∫ .

So far as we have three replicas, all three possible combinations have to be ac-
counted. As a result, the probability density function of the system response time for
consistency level ALL can be defined as following:

)()()()()()()()()()(tGtGtgtGtGtgtGtGtgtf ALL 213312321 ++= . (1)

where g1(t), g2(t) and g3(t) – are response time probability density functions of the
first, second and third replicas respectively; G1(t), G2(t) and G3(t) – are response time
cumulative distribution functions of the first, second and third replicas respectively.

When the system is configured to provide consistency level ONE, the probability
of returning a response to the client at time t is equal to the probability that if only one
of the replicas (e.g. the first one) returns its response exactly at time t, i.e. g1(t), while
two other replicas return their responses at the same time or later on, i.e.

)()(tGtg
t 22 1 −=∫
∞

 and)()(tGtg
t 33 1 −=∫
∞

.

Keeping in mind three possible combinations we can deduce the probability den-
sity function of the system response time for consistency level ALL as:

()() ()()
()().)()()(

)()()()()()()(

tGtGtg

tGtGtgtGtGtgtfONE

213

312321

11

1111

−−+
+−−+−−=

(2)

Deducing the response time probability density function for the QUORUM consis-
tency level is based on a combination of the previous two cases.

186 O. Tarasyuk et al.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
p(t)

Response Time, ms

Replica1 (Oregon)

Replica2 (Sao Paulo)

Replica3 (Tokyo)

Replica2

Replica1

Replica3

Fig. 5. Probability density series of replicas response times

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
p(t)

Response Time, ms

ONE

QUORUM

ALL

ONE

QUORUM

ALL

Fig. 6. Probability density series of system response time for different consistency levels

The probability of returning response to the client at time t is equal to the probabil-
ity that one of the replicas returns its response exactly at time t; one of the two re-
mained replicas returns its response by time t and another one responds at time t or
later on. Taking into account all possible combinations the probability density func-
tion of the system response time for consistency level QUORUM can be deduced as:

()()
()()
()().)()()()()(

)()()()()(

)()()()()()(

tGtGtgtGtg

tGtGtgtGtg

tGtGtgtGtgtfQUORUM

12332

21331

31221

1

1

1

−++
+−++

+−+=

 (3)

Using similar reasoning it is possible to deduce response time probability density
functions of a system composed of n replicas:

 The Impact of Consistency on System Latency in Fault Tolerant Internet Computing 187

∑ ∏= = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅= n

i

n

j j
i

i
ALL tG

tG

tg
tf

1 1
)(

)(

)(
)(. (4)

()∑ ∏= = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅

−
= n

i

n

j j
i

i
ONE tG

tG

tg
tf

1 1
1

1
)(

)(

)(
)(. (5)

It is extremely hard to build a general form of the probability density function of
the system response time for consistency level QUORUM. However, the general
reasoning is as following. The composed probability density function should be
presented as a sum of m items, where m is a number of k-combinations of n (k is a
number of replicas constituting a quorum). Each of the m items is a product of two
factors. The first one defines the probability that a particular combination of k replicas
return their responses by time t. Another factor defines the probability that the re-
maining (n–k) replicas return their responses after t.

5 Models Validity

In this section we check the validity and accuracy of the proposed models by compar-
ing their prediction with the experimental data presented in Section 3. This check
includes the following four steps:

• finding out theoretical distribution laws that accurately approximate the measured
replica response times;

• applying the proposed mathematical models (1), (2) and (3) to deduce probability
density functions of the system response time for different consistency levels;

• estimating replica and system average response times using the theoretical prob-
ability distribution functions;

• comparing the theoretical and experimental values of replica and system average
response times.

5.1 Finding Theoretical Distribution Laws of Replica Response Times

Theoretical distribution laws approximating replica response times can be found in a
way described in [2]. It is based on performing a series of hypotheses checks in the
Matlab numeric computing environment. The techniques of hypothesis testing consist
of the two basic procedures. First, the values of distribution parameters are estimated
by analysing an experimental sample. Second, the null hypothesis that experimental
data has a particular distribution with certain parameters should be tested.

To perform hypothesis testing itself we used the kstest function:
[h, p] = kstest(t, cdf), conducting the Kolmogorov-Smirnov test to com-
pare the distribution of t with the hypothesized distribution defined by matrix cdf.

The null hypothesis for the Kolmogorov-Smirnov test is that t has a distribution de-
fined by cdf. The alternative hypothesis is that x does not have that distribution.

188 O. Tarasyuk et al.

Result h is equal to ‘1’ if we can reject the hypothesis, or ‘0’ if we cannot. The
function also returns the p-value which is the probability that x does not contradict the
null hypothesis. We reject the hypothesis if the test is significant at the 5% level (if p-
value is less than 0.05). The p-value returned by kstest was used to estimate the
goodness-of-fit of the hypothesis. As a result of hypothesis testing we found out that
the Weibull distribution fits well the response time of the first (Oregon) and the third
(Tokyo) replicas. The response time of the second replica (Sao Paulo) can be accu-
rately approximated by the Gamma distribution.

5.2 Deducing Probability Density Functions of the System Response Time

Mathcad has been used at the second stage of our investigation to deduce theoretical
distributions of system response times for different consistency levels. It also allows
to estimate average system latency and to plot probability density functions. Mathcad
worksheet is shown in Fig. 7. It includes seven modelling steps.

At the 1st step we define abscissa axis t and its dimension in milliseconds. Sec-
ondly, we set up parameters of replicas response time distribution functions estimated
in Matlab and also their shifts on the abscissa axis (i.e. minimal response time values).

At the 3rd and 4th steps the replica response time probability density functions
g1(t), g2(t), g3(t) and the corresponding cumulative distribution functions G1(t), G2(t),
G3(t) are defined using Mathcad library functions dweibull and dgamma.

At the 5th step we define probability density functions of the system response time
corresponding to different consistency levels by combining replicas pdf and cdf accord-
ing to the proposed equations (1), (2) and (3).

Fig. 7. Mathcad’s worksheet

 The Impact of Consistency on System Latency in Fault Tolerant Internet Computing 189

Probability distribution functions of replicas and system response times are shown
in Figs. 8 and 9. The bulk of the values of probability density function fALL(t) is shifted
to the right on the abscissa axis as it was expected. The shapes of the fONE(t) and fQUO-

RUM(t) probability density functions are also in line with the reasonable expectations
and experimentally obtained probability density series (see Fig. 6).

Finally, at steps 6 and 7 we estimate the system and replicas average response time
by integrating their theoretical probability distribution functions.

2 10
3× 2.2 10

3× 2.4 10
3× 2.6 10

3× 2.8 10
3× 3 10

3×
0

2 10
3−×

4 10
3−×

6 10
3−×

8 10
3−×

0.01

g1(t)
g2(t)
g3(t)

Fig. 8. Probability density functions of replicas response times

2 10
3× 2.2 10

3× 2.4 10
3× 2.6 10

3× 2.8 10
3× 3 10

3×
0

2 10
3−×

4 10
3−×

6 10
3−×

8 10
3−×

fALL(t)
fONE(t)
fQUORUM(t)

Fig. 9. Probability density functions of system response time for different consistency levels
t

t

190 O. Tarasyuk et al.

5.3 Accuracy of Mathematical Modelling

Table 2 shows the deviation between the average values of the system and replicas
response time estimated practically (see Table 1) and theoretically with the help of the
obtained probability distribution functions. These results confirm the significant
closeness between actual and modelled timing characteristics. To be sure that not only
the average value can be accurately predicted we compare theoretical system prob-
ability density functions (see Fig. 9) and practically obtained probability density
series (Fig. 6). With this purpose we estimated experimental and theoretical probabili-
ties that system latency at different consistency levels is less than the specified time.

Table 2. Accuracy of mathematical modelling

 Replica1
(Oregon)

Replica2
(Sao Paulo)

Replica3
(Tokyo)

System consistency level
ONE QUORUM ALL

Approximating theoretical distributions and their parameters
distribution Weibull Gamma Weibull

alpha 113.3578 1.5952 176.8796
beta 2.3041 164.1599 1.7467
x-shift 2324 2164 2344

Average response time, ms
measured 2428 2434 2588 2342 2449 2660
modelled 2424 2426 2502 2341 2444 2567
Deviation, % 0.18 0.34 3.32 0.03 0.19 3.51

Table 3. Deviation between theoretical system pdf and pds obtained experimentally

Time,
ms

Probability that system latency is less than the specified time
ONE QUORUM ALL

pds pdf dev.,% pds pdf dev.,% pds pdf dev.,%
2175 0.01 0.009 10.00 0 0 - 0 0 -
2225 0.11 0.116 5.45 0 0 - 0 0 -
2275 0.23 0.252 9.57 0 0 - 0 0 -
2325 0.43 0.385 10.47 0.01 0 - 0 0 -
2375 0.59 0.596 1.02 0.08 0.097 21.25 0 0.003 -
2425 0.84 0.858 2.14 0.43 0.434 0.93 0.11 0.073 33.64
2475 0.99 0.975 1.52 0.72 0.752 4.44 0.29 0.263 9.31
2525 1 0.998 0.20 0.89 0.903 1.46 0.52 0.476 8.46
2575 1 1 0 0.96 0.961 0.10 0.63 0.643 2.06
2625 1 1 0 0.96 0.984 2.50 0.72 0.761 5.69
2675 1 1 0 0.99 0.994 0.40 0.8 0.841 5.13
2725 1 1 0 0.99 0.998 0.81 0.85 0.892 4.94
2775 1 1 0 0.99 0.999 0.91 0.88 0.924 5.00
2825 1 1 0 0.99 1 1.01 0.89 0.945 6.18
2875 1 1 0 1 1 0 0.91 0.959 5.38
2925 1 1 0 1 1 0 0.91 0.969 6.48
2975 1 1 0 1 1 0 0.92 0.977 6.20
3025 1 1 0 1 1 0 0.94 0.982 4.47
3075 1 1 0 1 1 0 0.95 0.987 3.89

Average deviation, % 2.12 2.25 7.12

 The Impact of Consistency on System Latency in Fault Tolerant Internet Computing 191

The results of this comparison (see Table 3) show a close approximation of the ex-
perimental data by the proposed analytical models, especially for the consistency
levels ONE and QUORUM. The probabilistic model of the system response time for
consistency level ALL gives slightly optimistic prediction, though the average devia-
tion from the experimental data is only 7% – that is close enough.

6 Conclusion and Lessons Learnt

When employing fault-tolerance techniques over the Internet and clouds, engineers
need to deal with delays, their uncertainty, timeouts, adjudication of asynchronous
replies from replicas, and other specific issues involved in global distributed systems.
The overall aim of this work was to study the impact of consistency on system latency
in fault tolerant Internet computing.

Our experimental results clearly show that improving system consistency makes
system latency worse. This finding confirms one of the generally accepted qualitative
implications of the CAP theorem [9, 10]. However, so far system developers have not
had any mathematical tools to help them to accurately predict the response time of
large-scale replicated systems. While estimating the system worst-case execution time
remains common practice for many applications (e.g. embedded computer systems,
server fault-tolerance solutions, like STRATUS, etc.), this is no longer a viable solu-
tion for the wide-area service-oriented systems in which components can be distrib-
uted all over the Internet. In our previous works [2, 3] we demonstrated that extreme
unpredictable delays exceeding the value of ten average response times can happen in
such systems quite often. In this paper we have proposed a set of novel analytical
models providing a quantitative basis for the system response time prediction depend-
ing on the consistency level provided for (or requested by) clients. The models allow
us to derive the probability distribution function of the system response time which
corresponds to a particular consistency level (ONE, ALL or QUORUM) by incorpo-
rating the probability density functions of the replica response times.

The validity of the proposed models has been verified against the experimental
data reported in Section 3. It has been demonstrated that the proposed models ensure a
significant level of accuracy in the system average response time prediction, espe-
cially in case of ONE and QUORUM consistency levels. The proposed models
provide a mathematical basis for predicting latency of distributed fault and intrusion-
tolerance techniques operating over the Internet. The models take into account the
probabilistic uncertainty of replicas’ response time and the required consistency level.

The practical application of our work is in allowing practitioners to predict system per-
formance, and in offering them crucial support for the optimal timeout setup and for un-
derstanding the trade-off between system consistency and latency. Trading off system
consistency against latency requires the knowledge of probability density functions (and
parameter values) that accurately approximate replicas’ response time. These probabilistic
characteristics, which can be obtained by testing or during the trial usage, will need to be
corrected at run-time or at tune-time to improve prediction accuracy. It would be possible
to replace the response time probability density functions in the proposed models with
probability density series. This would make it easier to use the models in practice.

192 O. Tarasyuk et al.

Acknowledgements. We are grateful to Aad van Moorsel for his feedback on the earlier ver-
sion of this work and Batyrkhan Omarov for his help with running some of the experiments.
Alexander Romanovsky is partially supported by the EPSRC TRAMS-2 platform grant.

References

1. Lee, P.A., Anderson, T.: Fault Tolerance. Principles and Practice. Springer-Verlag (1990)
2. Gorbenko, A., et al.: Real Distribution of Response Time Instability in Service-Oriented

Architecture. In: 29th IEEE Int’l Symp. Reliable Distributed Systems, pp. 92–99 (2010)
3. Gorbenko, A., et al.: Exploring Uncertainty of Delays as a Factor in End-to-End Cloud Re-

sponse Time. In: 9th European Dependable Computing Conference, pp. 185–190 (2012)
4. Bakr, O., Keidar, I.: Evaluating the running time of a communication round over the inter-

net. In: 21th Ann. ACM Symposium on Principles of Distributed Computing (PODC
2000), pp. 243–252 (2002)

5. Chen, Y., et al.: Measuring and Dealing with the Uncertainty of the SOA Solutions. In:
Cardellini, V., et al. (eds.) Performance and Dependability in Service Computing: Con-
cepts, Techniques and Research Directions, pp. 265–294. IGI Global (2011)

6. Potharaju, R., Jain, N.: When the Network Crumbles: An Empirical Study of Cloud Net-
work Failures and their Impact on Services. In: 4th ACM Symposium on Cloud Compu-
ting, SoCC (2013)

7. Scott, C., Choffnes, D.R., Cunha, I., et al.: LIFEGUARD: practical repair of persistent
route failures. In: ACM SIGCOMM 2012 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, pp. 395–406 (2012)

8. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Trans. on Dependable and Secure Compu-
ting 1(1), 11–33 (2004)

9. Brewer, E.: Towards Robust Distributed Systems. In: 19th Ann. ACM Symposium on
Principles of Distributed Computing, PODC 2000, pp. 7–10 (2000)

10. Gilbert, S., Lynch, N.: Brewer’s Conjecture and the Feasibility of Consistent, Available,
Partition-Tolerant Web Services. ACM SIGACT News 33(2), 51–59 (2002)

11. Gorbenko, A., Romanovsky, A., Kharchenko, V., Tarasyuk, O.: Dependability of Service-
Oriented Computing: Time-Probabilistic Failure Modelling. In: Avgeriou, P. (ed.)
SERENE 2012. LNCS, vol. 7527, pp. 121–133. Springer, Heidelberg (2012)

12. Abadi, D.J.: Consistency Tradeoffs in Modern Distributed Database System Design. IEEE
Computer 45(2), 37–42 (2012)

13. Brutlag, J.: Speed Matters for Google Web Search. Google (2009),
http://services.google.com/fh/files/blogs/google_delayexp.pdf

14. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. ACM
SIGOPS Operating Systems Review 44(2), 35–40 (2010)

15. Gorbenko, A., Romanovsky, A.: Time-Outing Internet Services. IEEE Security & Priva-
cy 11(2), 68–71 (2013)

16. Gorbenko, A., Kharchenko, V., Romanovsky, A.: Using Inherent Service Redundancy and
Diversity to Ensure Web Services Dependability. In: Butler, M., Jones, C., Romanovsky,
A., Troubitsyna, E. (eds.) Methods, Models and Tools for Fault Tolerance. LNCS,
vol. 5454, pp. 324–341. Springer, Heidelberg (2009)

17. Rao, J., Shekita, E.J., Tata, S.: Using Paxos to Build a Scalable, Consistent, and Highly
Available Datastore. VLDB Endowment, 243–254 (2011)

	The Impact of Consistency on System Latency in Fault Tolerant Internet Computing
	1 Introduction
	2 Understanding Trade-offs Between Consistency, Availabilityand Latency in Distributed Fault-Tolerant Systems
	3 Experimental Investigation of the CAP Impact onFault-Tolerant Service-Oriented Systems
	3.1 Description of the Testbed Architecture
	3.2 Response Time Measurement

	4 Probabilistic Models of System Response Time for DifferentConsistency Levels
	5 Models Validity
	5.1 Finding Theoretical Distribution Laws of Replica Response Times
	5.2 Deducing Probability Density Functions of the System Response Time
	5.3 Accuracy of Mathematical Modelling

	6 Conclusion and Lessons Learnt
	References

